linux/block/blk-map.c

815 lines
18 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* Functions related to mapping data to requests
*/
#include <linux/kernel.h>
#include <linux/sched/task_stack.h>
#include <linux/module.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/uio.h>
#include "blk.h"
struct bio_map_data {
bool is_our_pages : 1;
bool is_null_mapped : 1;
struct iov_iter iter;
struct iovec iov[];
};
static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
gfp_t gfp_mask)
{
struct bio_map_data *bmd;
if (data->nr_segs > UIO_MAXIOV)
return NULL;
bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
if (!bmd)
return NULL;
bmd->iter = *data;
if (iter_is_iovec(data)) {
memcpy(bmd->iov, iter_iov(data), sizeof(struct iovec) * data->nr_segs);
bmd->iter.__iov = bmd->iov;
}
return bmd;
}
/**
* bio_copy_from_iter - copy all pages from iov_iter to bio
* @bio: The &struct bio which describes the I/O as destination
* @iter: iov_iter as source
*
* Copy all pages from iov_iter to bio.
* Returns 0 on success, or error on failure.
*/
static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
{
struct bio_vec *bvec;
struct bvec_iter_all iter_all;
bio_for_each_segment_all(bvec, bio, iter_all) {
ssize_t ret;
ret = copy_page_from_iter(bvec->bv_page,
bvec->bv_offset,
bvec->bv_len,
iter);
if (!iov_iter_count(iter))
break;
if (ret < bvec->bv_len)
return -EFAULT;
}
return 0;
}
/**
* bio_copy_to_iter - copy all pages from bio to iov_iter
* @bio: The &struct bio which describes the I/O as source
* @iter: iov_iter as destination
*
* Copy all pages from bio to iov_iter.
* Returns 0 on success, or error on failure.
*/
static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
{
struct bio_vec *bvec;
struct bvec_iter_all iter_all;
bio_for_each_segment_all(bvec, bio, iter_all) {
ssize_t ret;
ret = copy_page_to_iter(bvec->bv_page,
bvec->bv_offset,
bvec->bv_len,
&iter);
if (!iov_iter_count(&iter))
break;
if (ret < bvec->bv_len)
return -EFAULT;
}
return 0;
}
/**
* bio_uncopy_user - finish previously mapped bio
* @bio: bio being terminated
*
* Free pages allocated from bio_copy_user_iov() and write back data
* to user space in case of a read.
*/
static int bio_uncopy_user(struct bio *bio)
{
struct bio_map_data *bmd = bio->bi_private;
int ret = 0;
if (!bmd->is_null_mapped) {
/*
* if we're in a workqueue, the request is orphaned, so
* don't copy into a random user address space, just free
* and return -EINTR so user space doesn't expect any data.
*/
if (!current->mm)
ret = -EINTR;
else if (bio_data_dir(bio) == READ)
ret = bio_copy_to_iter(bio, bmd->iter);
if (bmd->is_our_pages)
bio_free_pages(bio);
}
kfree(bmd);
return ret;
}
static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
struct iov_iter *iter, gfp_t gfp_mask)
{
struct bio_map_data *bmd;
struct page *page;
struct bio *bio;
int i = 0, ret;
int nr_pages;
unsigned int len = iter->count;
unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
bmd = bio_alloc_map_data(iter, gfp_mask);
if (!bmd)
return -ENOMEM;
/*
* We need to do a deep copy of the iov_iter including the iovecs.
* The caller provided iov might point to an on-stack or otherwise
* shortlived one.
*/
bmd->is_our_pages = !map_data;
bmd->is_null_mapped = (map_data && map_data->null_mapped);
nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
ret = -ENOMEM;
bio = bio_kmalloc(nr_pages, gfp_mask);
if (!bio)
goto out_bmd;
bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq));
if (map_data) {
nr_pages = 1U << map_data->page_order;
i = map_data->offset / PAGE_SIZE;
}
while (len) {
unsigned int bytes = PAGE_SIZE;
bytes -= offset;
if (bytes > len)
bytes = len;
if (map_data) {
if (i == map_data->nr_entries * nr_pages) {
ret = -ENOMEM;
goto cleanup;
}
page = map_data->pages[i / nr_pages];
page += (i % nr_pages);
i++;
} else {
page = alloc_page(GFP_NOIO | gfp_mask);
if (!page) {
ret = -ENOMEM;
goto cleanup;
}
}
if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
if (!map_data)
__free_page(page);
break;
}
len -= bytes;
offset = 0;
}
if (map_data)
map_data->offset += bio->bi_iter.bi_size;
/*
* success
*/
if (iov_iter_rw(iter) == WRITE &&
(!map_data || !map_data->null_mapped)) {
ret = bio_copy_from_iter(bio, iter);
if (ret)
goto cleanup;
} else if (map_data && map_data->from_user) {
struct iov_iter iter2 = *iter;
/* This is the copy-in part of SG_DXFER_TO_FROM_DEV. */
iter2.data_source = ITER_SOURCE;
ret = bio_copy_from_iter(bio, &iter2);
if (ret)
goto cleanup;
} else {
if (bmd->is_our_pages)
zero_fill_bio(bio);
iov_iter_advance(iter, bio->bi_iter.bi_size);
}
bio->bi_private = bmd;
ret = blk_rq_append_bio(rq, bio);
if (ret)
goto cleanup;
return 0;
cleanup:
if (!map_data)
bio_free_pages(bio);
bio_uninit(bio);
kfree(bio);
out_bmd:
kfree(bmd);
return ret;
}
static void blk_mq_map_bio_put(struct bio *bio)
{
if (bio->bi_opf & REQ_ALLOC_CACHE) {
bio_put(bio);
} else {
bio_uninit(bio);
kfree(bio);
}
}
static struct bio *blk_rq_map_bio_alloc(struct request *rq,
unsigned int nr_vecs, gfp_t gfp_mask)
{
struct bio *bio;
if (rq->cmd_flags & REQ_ALLOC_CACHE && (nr_vecs <= BIO_INLINE_VECS)) {
bio = bio_alloc_bioset(NULL, nr_vecs, rq->cmd_flags, gfp_mask,
&fs_bio_set);
if (!bio)
return NULL;
} else {
bio = bio_kmalloc(nr_vecs, gfp_mask);
if (!bio)
return NULL;
bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq));
}
return bio;
}
static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
gfp_t gfp_mask)
{
iov_iter_extraction_t extraction_flags = 0;
unsigned int max_sectors = queue_max_hw_sectors(rq->q);
unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS);
struct bio *bio;
int ret;
int j;
if (!iov_iter_count(iter))
return -EINVAL;
bio = blk_rq_map_bio_alloc(rq, nr_vecs, gfp_mask);
if (bio == NULL)
return -ENOMEM;
if (blk_queue_pci_p2pdma(rq->q))
extraction_flags |= ITER_ALLOW_P2PDMA;
if (iov_iter_extract_will_pin(iter))
bio_set_flag(bio, BIO_PAGE_PINNED);
while (iov_iter_count(iter)) {
struct page *stack_pages[UIO_FASTIOV];
struct page **pages = stack_pages;
ssize_t bytes;
size_t offs;
int npages;
if (nr_vecs > ARRAY_SIZE(stack_pages))
pages = NULL;
bytes = iov_iter_extract_pages(iter, &pages, LONG_MAX,
nr_vecs, extraction_flags, &offs);
if (unlikely(bytes <= 0)) {
ret = bytes ? bytes : -EFAULT;
goto out_unmap;
}
npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
if (unlikely(offs & queue_dma_alignment(rq->q)))
j = 0;
else {
for (j = 0; j < npages; j++) {
struct page *page = pages[j];
unsigned int n = PAGE_SIZE - offs;
bool same_page = false;
if (n > bytes)
n = bytes;
if (!bio_add_hw_page(rq->q, bio, page, n, offs,
max_sectors, &same_page))
break;
if (same_page)
bio_release_page(bio, page);
bytes -= n;
offs = 0;
}
}
/*
* release the pages we didn't map into the bio, if any
*/
while (j < npages)
bio_release_page(bio, pages[j++]);
if (pages != stack_pages)
kvfree(pages);
/* couldn't stuff something into bio? */
if (bytes) {
iov_iter_revert(iter, bytes);
break;
}
}
ret = blk_rq_append_bio(rq, bio);
if (ret)
goto out_unmap;
return 0;
out_unmap:
bio_release_pages(bio, false);
blk_mq_map_bio_put(bio);
return ret;
}
static void bio_invalidate_vmalloc_pages(struct bio *bio)
{
mm: remove flush_kernel_dcache_page flush_kernel_dcache_page is a rather confusing interface that implements a subset of flush_dcache_page by not being able to properly handle page cache mapped pages. The only callers left are in the exec code as all other previous callers were incorrect as they could have dealt with page cache pages. Replace the calls to flush_kernel_dcache_page with calls to flush_dcache_page, which for all architectures does either exactly the same thing, can contains one or more of the following: 1) an optimization to defer the cache flush for page cache pages not mapped into userspace 2) additional flushing for mapped page cache pages if cache aliases are possible Link: https://lkml.kernel.org/r/20210712060928.4161649-7-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Cc: Alex Shi <alexs@kernel.org> Cc: Geoff Levand <geoff@infradead.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Guo Ren <guoren@kernel.org> Cc: Helge Deller <deller@gmx.de> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Nick Hu <nickhu@andestech.com> Cc: Paul Cercueil <paul@crapouillou.net> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Ulf Hansson <ulf.hansson@linaro.org> Cc: Vincent Chen <deanbo422@gmail.com> Cc: Yoshinori Sato <ysato@users.osdn.me> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-02 21:56:36 +00:00
#ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
if (bio->bi_private && !op_is_write(bio_op(bio))) {
unsigned long i, len = 0;
for (i = 0; i < bio->bi_vcnt; i++)
len += bio->bi_io_vec[i].bv_len;
invalidate_kernel_vmap_range(bio->bi_private, len);
}
#endif
}
static void bio_map_kern_endio(struct bio *bio)
{
bio_invalidate_vmalloc_pages(bio);
bio_uninit(bio);
kfree(bio);
}
/**
* bio_map_kern - map kernel address into bio
* @q: the struct request_queue for the bio
* @data: pointer to buffer to map
* @len: length in bytes
* @gfp_mask: allocation flags for bio allocation
*
* Map the kernel address into a bio suitable for io to a block
* device. Returns an error pointer in case of error.
*/
static struct bio *bio_map_kern(struct request_queue *q, void *data,
unsigned int len, gfp_t gfp_mask)
{
unsigned long kaddr = (unsigned long)data;
unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
unsigned long start = kaddr >> PAGE_SHIFT;
const int nr_pages = end - start;
bool is_vmalloc = is_vmalloc_addr(data);
struct page *page;
int offset, i;
struct bio *bio;
bio = bio_kmalloc(nr_pages, gfp_mask);
if (!bio)
return ERR_PTR(-ENOMEM);
bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
if (is_vmalloc) {
flush_kernel_vmap_range(data, len);
bio->bi_private = data;
}
offset = offset_in_page(kaddr);
for (i = 0; i < nr_pages; i++) {
unsigned int bytes = PAGE_SIZE - offset;
if (len <= 0)
break;
if (bytes > len)
bytes = len;
if (!is_vmalloc)
page = virt_to_page(data);
else
page = vmalloc_to_page(data);
if (bio_add_pc_page(q, bio, page, bytes,
offset) < bytes) {
/* we don't support partial mappings */
bio_uninit(bio);
kfree(bio);
return ERR_PTR(-EINVAL);
}
data += bytes;
len -= bytes;
offset = 0;
}
bio->bi_end_io = bio_map_kern_endio;
return bio;
}
static void bio_copy_kern_endio(struct bio *bio)
{
bio_free_pages(bio);
bio_uninit(bio);
kfree(bio);
}
static void bio_copy_kern_endio_read(struct bio *bio)
{
char *p = bio->bi_private;
struct bio_vec *bvec;
struct bvec_iter_all iter_all;
bio_for_each_segment_all(bvec, bio, iter_all) {
memcpy_from_bvec(p, bvec);
p += bvec->bv_len;
}
bio_copy_kern_endio(bio);
}
/**
* bio_copy_kern - copy kernel address into bio
* @q: the struct request_queue for the bio
* @data: pointer to buffer to copy
* @len: length in bytes
* @gfp_mask: allocation flags for bio and page allocation
* @reading: data direction is READ
*
* copy the kernel address into a bio suitable for io to a block
* device. Returns an error pointer in case of error.
*/
static struct bio *bio_copy_kern(struct request_queue *q, void *data,
unsigned int len, gfp_t gfp_mask, int reading)
{
unsigned long kaddr = (unsigned long)data;
unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
unsigned long start = kaddr >> PAGE_SHIFT;
struct bio *bio;
void *p = data;
int nr_pages = 0;
/*
* Overflow, abort
*/
if (end < start)
return ERR_PTR(-EINVAL);
nr_pages = end - start;
bio = bio_kmalloc(nr_pages, gfp_mask);
if (!bio)
return ERR_PTR(-ENOMEM);
bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
while (len) {
struct page *page;
unsigned int bytes = PAGE_SIZE;
if (bytes > len)
bytes = len;
page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask);
if (!page)
goto cleanup;
if (!reading)
memcpy(page_address(page), p, bytes);
if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
break;
len -= bytes;
p += bytes;
}
if (reading) {
bio->bi_end_io = bio_copy_kern_endio_read;
bio->bi_private = data;
} else {
bio->bi_end_io = bio_copy_kern_endio;
}
return bio;
cleanup:
bio_free_pages(bio);
bio_uninit(bio);
kfree(bio);
return ERR_PTR(-ENOMEM);
}
/*
* Append a bio to a passthrough request. Only works if the bio can be merged
* into the request based on the driver constraints.
*/
int blk_rq_append_bio(struct request *rq, struct bio *bio)
{
struct bvec_iter iter;
struct bio_vec bv;
unsigned int nr_segs = 0;
bio_for_each_bvec(bv, bio, iter)
nr_segs++;
if (!rq->bio) {
blk_rq_bio_prep(rq, bio, nr_segs);
} else {
if (!ll_back_merge_fn(rq, bio, nr_segs))
return -EINVAL;
rq->biotail->bi_next = bio;
rq->biotail = bio;
rq->__data_len += (bio)->bi_iter.bi_size;
bio_crypt_free_ctx(bio);
}
return 0;
}
EXPORT_SYMBOL(blk_rq_append_bio);
/* Prepare bio for passthrough IO given ITER_BVEC iter */
static int blk_rq_map_user_bvec(struct request *rq, const struct iov_iter *iter)
{
struct request_queue *q = rq->q;
size_t nr_iter = iov_iter_count(iter);
size_t nr_segs = iter->nr_segs;
struct bio_vec *bvecs, *bvprvp = NULL;
const struct queue_limits *lim = &q->limits;
unsigned int nsegs = 0, bytes = 0;
struct bio *bio;
size_t i;
if (!nr_iter || (nr_iter >> SECTOR_SHIFT) > queue_max_hw_sectors(q))
return -EINVAL;
if (nr_segs > queue_max_segments(q))
return -EINVAL;
/* no iovecs to alloc, as we already have a BVEC iterator */
bio = blk_rq_map_bio_alloc(rq, 0, GFP_KERNEL);
if (bio == NULL)
return -ENOMEM;
bio_iov_bvec_set(bio, (struct iov_iter *)iter);
blk_rq_bio_prep(rq, bio, nr_segs);
/* loop to perform a bunch of sanity checks */
bvecs = (struct bio_vec *)iter->bvec;
for (i = 0; i < nr_segs; i++) {
struct bio_vec *bv = &bvecs[i];
/*
* If the queue doesn't support SG gaps and adding this
* offset would create a gap, fallback to copy.
*/
if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv->bv_offset)) {
blk_mq_map_bio_put(bio);
return -EREMOTEIO;
}
/* check full condition */
if (nsegs >= nr_segs || bytes > UINT_MAX - bv->bv_len)
goto put_bio;
if (bytes + bv->bv_len > nr_iter)
goto put_bio;
if (bv->bv_offset + bv->bv_len > PAGE_SIZE)
goto put_bio;
nsegs++;
bytes += bv->bv_len;
bvprvp = bv;
}
return 0;
put_bio:
blk_mq_map_bio_put(bio);
return -EINVAL;
}
/**
* blk_rq_map_user_iov - map user data to a request, for passthrough requests
* @q: request queue where request should be inserted
* @rq: request to map data to
* @map_data: pointer to the rq_map_data holding pages (if necessary)
* @iter: iovec iterator
* @gfp_mask: memory allocation flags
*
* Description:
* Data will be mapped directly for zero copy I/O, if possible. Otherwise
* a kernel bounce buffer is used.
*
* A matching blk_rq_unmap_user() must be issued at the end of I/O, while
* still in process context.
*/
int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
struct rq_map_data *map_data,
const struct iov_iter *iter, gfp_t gfp_mask)
{
bool copy = false, map_bvec = false;
unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
struct bio *bio = NULL;
struct iov_iter i;
int ret = -EINVAL;
if (map_data)
copy = true;
else if (blk_queue_may_bounce(q))
copy = true;
else if (iov_iter_alignment(iter) & align)
copy = true;
else if (iov_iter_is_bvec(iter))
map_bvec = true;
else if (!user_backed_iter(iter))
copy = true;
else if (queue_virt_boundary(q))
copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
if (map_bvec) {
ret = blk_rq_map_user_bvec(rq, iter);
if (!ret)
return 0;
if (ret != -EREMOTEIO)
goto fail;
/* fall back to copying the data on limits mismatches */
copy = true;
}
i = *iter;
do {
if (copy)
ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
else
ret = bio_map_user_iov(rq, &i, gfp_mask);
if (ret)
goto unmap_rq;
if (!bio)
bio = rq->bio;
} while (iov_iter_count(&i));
return 0;
unmap_rq:
block: fix memleak when __blk_rq_map_user_iov() is failed When I doing fuzzy test, get the memleak report: BUG: memory leak unreferenced object 0xffff88837af80000 (size 4096): comm "memleak", pid 3557, jiffies 4294817681 (age 112.499s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 20 00 00 00 10 01 00 00 00 00 00 00 01 00 00 00 ............... backtrace: [<000000001c894df8>] bio_alloc_bioset+0x393/0x590 [<000000008b139a3c>] bio_copy_user_iov+0x300/0xcd0 [<00000000a998bd8c>] blk_rq_map_user_iov+0x2f1/0x5f0 [<000000005ceb7f05>] blk_rq_map_user+0xf2/0x160 [<000000006454da92>] sg_common_write.isra.21+0x1094/0x1870 [<00000000064bb208>] sg_write.part.25+0x5d9/0x950 [<000000004fc670f6>] sg_write+0x5f/0x8c [<00000000b0d05c7b>] __vfs_write+0x7c/0x100 [<000000008e177714>] vfs_write+0x1c3/0x500 [<0000000087d23f34>] ksys_write+0xf9/0x200 [<000000002c8dbc9d>] do_syscall_64+0x9f/0x4f0 [<00000000678d8e9a>] entry_SYSCALL_64_after_hwframe+0x49/0xbe If __blk_rq_map_user_iov() is failed in blk_rq_map_user_iov(), the bio(s) which is allocated before this failing will leak. The refcount of the bio(s) is init to 1 and increased to 2 by calling bio_get(), but __blk_rq_unmap_user() only decrease it to 1, so the bio cannot be freed. Fix it by calling blk_rq_unmap_user(). Reviewed-by: Bob Liu <bob.liu@oracle.com> Reported-by: Hulk Robot <hulkci@huawei.com> Signed-off-by: Yang Yingliang <yangyingliang@huawei.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-12-18 08:44:04 +00:00
blk_rq_unmap_user(bio);
fail:
rq->bio = NULL;
return ret;
}
EXPORT_SYMBOL(blk_rq_map_user_iov);
int blk_rq_map_user(struct request_queue *q, struct request *rq,
struct rq_map_data *map_data, void __user *ubuf,
unsigned long len, gfp_t gfp_mask)
{
struct iov_iter i;
int ret = import_ubuf(rq_data_dir(rq), ubuf, len, &i);
if (unlikely(ret < 0))
return ret;
return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
}
EXPORT_SYMBOL(blk_rq_map_user);
int blk_rq_map_user_io(struct request *req, struct rq_map_data *map_data,
void __user *ubuf, unsigned long buf_len, gfp_t gfp_mask,
bool vec, int iov_count, bool check_iter_count, int rw)
{
int ret = 0;
if (vec) {
struct iovec fast_iov[UIO_FASTIOV];
struct iovec *iov = fast_iov;
struct iov_iter iter;
ret = import_iovec(rw, ubuf, iov_count ? iov_count : buf_len,
UIO_FASTIOV, &iov, &iter);
if (ret < 0)
return ret;
if (iov_count) {
/* SG_IO howto says that the shorter of the two wins */
iov_iter_truncate(&iter, buf_len);
if (check_iter_count && !iov_iter_count(&iter)) {
kfree(iov);
return -EINVAL;
}
}
ret = blk_rq_map_user_iov(req->q, req, map_data, &iter,
gfp_mask);
kfree(iov);
} else if (buf_len) {
ret = blk_rq_map_user(req->q, req, map_data, ubuf, buf_len,
gfp_mask);
}
return ret;
}
EXPORT_SYMBOL(blk_rq_map_user_io);
/**
* blk_rq_unmap_user - unmap a request with user data
* @bio: start of bio list
*
* Description:
* Unmap a rq previously mapped by blk_rq_map_user(). The caller must
* supply the original rq->bio from the blk_rq_map_user() return, since
* the I/O completion may have changed rq->bio.
*/
int blk_rq_unmap_user(struct bio *bio)
{
struct bio *next_bio;
int ret = 0, ret2;
while (bio) {
if (bio->bi_private) {
ret2 = bio_uncopy_user(bio);
if (ret2 && !ret)
ret = ret2;
} else {
bio_release_pages(bio, bio_data_dir(bio) == READ);
}
next_bio = bio;
bio = bio->bi_next;
blk_mq_map_bio_put(next_bio);
}
return ret;
}
EXPORT_SYMBOL(blk_rq_unmap_user);
/**
* blk_rq_map_kern - map kernel data to a request, for passthrough requests
* @q: request queue where request should be inserted
* @rq: request to fill
* @kbuf: the kernel buffer
* @len: length of user data
* @gfp_mask: memory allocation flags
*
* Description:
* Data will be mapped directly if possible. Otherwise a bounce
* buffer is used. Can be called multiple times to append multiple
* buffers.
*/
int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
unsigned int len, gfp_t gfp_mask)
{
int reading = rq_data_dir(rq) == READ;
unsigned long addr = (unsigned long) kbuf;
struct bio *bio;
int ret;
if (len > (queue_max_hw_sectors(q) << 9))
return -EINVAL;
if (!len || !kbuf)
return -EINVAL;
if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) ||
blk_queue_may_bounce(q))
bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
else
bio = bio_map_kern(q, kbuf, len, gfp_mask);
if (IS_ERR(bio))
return PTR_ERR(bio);
bio->bi_opf &= ~REQ_OP_MASK;
bio->bi_opf |= req_op(rq);
ret = blk_rq_append_bio(rq, bio);
if (unlikely(ret)) {
bio_uninit(bio);
kfree(bio);
}
return ret;
}
EXPORT_SYMBOL(blk_rq_map_kern);