linux/include/asm-powerpc/eeh.h

379 lines
9.7 KiB
C
Raw Normal View History

/*
* eeh.h
* Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef _PPC64_EEH_H
#define _PPC64_EEH_H
#ifdef __KERNEL__
#include <linux/config.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/string.h>
struct pci_dev;
struct device_node;
#ifdef CONFIG_EEH
extern int eeh_subsystem_enabled;
/* Values for eeh_mode bits in device_node */
#define EEH_MODE_SUPPORTED (1<<0)
#define EEH_MODE_NOCHECK (1<<1)
#define EEH_MODE_ISOLATED (1<<2)
/* Max number of EEH freezes allowed before we consider the device
* to be permanently disabled. */
#define EEH_MAX_ALLOWED_FREEZES 5
void __init eeh_init(void);
unsigned long eeh_check_failure(const volatile void __iomem *token,
unsigned long val);
int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev);
void __init pci_addr_cache_build(void);
/**
* eeh_add_device_early
* eeh_add_device_late
*
* Perform eeh initialization for devices added after boot.
* Call eeh_add_device_early before doing any i/o to the
* device (including config space i/o). Call eeh_add_device_late
* to finish the eeh setup for this device.
*/
void eeh_add_device_early(struct device_node *);
void eeh_add_device_tree_early(struct device_node *);
void eeh_add_device_late(struct pci_dev *);
/**
* eeh_remove_device - undo EEH setup for the indicated pci device
* @dev: pci device to be removed
*
* This routine should be called when a device is removed from
* a running system (e.g. by hotplug or dlpar). It unregisters
* the PCI device from the EEH subsystem. I/O errors affecting
* this device will no longer be detected after this call; thus,
* i/o errors affecting this slot may leave this device unusable.
*/
void eeh_remove_device(struct pci_dev *);
/**
* eeh_remove_device_recursive - undo EEH for device & children.
* @dev: pci device to be removed
*
* As above, this removes the device; it also removes child
* pci devices as well.
*/
void eeh_remove_bus_device(struct pci_dev *);
/**
* EEH_POSSIBLE_ERROR() -- test for possible MMIO failure.
*
* If this macro yields TRUE, the caller relays to eeh_check_failure()
* which does further tests out of line.
*/
#define EEH_POSSIBLE_ERROR(val, type) ((val) == (type)~0 && eeh_subsystem_enabled)
/*
* Reads from a device which has been isolated by EEH will return
* all 1s. This macro gives an all-1s value of the given size (in
* bytes: 1, 2, or 4) for comparing with the result of a read.
*/
#define EEH_IO_ERROR_VALUE(size) (~0U >> ((4 - (size)) * 8))
#else /* !CONFIG_EEH */
static inline void eeh_init(void) { }
static inline unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
{
return val;
}
static inline int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
{
return 0;
}
static inline void pci_addr_cache_build(void) { }
static inline void eeh_add_device_early(struct device_node *dn) { }
static inline void eeh_add_device_late(struct pci_dev *dev) { }
static inline void eeh_remove_device(struct pci_dev *dev) { }
#define EEH_POSSIBLE_ERROR(val, type) (0)
#define EEH_IO_ERROR_VALUE(size) (-1UL)
#endif /* CONFIG_EEH */
/*
* MMIO read/write operations with EEH support.
*/
static inline u8 eeh_readb(const volatile void __iomem *addr)
{
u8 val = in_8(addr);
if (EEH_POSSIBLE_ERROR(val, u8))
return eeh_check_failure(addr, val);
return val;
}
static inline void eeh_writeb(u8 val, volatile void __iomem *addr)
{
out_8(addr, val);
}
static inline u16 eeh_readw(const volatile void __iomem *addr)
{
u16 val = in_le16(addr);
if (EEH_POSSIBLE_ERROR(val, u16))
return eeh_check_failure(addr, val);
return val;
}
static inline void eeh_writew(u16 val, volatile void __iomem *addr)
{
out_le16(addr, val);
}
static inline u16 eeh_raw_readw(const volatile void __iomem *addr)
{
u16 val = in_be16(addr);
if (EEH_POSSIBLE_ERROR(val, u16))
return eeh_check_failure(addr, val);
return val;
}
static inline void eeh_raw_writew(u16 val, volatile void __iomem *addr) {
volatile u16 __iomem *vaddr = (volatile u16 __iomem *) addr;
out_be16(vaddr, val);
}
static inline u32 eeh_readl(const volatile void __iomem *addr)
{
u32 val = in_le32(addr);
if (EEH_POSSIBLE_ERROR(val, u32))
return eeh_check_failure(addr, val);
return val;
}
static inline void eeh_writel(u32 val, volatile void __iomem *addr)
{
out_le32(addr, val);
}
static inline u32 eeh_raw_readl(const volatile void __iomem *addr)
{
u32 val = in_be32(addr);
if (EEH_POSSIBLE_ERROR(val, u32))
return eeh_check_failure(addr, val);
return val;
}
static inline void eeh_raw_writel(u32 val, volatile void __iomem *addr)
{
out_be32(addr, val);
}
static inline u64 eeh_readq(const volatile void __iomem *addr)
{
u64 val = in_le64(addr);
if (EEH_POSSIBLE_ERROR(val, u64))
return eeh_check_failure(addr, val);
return val;
}
static inline void eeh_writeq(u64 val, volatile void __iomem *addr)
{
out_le64(addr, val);
}
static inline u64 eeh_raw_readq(const volatile void __iomem *addr)
{
u64 val = in_be64(addr);
if (EEH_POSSIBLE_ERROR(val, u64))
return eeh_check_failure(addr, val);
return val;
}
static inline void eeh_raw_writeq(u64 val, volatile void __iomem *addr)
{
out_be64(addr, val);
}
#define EEH_CHECK_ALIGN(v,a) \
((((unsigned long)(v)) & ((a) - 1)) == 0)
static inline void eeh_memset_io(volatile void __iomem *addr, int c,
unsigned long n)
{
void *p = (void __force *)addr;
u32 lc = c;
lc |= lc << 8;
lc |= lc << 16;
while(n && !EEH_CHECK_ALIGN(p, 4)) {
*((volatile u8 *)p) = c;
p++;
n--;
}
while(n >= 4) {
*((volatile u32 *)p) = lc;
p += 4;
n -= 4;
}
while(n) {
*((volatile u8 *)p) = c;
p++;
n--;
}
__asm__ __volatile__ ("sync" : : : "memory");
}
static inline void eeh_memcpy_fromio(void *dest, const volatile void __iomem *src,
unsigned long n)
{
void *vsrc = (void __force *) src;
void *destsave = dest;
unsigned long nsave = n;
while(n && (!EEH_CHECK_ALIGN(vsrc, 4) || !EEH_CHECK_ALIGN(dest, 4))) {
*((u8 *)dest) = *((volatile u8 *)vsrc);
__asm__ __volatile__ ("eieio" : : : "memory");
vsrc++;
dest++;
n--;
}
while(n > 4) {
*((u32 *)dest) = *((volatile u32 *)vsrc);
__asm__ __volatile__ ("eieio" : : : "memory");
vsrc += 4;
dest += 4;
n -= 4;
}
while(n) {
*((u8 *)dest) = *((volatile u8 *)vsrc);
__asm__ __volatile__ ("eieio" : : : "memory");
vsrc++;
dest++;
n--;
}
__asm__ __volatile__ ("sync" : : : "memory");
/* Look for ffff's here at dest[n]. Assume that at least 4 bytes
* were copied. Check all four bytes.
*/
if ((nsave >= 4) &&
(EEH_POSSIBLE_ERROR((*((u32 *) destsave+nsave-4)), u32))) {
eeh_check_failure(src, (*((u32 *) destsave+nsave-4)));
}
}
static inline void eeh_memcpy_toio(volatile void __iomem *dest, const void *src,
unsigned long n)
{
void *vdest = (void __force *) dest;
while(n && (!EEH_CHECK_ALIGN(vdest, 4) || !EEH_CHECK_ALIGN(src, 4))) {
*((volatile u8 *)vdest) = *((u8 *)src);
src++;
vdest++;
n--;
}
while(n > 4) {
*((volatile u32 *)vdest) = *((volatile u32 *)src);
src += 4;
vdest += 4;
n-=4;
}
while(n) {
*((volatile u8 *)vdest) = *((u8 *)src);
src++;
vdest++;
n--;
}
__asm__ __volatile__ ("sync" : : : "memory");
}
#undef EEH_CHECK_ALIGN
static inline u8 eeh_inb(unsigned long port)
{
u8 val;
if (!_IO_IS_VALID(port))
return ~0;
val = in_8((u8 __iomem *)(port+pci_io_base));
if (EEH_POSSIBLE_ERROR(val, u8))
return eeh_check_failure((void __iomem *)(port), val);
return val;
}
static inline void eeh_outb(u8 val, unsigned long port)
{
if (_IO_IS_VALID(port))
out_8((u8 __iomem *)(port+pci_io_base), val);
}
static inline u16 eeh_inw(unsigned long port)
{
u16 val;
if (!_IO_IS_VALID(port))
return ~0;
val = in_le16((u16 __iomem *)(port+pci_io_base));
if (EEH_POSSIBLE_ERROR(val, u16))
return eeh_check_failure((void __iomem *)(port), val);
return val;
}
static inline void eeh_outw(u16 val, unsigned long port)
{
if (_IO_IS_VALID(port))
out_le16((u16 __iomem *)(port+pci_io_base), val);
}
static inline u32 eeh_inl(unsigned long port)
{
u32 val;
if (!_IO_IS_VALID(port))
return ~0;
val = in_le32((u32 __iomem *)(port+pci_io_base));
if (EEH_POSSIBLE_ERROR(val, u32))
return eeh_check_failure((void __iomem *)(port), val);
return val;
}
static inline void eeh_outl(u32 val, unsigned long port)
{
if (_IO_IS_VALID(port))
out_le32((u32 __iomem *)(port+pci_io_base), val);
}
/* in-string eeh macros */
static inline void eeh_insb(unsigned long port, void * buf, int ns)
{
_insb((u8 __iomem *)(port+pci_io_base), buf, ns);
if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8))
eeh_check_failure((void __iomem *)(port), *(u8*)buf);
}
static inline void eeh_insw_ns(unsigned long port, void * buf, int ns)
{
_insw_ns((u16 __iomem *)(port+pci_io_base), buf, ns);
if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16))
eeh_check_failure((void __iomem *)(port), *(u16*)buf);
}
static inline void eeh_insl_ns(unsigned long port, void * buf, int nl)
{
_insl_ns((u32 __iomem *)(port+pci_io_base), buf, nl);
if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32))
eeh_check_failure((void __iomem *)(port), *(u32*)buf);
}
#endif /* __KERNEL__ */
#endif /* _PPC64_EEH_H */