linux/fs/btrfs/Makefile

25 lines
1.2 KiB
Makefile
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
# SPDX-License-Identifier: GPL-2.0
obj-$(CONFIG_BTRFS_FS) := btrfs.o
btrfs-y += super.o ctree.o extent-tree.o print-tree.o root-tree.o dir-item.o \
file-item.o inode-item.o inode-map.o disk-io.o \
transaction.o inode.o file.o tree-defrag.o \
extent_map.o sysfs.o struct-funcs.o xattr.o ordered-data.o \
extent_io.o volumes.o async-thread.o ioctl.o locking.o orphan.o \
btrfs: Add zstd support Add zstd compression and decompression support to BtrFS. zstd at its fastest level compresses almost as well as zlib, while offering much faster compression and decompression, approaching lzo speeds. I benchmarked btrfs with zstd compression against no compression, lzo compression, and zlib compression. I benchmarked two scenarios. Copying a set of files to btrfs, and then reading the files. Copying a tarball to btrfs, extracting it to btrfs, and then reading the extracted files. After every operation, I call `sync` and include the sync time. Between every pair of operations I unmount and remount the filesystem to avoid caching. The benchmark files can be found in the upstream zstd source repository under `contrib/linux-kernel/{btrfs-benchmark.sh,btrfs-extract-benchmark.sh}` [1] [2]. I ran the benchmarks on a Ubuntu 14.04 VM with 2 cores and 4 GiB of RAM. The VM is running on a MacBook Pro with a 3.1 GHz Intel Core i7 processor, 16 GB of RAM, and a SSD. The first compression benchmark is copying 10 copies of the unzipped Silesia corpus [3] into a BtrFS filesystem mounted with `-o compress-force=Method`. The decompression benchmark times how long it takes to `tar` all 10 copies into `/dev/null`. The compression ratio is measured by comparing the output of `df` and `du`. See the benchmark file [1] for details. I benchmarked multiple zstd compression levels, although the patch uses zstd level 1. | Method | Ratio | Compression MB/s | Decompression speed | |---------|-------|------------------|---------------------| | None | 0.99 | 504 | 686 | | lzo | 1.66 | 398 | 442 | | zlib | 2.58 | 65 | 241 | | zstd 1 | 2.57 | 260 | 383 | | zstd 3 | 2.71 | 174 | 408 | | zstd 6 | 2.87 | 70 | 398 | | zstd 9 | 2.92 | 43 | 406 | | zstd 12 | 2.93 | 21 | 408 | | zstd 15 | 3.01 | 11 | 354 | The next benchmark first copies `linux-4.11.6.tar` [4] to btrfs. Then it measures the compression ratio, extracts the tar, and deletes the tar. Then it measures the compression ratio again, and `tar`s the extracted files into `/dev/null`. See the benchmark file [2] for details. | Method | Tar Ratio | Extract Ratio | Copy (s) | Extract (s)| Read (s) | |--------|-----------|---------------|----------|------------|----------| | None | 0.97 | 0.78 | 0.981 | 5.501 | 8.807 | | lzo | 2.06 | 1.38 | 1.631 | 8.458 | 8.585 | | zlib | 3.40 | 1.86 | 7.750 | 21.544 | 11.744 | | zstd 1 | 3.57 | 1.85 | 2.579 | 11.479 | 9.389 | [1] https://github.com/facebook/zstd/blob/dev/contrib/linux-kernel/btrfs-benchmark.sh [2] https://github.com/facebook/zstd/blob/dev/contrib/linux-kernel/btrfs-extract-benchmark.sh [3] http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia [4] https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.11.6.tar.xz zstd source repository: https://github.com/facebook/zstd Signed-off-by: Nick Terrell <terrelln@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2017-08-10 02:39:02 +00:00
export.o tree-log.o free-space-cache.o zlib.o lzo.o zstd.o \
btrfs: initial readahead code and prototypes This is the implementation for the generic read ahead framework. To trigger a readahead, btrfs_reada_add must be called. It will start a read ahead for the given range [start, end) on tree root. The returned handle can either be used to wait on the readahead to finish (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach). The read ahead works as follows: On btrfs_reada_add, the root of the tree is inserted into a radix_tree. reada_start_machine will then search for extents to prefetch and trigger some reads. When a read finishes for a node, all contained node/leaf pointers that lie in the given range will also be enqueued. The reads will be triggered in sequential order, thus giving a big win over a naive enumeration. It will also make use of multi-device layouts. Each disk will have its on read pointer and all disks will by utilized in parallel. Also will no two disks read both sides of a mirror simultaneously, as this would waste seeking capacity. Instead both disks will read different parts of the filesystem. Any number of readaheads can be started in parallel. The read order will be determined globally, i.e. 2 parallel readaheads will normally finish faster than the 2 started one after another. Changes v2: - protect root->node by transaction instead of node_lock - fix missed branches: The readahead had a too simple check to determine if a branch from a node should be checked or not. It now also records the upper bound of each node to see if the requested RA range lies within. - use KERN_CONT to debug output, to avoid line breaks - defer reada_start_machine to worker to avoid deadlock Changes v3: - protect root->node by rcu Changes v5: - changed EIO-semantics of reada_tree_block_flagged - remove spin_lock from reada_control and make elems an atomic_t - remove unused read_total from reada_control - kill reada_key_cmp, use btrfs_comp_cpu_keys instead - use kref-style release functions where possible - return struct reada_control * instead of void * from btrfs_reada_add Signed-off-by: Arne Jansen <sensille@gmx.net>
2011-05-23 12:33:49 +00:00
compression.o delayed-ref.o relocation.o delayed-inode.o scrub.o \
Btrfs: introduce a tree for items that map UUIDs to something Mapping UUIDs to subvolume IDs is an operation with a high effort today. Today, the algorithm even has quadratic effort (based on the number of existing subvolumes), which means, that it takes minutes to send/receive a single subvolume if 10,000 subvolumes exist. But even linear effort would be too much since it is a waste. And these data structures to allow mapping UUIDs to subvolume IDs are created every time a btrfs send/receive instance is started. It is much more efficient to maintain a searchable persistent data structure in the filesystem, one that is updated whenever a subvolume/snapshot is created and deleted, and when the received subvolume UUID is set by the btrfs-receive tool. Therefore kernel code is added with this commit that is able to maintain data structures in the filesystem that allow to quickly search for a given UUID and to retrieve data that is assigned to this UUID, like which subvolume ID is related to this UUID. This commit adds a new tree to hold UUID-to-data mapping items. The key of the items is the full UUID plus the key type BTRFS_UUID_KEY. Multiple data blocks can be stored for a given UUID, a type/length/ value scheme is used. Now follows the lengthy justification, why a new tree was added instead of using the existing root tree: The first approach was to not create another tree that holds UUID items. Instead, the items should just go into the top root tree. Unfortunately this confused the algorithm to assign the objectid of subvolumes and snapshots. The reason is that btrfs_find_free_objectid() calls btrfs_find_highest_objectid() for the first created subvol or snapshot after mounting a filesystem, and this function simply searches for the largest used objectid in the root tree keys to pick the next objectid to assign. Of course, the UUID keys have always been the ones with the highest offset value, and the next assigned subvol ID was wastefully huge. To use any other existing tree did not look proper. To apply a workaround such as setting the objectid to zero in the UUID item key and to implement collision handling would either add limitations (in case of a btrfs_extend_item() approach to handle the collisions) or a lot of complexity and source code (in case a key would be looked up that is free of collisions). Adding new code that introduces limitations is not good, and adding code that is complex and lengthy for no good reason is also not good. That's the justification why a completely new tree was introduced. Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de> Signed-off-by: Josef Bacik <jbacik@fusionio.com> Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2013-08-15 15:11:17 +00:00
reada.o backref.o ulist.o qgroup.o send.o dev-replace.o raid56.o \
uuid-tree.o props.o free-space-tree.o tree-checker.o space-info.o \
block-rsv.o delalloc-space.o block-group.o discard.o reflink.o
btrfs-$(CONFIG_BTRFS_FS_POSIX_ACL) += acl.o
btrfs-$(CONFIG_BTRFS_FS_CHECK_INTEGRITY) += check-integrity.o
btrfs-$(CONFIG_BTRFS_FS_REF_VERIFY) += ref-verify.o
btrfs-$(CONFIG_BLK_DEV_ZONED) += zoned.o
btrfs-$(CONFIG_BTRFS_FS_RUN_SANITY_TESTS) += tests/free-space-tests.o \
tests/extent-buffer-tests.o tests/btrfs-tests.o \
tests/extent-io-tests.o tests/inode-tests.o tests/qgroup-tests.o \
tests/free-space-tree-tests.o tests/extent-map-tests.o