2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* (C) Copyright David Brownell 2000-2002
|
2008-01-30 23:21:33 +00:00
|
|
|
*
|
2005-04-16 22:20:36 +00:00
|
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License as published by the
|
|
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
|
|
* option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful, but
|
|
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
* for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/pci.h>
|
2005-11-23 23:45:42 +00:00
|
|
|
#include <linux/usb.h>
|
2010-04-24 21:21:52 +00:00
|
|
|
#include <linux/usb/hcd.h>
|
2005-11-23 23:45:42 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <asm/io.h>
|
|
|
|
#include <asm/irq.h>
|
2005-11-23 23:45:42 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_PPC_PMAC
|
|
|
|
#include <asm/machdep.h>
|
|
|
|
#include <asm/pmac_feature.h>
|
|
|
|
#include <asm/pci-bridge.h>
|
|
|
|
#include <asm/prom.h>
|
|
|
|
#endif
|
2005-09-23 05:38:16 +00:00
|
|
|
|
|
|
|
#include "usb.h"
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
|
2005-04-19 00:39:22 +00:00
|
|
|
/* PCI-based HCs are common, but plenty of non-PCI HCs are used too */
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2010-02-12 11:21:11 +00:00
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
|
|
|
|
|
|
/* Coordinate handoffs between EHCI and companion controllers
|
|
|
|
* during system resume
|
|
|
|
*/
|
|
|
|
|
|
|
|
static DEFINE_MUTEX(companions_mutex);
|
|
|
|
|
|
|
|
#define CL_UHCI PCI_CLASS_SERIAL_USB_UHCI
|
|
|
|
#define CL_OHCI PCI_CLASS_SERIAL_USB_OHCI
|
|
|
|
#define CL_EHCI PCI_CLASS_SERIAL_USB_EHCI
|
|
|
|
|
|
|
|
enum companion_action {
|
|
|
|
SET_HS_COMPANION, CLEAR_HS_COMPANION, WAIT_FOR_COMPANIONS
|
|
|
|
};
|
|
|
|
|
|
|
|
static void companion_common(struct pci_dev *pdev, struct usb_hcd *hcd,
|
|
|
|
enum companion_action action)
|
|
|
|
{
|
|
|
|
struct pci_dev *companion;
|
|
|
|
struct usb_hcd *companion_hcd;
|
|
|
|
unsigned int slot = PCI_SLOT(pdev->devfn);
|
|
|
|
|
|
|
|
/* Iterate through other PCI functions in the same slot.
|
|
|
|
* If pdev is OHCI or UHCI then we are looking for EHCI, and
|
|
|
|
* vice versa.
|
|
|
|
*/
|
|
|
|
companion = NULL;
|
2010-07-03 16:04:47 +00:00
|
|
|
for_each_pci_dev(companion) {
|
2010-02-12 11:21:11 +00:00
|
|
|
if (companion->bus != pdev->bus ||
|
|
|
|
PCI_SLOT(companion->devfn) != slot)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
companion_hcd = pci_get_drvdata(companion);
|
|
|
|
if (!companion_hcd)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* For SET_HS_COMPANION, store a pointer to the EHCI bus in
|
|
|
|
* the OHCI/UHCI companion bus structure.
|
|
|
|
* For CLEAR_HS_COMPANION, clear the pointer to the EHCI bus
|
|
|
|
* in the OHCI/UHCI companion bus structure.
|
|
|
|
* For WAIT_FOR_COMPANIONS, wait until the OHCI/UHCI
|
|
|
|
* companion controllers have fully resumed.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if ((pdev->class == CL_OHCI || pdev->class == CL_UHCI) &&
|
|
|
|
companion->class == CL_EHCI) {
|
|
|
|
/* action must be SET_HS_COMPANION */
|
|
|
|
dev_dbg(&companion->dev, "HS companion for %s\n",
|
|
|
|
dev_name(&pdev->dev));
|
|
|
|
hcd->self.hs_companion = &companion_hcd->self;
|
|
|
|
|
|
|
|
} else if (pdev->class == CL_EHCI &&
|
|
|
|
(companion->class == CL_OHCI ||
|
|
|
|
companion->class == CL_UHCI)) {
|
|
|
|
switch (action) {
|
|
|
|
case SET_HS_COMPANION:
|
|
|
|
dev_dbg(&pdev->dev, "HS companion for %s\n",
|
|
|
|
dev_name(&companion->dev));
|
|
|
|
companion_hcd->self.hs_companion = &hcd->self;
|
|
|
|
break;
|
|
|
|
case CLEAR_HS_COMPANION:
|
|
|
|
companion_hcd->self.hs_companion = NULL;
|
|
|
|
break;
|
|
|
|
case WAIT_FOR_COMPANIONS:
|
|
|
|
device_pm_wait_for_dev(&pdev->dev,
|
|
|
|
&companion->dev);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void set_hs_companion(struct pci_dev *pdev, struct usb_hcd *hcd)
|
|
|
|
{
|
|
|
|
mutex_lock(&companions_mutex);
|
|
|
|
dev_set_drvdata(&pdev->dev, hcd);
|
|
|
|
companion_common(pdev, hcd, SET_HS_COMPANION);
|
|
|
|
mutex_unlock(&companions_mutex);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void clear_hs_companion(struct pci_dev *pdev, struct usb_hcd *hcd)
|
|
|
|
{
|
|
|
|
mutex_lock(&companions_mutex);
|
|
|
|
dev_set_drvdata(&pdev->dev, NULL);
|
|
|
|
|
|
|
|
/* If pdev is OHCI or UHCI, just clear its hs_companion pointer */
|
|
|
|
if (pdev->class == CL_OHCI || pdev->class == CL_UHCI)
|
|
|
|
hcd->self.hs_companion = NULL;
|
|
|
|
|
|
|
|
/* Otherwise search for companion buses and clear their pointers */
|
|
|
|
else
|
|
|
|
companion_common(pdev, hcd, CLEAR_HS_COMPANION);
|
|
|
|
mutex_unlock(&companions_mutex);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void wait_for_companions(struct pci_dev *pdev, struct usb_hcd *hcd)
|
|
|
|
{
|
|
|
|
/* Only EHCI controllers need to wait.
|
|
|
|
* No locking is needed because a controller cannot be resumed
|
|
|
|
* while one of its companions is getting unbound.
|
|
|
|
*/
|
|
|
|
if (pdev->class == CL_EHCI)
|
|
|
|
companion_common(pdev, hcd, WAIT_FOR_COMPANIONS);
|
|
|
|
}
|
|
|
|
|
|
|
|
#else /* !CONFIG_PM_SLEEP */
|
|
|
|
|
|
|
|
static inline void set_hs_companion(struct pci_dev *d, struct usb_hcd *h) {}
|
|
|
|
static inline void clear_hs_companion(struct pci_dev *d, struct usb_hcd *h) {}
|
|
|
|
static inline void wait_for_companions(struct pci_dev *d, struct usb_hcd *h) {}
|
|
|
|
|
|
|
|
#endif /* !CONFIG_PM_SLEEP */
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
/* configure so an HC device and id are always provided */
|
|
|
|
/* always called with process context; sleeping is OK */
|
|
|
|
|
|
|
|
/**
|
|
|
|
* usb_hcd_pci_probe - initialize PCI-based HCDs
|
|
|
|
* @dev: USB Host Controller being probed
|
|
|
|
* @id: pci hotplug id connecting controller to HCD framework
|
|
|
|
* Context: !in_interrupt()
|
|
|
|
*
|
|
|
|
* Allocates basic PCI resources for this USB host controller, and
|
|
|
|
* then invokes the start() method for the HCD associated with it
|
|
|
|
* through the hotplug entry's driver_data.
|
|
|
|
*
|
|
|
|
* Store this function in the HCD's struct pci_driver as probe().
|
|
|
|
*/
|
2008-01-30 23:21:33 +00:00
|
|
|
int usb_hcd_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
struct hc_driver *driver;
|
|
|
|
struct usb_hcd *hcd;
|
|
|
|
int retval;
|
|
|
|
|
|
|
|
if (usb_disabled())
|
|
|
|
return -ENODEV;
|
|
|
|
|
2008-01-30 23:21:33 +00:00
|
|
|
if (!id)
|
|
|
|
return -EINVAL;
|
|
|
|
driver = (struct hc_driver *)id->driver_data;
|
|
|
|
if (!driver)
|
2005-04-16 22:20:36 +00:00
|
|
|
return -EINVAL;
|
|
|
|
|
2008-01-30 23:21:33 +00:00
|
|
|
if (pci_enable_device(dev) < 0)
|
2005-04-16 22:20:36 +00:00
|
|
|
return -ENODEV;
|
2005-04-19 00:39:22 +00:00
|
|
|
dev->current_state = PCI_D0;
|
2008-01-30 23:21:33 +00:00
|
|
|
|
2012-02-14 00:25:57 +00:00
|
|
|
/* The xHCI driver supports MSI and MSI-X,
|
|
|
|
* so don't fail if the BIOS doesn't provide a legacy IRQ.
|
|
|
|
*/
|
|
|
|
if (!dev->irq && (driver->flags & HCD_MASK) != HCD_USB3) {
|
2008-01-30 23:21:33 +00:00
|
|
|
dev_err(&dev->dev,
|
2005-04-16 22:20:36 +00:00
|
|
|
"Found HC with no IRQ. Check BIOS/PCI %s setup!\n",
|
|
|
|
pci_name(dev));
|
2008-01-30 23:21:33 +00:00
|
|
|
retval = -ENODEV;
|
2010-10-15 17:33:48 +00:00
|
|
|
goto disable_pci;
|
2008-01-30 23:21:33 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-01-30 23:21:33 +00:00
|
|
|
hcd = usb_create_hcd(driver, &dev->dev, pci_name(dev));
|
2005-04-16 22:20:36 +00:00
|
|
|
if (!hcd) {
|
|
|
|
retval = -ENOMEM;
|
2010-10-15 17:33:48 +00:00
|
|
|
goto disable_pci;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2008-01-30 23:21:33 +00:00
|
|
|
if (driver->flags & HCD_MEMORY) {
|
|
|
|
/* EHCI, OHCI */
|
|
|
|
hcd->rsrc_start = pci_resource_start(dev, 0);
|
|
|
|
hcd->rsrc_len = pci_resource_len(dev, 0);
|
|
|
|
if (!request_mem_region(hcd->rsrc_start, hcd->rsrc_len,
|
2005-04-16 22:20:36 +00:00
|
|
|
driver->description)) {
|
2008-01-30 23:21:33 +00:00
|
|
|
dev_dbg(&dev->dev, "controller already in use\n");
|
2005-04-16 22:20:36 +00:00
|
|
|
retval = -EBUSY;
|
2010-10-15 17:33:48 +00:00
|
|
|
goto clear_companion;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2008-01-30 23:21:33 +00:00
|
|
|
hcd->regs = ioremap_nocache(hcd->rsrc_start, hcd->rsrc_len);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (hcd->regs == NULL) {
|
2008-01-30 23:21:33 +00:00
|
|
|
dev_dbg(&dev->dev, "error mapping memory\n");
|
2005-04-16 22:20:36 +00:00
|
|
|
retval = -EFAULT;
|
2010-10-15 17:33:48 +00:00
|
|
|
goto release_mem_region;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2008-01-30 23:21:33 +00:00
|
|
|
} else {
|
|
|
|
/* UHCI */
|
2005-04-16 22:20:36 +00:00
|
|
|
int region;
|
|
|
|
|
|
|
|
for (region = 0; region < PCI_ROM_RESOURCE; region++) {
|
2008-01-30 23:21:33 +00:00
|
|
|
if (!(pci_resource_flags(dev, region) &
|
2005-04-16 22:20:36 +00:00
|
|
|
IORESOURCE_IO))
|
|
|
|
continue;
|
|
|
|
|
2008-01-30 23:21:33 +00:00
|
|
|
hcd->rsrc_start = pci_resource_start(dev, region);
|
|
|
|
hcd->rsrc_len = pci_resource_len(dev, region);
|
|
|
|
if (request_region(hcd->rsrc_start, hcd->rsrc_len,
|
2005-04-16 22:20:36 +00:00
|
|
|
driver->description))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (region == PCI_ROM_RESOURCE) {
|
2008-01-30 23:21:33 +00:00
|
|
|
dev_dbg(&dev->dev, "no i/o regions available\n");
|
2005-04-16 22:20:36 +00:00
|
|
|
retval = -EBUSY;
|
2010-10-15 17:33:48 +00:00
|
|
|
goto clear_companion;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-01-30 23:21:33 +00:00
|
|
|
pci_set_master(dev);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2011-09-07 08:10:52 +00:00
|
|
|
retval = usb_add_hcd(hcd, dev->irq, IRQF_SHARED);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (retval != 0)
|
2010-10-15 17:33:48 +00:00
|
|
|
goto unmap_registers;
|
2010-02-12 11:21:11 +00:00
|
|
|
set_hs_companion(dev, hcd);
|
2010-06-25 18:02:57 +00:00
|
|
|
|
|
|
|
if (pci_dev_run_wake(dev))
|
|
|
|
pm_runtime_put_noidle(&dev->dev);
|
2005-04-16 22:20:36 +00:00
|
|
|
return retval;
|
|
|
|
|
2010-10-15 17:33:48 +00:00
|
|
|
unmap_registers:
|
2005-04-16 22:20:36 +00:00
|
|
|
if (driver->flags & HCD_MEMORY) {
|
2008-01-30 23:21:33 +00:00
|
|
|
iounmap(hcd->regs);
|
2010-10-15 17:33:48 +00:00
|
|
|
release_mem_region:
|
2008-01-30 23:21:33 +00:00
|
|
|
release_mem_region(hcd->rsrc_start, hcd->rsrc_len);
|
2005-04-16 22:20:36 +00:00
|
|
|
} else
|
2008-01-30 23:21:33 +00:00
|
|
|
release_region(hcd->rsrc_start, hcd->rsrc_len);
|
2010-10-15 17:33:48 +00:00
|
|
|
clear_companion:
|
2010-02-12 11:21:11 +00:00
|
|
|
clear_hs_companion(dev, hcd);
|
2008-01-30 23:21:33 +00:00
|
|
|
usb_put_hcd(hcd);
|
2010-10-15 17:33:48 +00:00
|
|
|
disable_pci:
|
2008-01-30 23:21:33 +00:00
|
|
|
pci_disable_device(dev);
|
|
|
|
dev_err(&dev->dev, "init %s fail, %d\n", pci_name(dev), retval);
|
2005-04-16 22:20:36 +00:00
|
|
|
return retval;
|
2008-01-30 23:21:33 +00:00
|
|
|
}
|
2008-01-25 17:12:21 +00:00
|
|
|
EXPORT_SYMBOL_GPL(usb_hcd_pci_probe);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
|
|
|
|
/* may be called without controller electrically present */
|
|
|
|
/* may be called with controller, bus, and devices active */
|
|
|
|
|
|
|
|
/**
|
|
|
|
* usb_hcd_pci_remove - shutdown processing for PCI-based HCDs
|
|
|
|
* @dev: USB Host Controller being removed
|
|
|
|
* Context: !in_interrupt()
|
|
|
|
*
|
|
|
|
* Reverses the effect of usb_hcd_pci_probe(), first invoking
|
|
|
|
* the HCD's stop() method. It is always called from a thread
|
|
|
|
* context, normally "rmmod", "apmd", or something similar.
|
|
|
|
*
|
|
|
|
* Store this function in the HCD's struct pci_driver as remove().
|
|
|
|
*/
|
2008-01-30 23:21:33 +00:00
|
|
|
void usb_hcd_pci_remove(struct pci_dev *dev)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
struct usb_hcd *hcd;
|
|
|
|
|
|
|
|
hcd = pci_get_drvdata(dev);
|
|
|
|
if (!hcd)
|
|
|
|
return;
|
|
|
|
|
2010-06-25 18:02:57 +00:00
|
|
|
if (pci_dev_run_wake(dev))
|
|
|
|
pm_runtime_get_noresume(&dev->dev);
|
|
|
|
|
2010-06-09 21:34:27 +00:00
|
|
|
/* Fake an interrupt request in order to give the driver a chance
|
|
|
|
* to test whether the controller hardware has been removed (e.g.,
|
|
|
|
* cardbus physical eject).
|
|
|
|
*/
|
|
|
|
local_irq_disable();
|
|
|
|
usb_hcd_irq(0, hcd);
|
|
|
|
local_irq_enable();
|
|
|
|
|
2008-01-30 23:21:33 +00:00
|
|
|
usb_remove_hcd(hcd);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (hcd->driver->flags & HCD_MEMORY) {
|
2008-01-30 23:21:33 +00:00
|
|
|
iounmap(hcd->regs);
|
|
|
|
release_mem_region(hcd->rsrc_start, hcd->rsrc_len);
|
2005-04-16 22:20:36 +00:00
|
|
|
} else {
|
2008-01-30 23:21:33 +00:00
|
|
|
release_region(hcd->rsrc_start, hcd->rsrc_len);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2010-02-12 11:21:11 +00:00
|
|
|
clear_hs_companion(dev, hcd);
|
2008-01-30 23:21:33 +00:00
|
|
|
usb_put_hcd(hcd);
|
2005-04-16 22:20:36 +00:00
|
|
|
pci_disable_device(dev);
|
|
|
|
}
|
2008-01-25 17:12:21 +00:00
|
|
|
EXPORT_SYMBOL_GPL(usb_hcd_pci_remove);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/**
|
2009-04-27 17:33:24 +00:00
|
|
|
* usb_hcd_pci_shutdown - shutdown host controller
|
|
|
|
* @dev: USB Host Controller being shutdown
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2009-04-27 17:33:24 +00:00
|
|
|
void usb_hcd_pci_shutdown(struct pci_dev *dev)
|
|
|
|
{
|
|
|
|
struct usb_hcd *hcd;
|
|
|
|
|
|
|
|
hcd = pci_get_drvdata(dev);
|
|
|
|
if (!hcd)
|
|
|
|
return;
|
|
|
|
|
2010-06-25 18:02:57 +00:00
|
|
|
if (test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags) &&
|
2010-09-10 20:37:05 +00:00
|
|
|
hcd->driver->shutdown) {
|
2009-04-27 17:33:24 +00:00
|
|
|
hcd->driver->shutdown(hcd);
|
2010-09-10 20:37:05 +00:00
|
|
|
pci_disable_device(dev);
|
|
|
|
}
|
2009-04-27 17:33:24 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(usb_hcd_pci_shutdown);
|
|
|
|
|
2011-02-10 23:06:54 +00:00
|
|
|
#ifdef CONFIG_PM
|
2009-04-27 17:33:24 +00:00
|
|
|
|
2010-06-25 18:01:49 +00:00
|
|
|
#ifdef CONFIG_PPC_PMAC
|
|
|
|
static void powermac_set_asic(struct pci_dev *pci_dev, int enable)
|
|
|
|
{
|
|
|
|
/* Enanble or disable ASIC clocks for USB */
|
|
|
|
if (machine_is(powermac)) {
|
|
|
|
struct device_node *of_node;
|
|
|
|
|
|
|
|
of_node = pci_device_to_OF_node(pci_dev);
|
|
|
|
if (of_node)
|
|
|
|
pmac_call_feature(PMAC_FTR_USB_ENABLE,
|
|
|
|
of_node, 0, enable);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
static inline void powermac_set_asic(struct pci_dev *pci_dev, int enable)
|
|
|
|
{}
|
|
|
|
|
|
|
|
#endif /* CONFIG_PPC_PMAC */
|
|
|
|
|
2009-04-27 17:33:24 +00:00
|
|
|
static int check_root_hub_suspended(struct device *dev)
|
|
|
|
{
|
|
|
|
struct pci_dev *pci_dev = to_pci_dev(dev);
|
|
|
|
struct usb_hcd *hcd = pci_get_drvdata(pci_dev);
|
|
|
|
|
2011-03-07 16:11:52 +00:00
|
|
|
if (HCD_RH_RUNNING(hcd)) {
|
2009-04-27 17:33:24 +00:00
|
|
|
dev_warn(dev, "Root hub is not suspended\n");
|
|
|
|
return -EBUSY;
|
|
|
|
}
|
USB: Set usb_hcd->state and flags for shared roothubs.
The hcd->flags are in a sorry state. Some of them are clearly specific to
the particular roothub (HCD_POLL_RH, HCD_POLL_PENDING, and
HCD_WAKEUP_PENDING), but some flags are related to PCI device state
(HCD_HW_ACCESSIBLE and HCD_SAW_IRQ). This is an issue when one PCI device
can have two roothubs that share the same IRQ line and hardware.
Make sure to set HCD_FLAG_SAW_IRQ for both roothubs when an interrupt is
serviced, or an URB is unlinked without an interrupt. (We can't tell if
the host actually serviced an interrupt for a particular bus, but we can
tell it serviced some interrupt.)
HCD_HW_ACCESSIBLE is set once by usb_add_hcd(), which is set for both
roothubs as they are added, so it doesn't need to be modified.
HCD_POLL_RH and HCD_POLL_PENDING are only checked by the USB core, and
they are never set by the xHCI driver, since the roothub never needs to be
polled.
The usb_hcd's state field is a similar mess. Sometimes the state applies
to the underlying hardware: HC_STATE_HALT, HC_STATE_RUNNING, and
HC_STATE_QUIESCING. But sometimes the state refers to the roothub state:
HC_STATE_RESUMING and HC_STATE_SUSPENDED.
Alan Stern recently made the USB core not rely on the hcd->state variable.
Internally, the xHCI driver still checks for HC_STATE_SUSPENDED, so leave
that code in. Remove all references to HC_STATE_HALT, since the xHCI
driver only sets and doesn't test those variables. We still have to set
HC_STATE_RUNNING, since Alan's patch has a bug that means the roothub
won't get registered if we don't set that.
Alan's patch made the USB core check a different variable when trying to
determine whether to suspend a roothub. The xHCI host has a split
roothub, where two buses are registered for one PCI device. Each bus in
the xHCI split roothub can be suspended separately, but both buses must be
suspended before the PCI device can be suspended. Therefore, make sure
that the USB core checks HCD_RH_RUNNING() for both roothubs before
suspending the PCI host.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
2010-12-03 03:10:02 +00:00
|
|
|
if (hcd->shared_hcd) {
|
|
|
|
hcd = hcd->shared_hcd;
|
|
|
|
if (HCD_RH_RUNNING(hcd)) {
|
|
|
|
dev_warn(dev, "Secondary root hub is not suspended\n");
|
|
|
|
return -EBUSY;
|
|
|
|
}
|
|
|
|
}
|
2009-04-27 17:33:24 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2012-02-26 00:09:40 +00:00
|
|
|
#if defined(CONFIG_PM_SLEEP) || defined(CONFIG_PM_RUNTIME)
|
2010-06-25 18:02:57 +00:00
|
|
|
static int suspend_common(struct device *dev, bool do_wakeup)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2009-04-27 17:33:24 +00:00
|
|
|
struct pci_dev *pci_dev = to_pci_dev(dev);
|
|
|
|
struct usb_hcd *hcd = pci_get_drvdata(pci_dev);
|
|
|
|
int retval;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2005-09-23 05:38:16 +00:00
|
|
|
/* Root hub suspend should have stopped all downstream traffic,
|
|
|
|
* and all bus master traffic. And done so for both the interface
|
|
|
|
* and the stub usb_device (which we check here). But maybe it
|
|
|
|
* didn't; writing sysfs power/state files ignores such rules...
|
|
|
|
*/
|
2009-04-27 17:33:24 +00:00
|
|
|
retval = check_root_hub_suspended(dev);
|
|
|
|
if (retval)
|
|
|
|
return retval;
|
2008-12-17 20:06:03 +00:00
|
|
|
|
2011-03-07 16:11:52 +00:00
|
|
|
if (hcd->driver->pci_suspend && !HCD_DEAD(hcd)) {
|
2010-06-25 18:02:35 +00:00
|
|
|
/* Optimization: Don't suspend if a root-hub wakeup is
|
|
|
|
* pending and it would cause the HCD to wake up anyway.
|
|
|
|
*/
|
|
|
|
if (do_wakeup && HCD_WAKEUP_PENDING(hcd))
|
|
|
|
return -EBUSY;
|
USB: Set usb_hcd->state and flags for shared roothubs.
The hcd->flags are in a sorry state. Some of them are clearly specific to
the particular roothub (HCD_POLL_RH, HCD_POLL_PENDING, and
HCD_WAKEUP_PENDING), but some flags are related to PCI device state
(HCD_HW_ACCESSIBLE and HCD_SAW_IRQ). This is an issue when one PCI device
can have two roothubs that share the same IRQ line and hardware.
Make sure to set HCD_FLAG_SAW_IRQ for both roothubs when an interrupt is
serviced, or an URB is unlinked without an interrupt. (We can't tell if
the host actually serviced an interrupt for a particular bus, but we can
tell it serviced some interrupt.)
HCD_HW_ACCESSIBLE is set once by usb_add_hcd(), which is set for both
roothubs as they are added, so it doesn't need to be modified.
HCD_POLL_RH and HCD_POLL_PENDING are only checked by the USB core, and
they are never set by the xHCI driver, since the roothub never needs to be
polled.
The usb_hcd's state field is a similar mess. Sometimes the state applies
to the underlying hardware: HC_STATE_HALT, HC_STATE_RUNNING, and
HC_STATE_QUIESCING. But sometimes the state refers to the roothub state:
HC_STATE_RESUMING and HC_STATE_SUSPENDED.
Alan Stern recently made the USB core not rely on the hcd->state variable.
Internally, the xHCI driver still checks for HC_STATE_SUSPENDED, so leave
that code in. Remove all references to HC_STATE_HALT, since the xHCI
driver only sets and doesn't test those variables. We still have to set
HC_STATE_RUNNING, since Alan's patch has a bug that means the roothub
won't get registered if we don't set that.
Alan's patch made the USB core check a different variable when trying to
determine whether to suspend a roothub. The xHCI host has a split
roothub, where two buses are registered for one PCI device. Each bus in
the xHCI split roothub can be suspended separately, but both buses must be
suspended before the PCI device can be suspended. Therefore, make sure
that the USB core checks HCD_RH_RUNNING() for both roothubs before
suspending the PCI host.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
2010-12-03 03:10:02 +00:00
|
|
|
if (do_wakeup && hcd->shared_hcd &&
|
|
|
|
HCD_WAKEUP_PENDING(hcd->shared_hcd))
|
|
|
|
return -EBUSY;
|
2010-06-25 18:02:14 +00:00
|
|
|
retval = hcd->driver->pci_suspend(hcd, do_wakeup);
|
2008-04-03 22:03:06 +00:00
|
|
|
suspend_report_result(hcd->driver->pci_suspend, retval);
|
2010-06-25 18:02:35 +00:00
|
|
|
|
|
|
|
/* Check again in case wakeup raced with pci_suspend */
|
USB: Set usb_hcd->state and flags for shared roothubs.
The hcd->flags are in a sorry state. Some of them are clearly specific to
the particular roothub (HCD_POLL_RH, HCD_POLL_PENDING, and
HCD_WAKEUP_PENDING), but some flags are related to PCI device state
(HCD_HW_ACCESSIBLE and HCD_SAW_IRQ). This is an issue when one PCI device
can have two roothubs that share the same IRQ line and hardware.
Make sure to set HCD_FLAG_SAW_IRQ for both roothubs when an interrupt is
serviced, or an URB is unlinked without an interrupt. (We can't tell if
the host actually serviced an interrupt for a particular bus, but we can
tell it serviced some interrupt.)
HCD_HW_ACCESSIBLE is set once by usb_add_hcd(), which is set for both
roothubs as they are added, so it doesn't need to be modified.
HCD_POLL_RH and HCD_POLL_PENDING are only checked by the USB core, and
they are never set by the xHCI driver, since the roothub never needs to be
polled.
The usb_hcd's state field is a similar mess. Sometimes the state applies
to the underlying hardware: HC_STATE_HALT, HC_STATE_RUNNING, and
HC_STATE_QUIESCING. But sometimes the state refers to the roothub state:
HC_STATE_RESUMING and HC_STATE_SUSPENDED.
Alan Stern recently made the USB core not rely on the hcd->state variable.
Internally, the xHCI driver still checks for HC_STATE_SUSPENDED, so leave
that code in. Remove all references to HC_STATE_HALT, since the xHCI
driver only sets and doesn't test those variables. We still have to set
HC_STATE_RUNNING, since Alan's patch has a bug that means the roothub
won't get registered if we don't set that.
Alan's patch made the USB core check a different variable when trying to
determine whether to suspend a roothub. The xHCI host has a split
roothub, where two buses are registered for one PCI device. Each bus in
the xHCI split roothub can be suspended separately, but both buses must be
suspended before the PCI device can be suspended. Therefore, make sure
that the USB core checks HCD_RH_RUNNING() for both roothubs before
suspending the PCI host.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
2010-12-03 03:10:02 +00:00
|
|
|
if ((retval == 0 && do_wakeup && HCD_WAKEUP_PENDING(hcd)) ||
|
|
|
|
(retval == 0 && do_wakeup && hcd->shared_hcd &&
|
|
|
|
HCD_WAKEUP_PENDING(hcd->shared_hcd))) {
|
2010-06-25 18:02:35 +00:00
|
|
|
if (hcd->driver->pci_resume)
|
|
|
|
hcd->driver->pci_resume(hcd, false);
|
|
|
|
retval = -EBUSY;
|
|
|
|
}
|
2006-03-23 09:38:34 +00:00
|
|
|
if (retval)
|
2009-04-27 17:33:24 +00:00
|
|
|
return retval;
|
2005-09-23 05:38:16 +00:00
|
|
|
}
|
|
|
|
|
2010-12-27 09:39:02 +00:00
|
|
|
/* If MSI-X is enabled, the driver will have synchronized all vectors
|
|
|
|
* in pci_suspend(). If MSI or legacy PCI is enabled, that will be
|
|
|
|
* synchronized here.
|
|
|
|
*/
|
|
|
|
if (!hcd->msix_enabled)
|
|
|
|
synchronize_irq(pci_dev->irq);
|
2005-04-19 00:39:22 +00:00
|
|
|
|
2009-01-20 00:26:56 +00:00
|
|
|
/* Downstream ports from this root hub should already be quiesced, so
|
|
|
|
* there will be no DMA activity. Now we can shut down the upstream
|
2009-04-27 17:33:24 +00:00
|
|
|
* link (except maybe for PME# resume signaling). We'll enter a
|
|
|
|
* low power state during suspend_noirq, if the hardware allows.
|
2009-01-20 00:26:56 +00:00
|
|
|
*/
|
2009-04-27 17:33:24 +00:00
|
|
|
pci_disable_device(pci_dev);
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
2010-06-25 18:02:03 +00:00
|
|
|
static int resume_common(struct device *dev, int event)
|
|
|
|
{
|
|
|
|
struct pci_dev *pci_dev = to_pci_dev(dev);
|
|
|
|
struct usb_hcd *hcd = pci_get_drvdata(pci_dev);
|
|
|
|
int retval;
|
|
|
|
|
USB: Set usb_hcd->state and flags for shared roothubs.
The hcd->flags are in a sorry state. Some of them are clearly specific to
the particular roothub (HCD_POLL_RH, HCD_POLL_PENDING, and
HCD_WAKEUP_PENDING), but some flags are related to PCI device state
(HCD_HW_ACCESSIBLE and HCD_SAW_IRQ). This is an issue when one PCI device
can have two roothubs that share the same IRQ line and hardware.
Make sure to set HCD_FLAG_SAW_IRQ for both roothubs when an interrupt is
serviced, or an URB is unlinked without an interrupt. (We can't tell if
the host actually serviced an interrupt for a particular bus, but we can
tell it serviced some interrupt.)
HCD_HW_ACCESSIBLE is set once by usb_add_hcd(), which is set for both
roothubs as they are added, so it doesn't need to be modified.
HCD_POLL_RH and HCD_POLL_PENDING are only checked by the USB core, and
they are never set by the xHCI driver, since the roothub never needs to be
polled.
The usb_hcd's state field is a similar mess. Sometimes the state applies
to the underlying hardware: HC_STATE_HALT, HC_STATE_RUNNING, and
HC_STATE_QUIESCING. But sometimes the state refers to the roothub state:
HC_STATE_RESUMING and HC_STATE_SUSPENDED.
Alan Stern recently made the USB core not rely on the hcd->state variable.
Internally, the xHCI driver still checks for HC_STATE_SUSPENDED, so leave
that code in. Remove all references to HC_STATE_HALT, since the xHCI
driver only sets and doesn't test those variables. We still have to set
HC_STATE_RUNNING, since Alan's patch has a bug that means the roothub
won't get registered if we don't set that.
Alan's patch made the USB core check a different variable when trying to
determine whether to suspend a roothub. The xHCI host has a split
roothub, where two buses are registered for one PCI device. Each bus in
the xHCI split roothub can be suspended separately, but both buses must be
suspended before the PCI device can be suspended. Therefore, make sure
that the USB core checks HCD_RH_RUNNING() for both roothubs before
suspending the PCI host.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
2010-12-03 03:10:02 +00:00
|
|
|
if (HCD_RH_RUNNING(hcd) ||
|
|
|
|
(hcd->shared_hcd &&
|
|
|
|
HCD_RH_RUNNING(hcd->shared_hcd))) {
|
2010-06-25 18:02:03 +00:00
|
|
|
dev_dbg(dev, "can't resume, not suspended!\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
retval = pci_enable_device(pci_dev);
|
|
|
|
if (retval < 0) {
|
|
|
|
dev_err(dev, "can't re-enable after resume, %d!\n", retval);
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
pci_set_master(pci_dev);
|
|
|
|
|
2011-03-07 16:11:52 +00:00
|
|
|
if (hcd->driver->pci_resume && !HCD_DEAD(hcd)) {
|
2010-06-25 18:02:57 +00:00
|
|
|
if (event != PM_EVENT_AUTO_RESUME)
|
|
|
|
wait_for_companions(pci_dev, hcd);
|
2010-06-25 18:02:03 +00:00
|
|
|
|
|
|
|
retval = hcd->driver->pci_resume(hcd,
|
|
|
|
event == PM_EVENT_RESTORE);
|
|
|
|
if (retval) {
|
|
|
|
dev_err(dev, "PCI post-resume error %d!\n", retval);
|
USB: Set usb_hcd->state and flags for shared roothubs.
The hcd->flags are in a sorry state. Some of them are clearly specific to
the particular roothub (HCD_POLL_RH, HCD_POLL_PENDING, and
HCD_WAKEUP_PENDING), but some flags are related to PCI device state
(HCD_HW_ACCESSIBLE and HCD_SAW_IRQ). This is an issue when one PCI device
can have two roothubs that share the same IRQ line and hardware.
Make sure to set HCD_FLAG_SAW_IRQ for both roothubs when an interrupt is
serviced, or an URB is unlinked without an interrupt. (We can't tell if
the host actually serviced an interrupt for a particular bus, but we can
tell it serviced some interrupt.)
HCD_HW_ACCESSIBLE is set once by usb_add_hcd(), which is set for both
roothubs as they are added, so it doesn't need to be modified.
HCD_POLL_RH and HCD_POLL_PENDING are only checked by the USB core, and
they are never set by the xHCI driver, since the roothub never needs to be
polled.
The usb_hcd's state field is a similar mess. Sometimes the state applies
to the underlying hardware: HC_STATE_HALT, HC_STATE_RUNNING, and
HC_STATE_QUIESCING. But sometimes the state refers to the roothub state:
HC_STATE_RESUMING and HC_STATE_SUSPENDED.
Alan Stern recently made the USB core not rely on the hcd->state variable.
Internally, the xHCI driver still checks for HC_STATE_SUSPENDED, so leave
that code in. Remove all references to HC_STATE_HALT, since the xHCI
driver only sets and doesn't test those variables. We still have to set
HC_STATE_RUNNING, since Alan's patch has a bug that means the roothub
won't get registered if we don't set that.
Alan's patch made the USB core check a different variable when trying to
determine whether to suspend a roothub. The xHCI host has a split
roothub, where two buses are registered for one PCI device. Each bus in
the xHCI split roothub can be suspended separately, but both buses must be
suspended before the PCI device can be suspended. Therefore, make sure
that the USB core checks HCD_RH_RUNNING() for both roothubs before
suspending the PCI host.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
2010-12-03 03:10:02 +00:00
|
|
|
if (hcd->shared_hcd)
|
|
|
|
usb_hc_died(hcd->shared_hcd);
|
2010-06-25 18:02:03 +00:00
|
|
|
usb_hc_died(hcd);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return retval;
|
|
|
|
}
|
2012-02-26 00:09:40 +00:00
|
|
|
#endif /* SLEEP || RUNTIME */
|
2010-06-25 18:02:03 +00:00
|
|
|
|
2010-06-25 18:02:57 +00:00
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
|
|
|
|
|
|
static int hcd_pci_suspend(struct device *dev)
|
|
|
|
{
|
|
|
|
return suspend_common(dev, device_may_wakeup(dev));
|
|
|
|
}
|
|
|
|
|
2009-04-27 17:33:24 +00:00
|
|
|
static int hcd_pci_suspend_noirq(struct device *dev)
|
|
|
|
{
|
|
|
|
struct pci_dev *pci_dev = to_pci_dev(dev);
|
|
|
|
struct usb_hcd *hcd = pci_get_drvdata(pci_dev);
|
|
|
|
int retval;
|
|
|
|
|
|
|
|
retval = check_root_hub_suspended(dev);
|
|
|
|
if (retval)
|
|
|
|
return retval;
|
2009-01-20 00:26:56 +00:00
|
|
|
|
2009-04-27 17:33:24 +00:00
|
|
|
pci_save_state(pci_dev);
|
2009-01-20 00:26:56 +00:00
|
|
|
|
USB: Set usb_hcd->state and flags for shared roothubs.
The hcd->flags are in a sorry state. Some of them are clearly specific to
the particular roothub (HCD_POLL_RH, HCD_POLL_PENDING, and
HCD_WAKEUP_PENDING), but some flags are related to PCI device state
(HCD_HW_ACCESSIBLE and HCD_SAW_IRQ). This is an issue when one PCI device
can have two roothubs that share the same IRQ line and hardware.
Make sure to set HCD_FLAG_SAW_IRQ for both roothubs when an interrupt is
serviced, or an URB is unlinked without an interrupt. (We can't tell if
the host actually serviced an interrupt for a particular bus, but we can
tell it serviced some interrupt.)
HCD_HW_ACCESSIBLE is set once by usb_add_hcd(), which is set for both
roothubs as they are added, so it doesn't need to be modified.
HCD_POLL_RH and HCD_POLL_PENDING are only checked by the USB core, and
they are never set by the xHCI driver, since the roothub never needs to be
polled.
The usb_hcd's state field is a similar mess. Sometimes the state applies
to the underlying hardware: HC_STATE_HALT, HC_STATE_RUNNING, and
HC_STATE_QUIESCING. But sometimes the state refers to the roothub state:
HC_STATE_RESUMING and HC_STATE_SUSPENDED.
Alan Stern recently made the USB core not rely on the hcd->state variable.
Internally, the xHCI driver still checks for HC_STATE_SUSPENDED, so leave
that code in. Remove all references to HC_STATE_HALT, since the xHCI
driver only sets and doesn't test those variables. We still have to set
HC_STATE_RUNNING, since Alan's patch has a bug that means the roothub
won't get registered if we don't set that.
Alan's patch made the USB core check a different variable when trying to
determine whether to suspend a roothub. The xHCI host has a split
roothub, where two buses are registered for one PCI device. Each bus in
the xHCI split roothub can be suspended separately, but both buses must be
suspended before the PCI device can be suspended. Therefore, make sure
that the USB core checks HCD_RH_RUNNING() for both roothubs before
suspending the PCI host.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
2010-12-03 03:10:02 +00:00
|
|
|
/* If the root hub is dead rather than suspended, disallow remote
|
|
|
|
* wakeup. usb_hc_died() should ensure that both hosts are marked as
|
|
|
|
* dying, so we only need to check the primary roothub.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2011-03-07 16:11:52 +00:00
|
|
|
if (HCD_DEAD(hcd))
|
2009-04-27 17:33:24 +00:00
|
|
|
device_set_wakeup_enable(dev, 0);
|
|
|
|
dev_dbg(dev, "wakeup: %d\n", device_may_wakeup(dev));
|
2008-12-17 20:06:03 +00:00
|
|
|
|
2009-04-27 17:33:24 +00:00
|
|
|
/* Possibly enable remote wakeup,
|
|
|
|
* choose the appropriate low-power state, and go to that state.
|
|
|
|
*/
|
|
|
|
retval = pci_prepare_to_sleep(pci_dev);
|
|
|
|
if (retval == -EIO) { /* Low-power not supported */
|
|
|
|
dev_dbg(dev, "--> PCI D0 legacy\n");
|
|
|
|
retval = 0;
|
|
|
|
} else if (retval == 0) {
|
|
|
|
dev_dbg(dev, "--> PCI %s\n",
|
|
|
|
pci_power_name(pci_dev->current_state));
|
2008-12-17 20:06:03 +00:00
|
|
|
} else {
|
2009-04-27 17:33:24 +00:00
|
|
|
suspend_report_result(pci_prepare_to_sleep, retval);
|
|
|
|
return retval;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2010-06-25 18:01:49 +00:00
|
|
|
powermac_set_asic(pci_dev, 0);
|
2005-04-16 22:20:36 +00:00
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
2009-04-27 17:33:24 +00:00
|
|
|
static int hcd_pci_resume_noirq(struct device *dev)
|
2008-12-17 20:06:03 +00:00
|
|
|
{
|
2009-04-27 17:33:24 +00:00
|
|
|
struct pci_dev *pci_dev = to_pci_dev(dev);
|
2008-12-17 20:06:03 +00:00
|
|
|
|
2010-06-25 18:01:49 +00:00
|
|
|
powermac_set_asic(pci_dev, 1);
|
2009-01-20 00:26:56 +00:00
|
|
|
|
2009-04-27 17:33:24 +00:00
|
|
|
/* Go back to D0 and disable remote wakeup */
|
|
|
|
pci_back_from_sleep(pci_dev);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hcd_pci_resume(struct device *dev)
|
USB: Properly unregister reboot notifier in case of failure in ehci hcd
If some problem occurs during ehci startup, for instance, request_irq fails,
echi hcd driver tries it best to cleanup, but fails to unregister reboot
notifier, which in turn leads to crash on reboot/poweroff.
The following patch resolves this problem by not using reboot notifiers
anymore, but instead making ehci/ohci driver get its own shutdown method. For
PCI, it is done through pci glue, for everything else through platform driver
glue.
One downside: sa1111 does not use platform driver stuff, and does not have its
own shutdown hook, so no 'shutdown' is called for it now. I'm not sure if it
is really necessary on that platform, though.
Signed-off-by: Aleks Gorelov <dared1st@yahoo.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: David Brownell <david-b@pacbell.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-08-09 00:24:08 +00:00
|
|
|
{
|
2010-06-25 18:02:03 +00:00
|
|
|
return resume_common(dev, PM_EVENT_RESUME);
|
2009-04-27 17:33:24 +00:00
|
|
|
}
|
USB: Properly unregister reboot notifier in case of failure in ehci hcd
If some problem occurs during ehci startup, for instance, request_irq fails,
echi hcd driver tries it best to cleanup, but fails to unregister reboot
notifier, which in turn leads to crash on reboot/poweroff.
The following patch resolves this problem by not using reboot notifiers
anymore, but instead making ehci/ohci driver get its own shutdown method. For
PCI, it is done through pci glue, for everything else through platform driver
glue.
One downside: sa1111 does not use platform driver stuff, and does not have its
own shutdown hook, so no 'shutdown' is called for it now. I'm not sure if it
is really necessary on that platform, though.
Signed-off-by: Aleks Gorelov <dared1st@yahoo.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: David Brownell <david-b@pacbell.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-08-09 00:24:08 +00:00
|
|
|
|
2009-04-27 17:33:24 +00:00
|
|
|
static int hcd_pci_restore(struct device *dev)
|
|
|
|
{
|
2010-06-25 18:02:03 +00:00
|
|
|
return resume_common(dev, PM_EVENT_RESTORE);
|
USB: Properly unregister reboot notifier in case of failure in ehci hcd
If some problem occurs during ehci startup, for instance, request_irq fails,
echi hcd driver tries it best to cleanup, but fails to unregister reboot
notifier, which in turn leads to crash on reboot/poweroff.
The following patch resolves this problem by not using reboot notifiers
anymore, but instead making ehci/ohci driver get its own shutdown method. For
PCI, it is done through pci glue, for everything else through platform driver
glue.
One downside: sa1111 does not use platform driver stuff, and does not have its
own shutdown hook, so no 'shutdown' is called for it now. I'm not sure if it
is really necessary on that platform, though.
Signed-off-by: Aleks Gorelov <dared1st@yahoo.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: David Brownell <david-b@pacbell.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-08-09 00:24:08 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2010-06-25 18:02:57 +00:00
|
|
|
#else
|
|
|
|
|
|
|
|
#define hcd_pci_suspend NULL
|
|
|
|
#define hcd_pci_suspend_noirq NULL
|
|
|
|
#define hcd_pci_resume_noirq NULL
|
|
|
|
#define hcd_pci_resume NULL
|
|
|
|
#define hcd_pci_restore NULL
|
|
|
|
|
|
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
|
|
|
|
#ifdef CONFIG_PM_RUNTIME
|
|
|
|
|
|
|
|
static int hcd_pci_runtime_suspend(struct device *dev)
|
|
|
|
{
|
|
|
|
int retval;
|
|
|
|
|
|
|
|
retval = suspend_common(dev, true);
|
|
|
|
if (retval == 0)
|
|
|
|
powermac_set_asic(to_pci_dev(dev), 0);
|
|
|
|
dev_dbg(dev, "hcd_pci_runtime_suspend: %d\n", retval);
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hcd_pci_runtime_resume(struct device *dev)
|
|
|
|
{
|
|
|
|
int retval;
|
|
|
|
|
|
|
|
powermac_set_asic(to_pci_dev(dev), 1);
|
|
|
|
retval = resume_common(dev, PM_EVENT_AUTO_RESUME);
|
|
|
|
dev_dbg(dev, "hcd_pci_runtime_resume: %d\n", retval);
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
#define hcd_pci_runtime_suspend NULL
|
|
|
|
#define hcd_pci_runtime_resume NULL
|
|
|
|
|
|
|
|
#endif /* CONFIG_PM_RUNTIME */
|
|
|
|
|
2009-12-15 02:00:08 +00:00
|
|
|
const struct dev_pm_ops usb_hcd_pci_pm_ops = {
|
2009-04-27 17:33:24 +00:00
|
|
|
.suspend = hcd_pci_suspend,
|
|
|
|
.suspend_noirq = hcd_pci_suspend_noirq,
|
|
|
|
.resume_noirq = hcd_pci_resume_noirq,
|
|
|
|
.resume = hcd_pci_resume,
|
|
|
|
.freeze = check_root_hub_suspended,
|
|
|
|
.freeze_noirq = check_root_hub_suspended,
|
|
|
|
.thaw_noirq = NULL,
|
|
|
|
.thaw = NULL,
|
|
|
|
.poweroff = hcd_pci_suspend,
|
|
|
|
.poweroff_noirq = hcd_pci_suspend_noirq,
|
|
|
|
.restore_noirq = hcd_pci_resume_noirq,
|
|
|
|
.restore = hcd_pci_restore,
|
2010-06-25 18:02:57 +00:00
|
|
|
.runtime_suspend = hcd_pci_runtime_suspend,
|
|
|
|
.runtime_resume = hcd_pci_runtime_resume,
|
2009-04-27 17:33:24 +00:00
|
|
|
};
|
|
|
|
EXPORT_SYMBOL_GPL(usb_hcd_pci_pm_ops);
|
|
|
|
|
2011-02-10 23:06:54 +00:00
|
|
|
#endif /* CONFIG_PM */
|