linux/drivers/crypto/ccree/cc_hash.c

2316 lines
66 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
#include <linux/kernel.h>
#include <linux/module.h>
#include <crypto/algapi.h>
#include <crypto/hash.h>
#include <crypto/md5.h>
#include <crypto/sm3.h>
#include <crypto/internal/hash.h>
#include "cc_driver.h"
#include "cc_request_mgr.h"
#include "cc_buffer_mgr.h"
#include "cc_hash.h"
#include "cc_sram_mgr.h"
#define CC_MAX_HASH_SEQ_LEN 12
#define CC_MAX_OPAD_KEYS_SIZE CC_MAX_HASH_BLCK_SIZE
#define CC_SM3_HASH_LEN_SIZE 8
struct cc_hash_handle {
u32 digest_len_sram_addr; /* const value in SRAM*/
u32 larval_digest_sram_addr; /* const value in SRAM */
struct list_head hash_list;
};
static const u32 cc_digest_len_init[] = {
0x00000040, 0x00000000, 0x00000000, 0x00000000 };
static const u32 cc_md5_init[] = {
SHA1_H3, SHA1_H2, SHA1_H1, SHA1_H0 };
static const u32 cc_sha1_init[] = {
SHA1_H4, SHA1_H3, SHA1_H2, SHA1_H1, SHA1_H0 };
static const u32 cc_sha224_init[] = {
SHA224_H7, SHA224_H6, SHA224_H5, SHA224_H4,
SHA224_H3, SHA224_H2, SHA224_H1, SHA224_H0 };
static const u32 cc_sha256_init[] = {
SHA256_H7, SHA256_H6, SHA256_H5, SHA256_H4,
SHA256_H3, SHA256_H2, SHA256_H1, SHA256_H0 };
static const u32 cc_digest_len_sha512_init[] = {
0x00000080, 0x00000000, 0x00000000, 0x00000000 };
/*
* Due to the way the HW works, every double word in the SHA384 and SHA512
* larval hashes must be stored in hi/lo order
*/
#define hilo(x) upper_32_bits(x), lower_32_bits(x)
static const u32 cc_sha384_init[] = {
hilo(SHA384_H7), hilo(SHA384_H6), hilo(SHA384_H5), hilo(SHA384_H4),
hilo(SHA384_H3), hilo(SHA384_H2), hilo(SHA384_H1), hilo(SHA384_H0) };
static const u32 cc_sha512_init[] = {
hilo(SHA512_H7), hilo(SHA512_H6), hilo(SHA512_H5), hilo(SHA512_H4),
hilo(SHA512_H3), hilo(SHA512_H2), hilo(SHA512_H1), hilo(SHA512_H0) };
static const u32 cc_sm3_init[] = {
SM3_IVH, SM3_IVG, SM3_IVF, SM3_IVE,
SM3_IVD, SM3_IVC, SM3_IVB, SM3_IVA };
static void cc_setup_xcbc(struct ahash_request *areq, struct cc_hw_desc desc[],
unsigned int *seq_size);
static void cc_setup_cmac(struct ahash_request *areq, struct cc_hw_desc desc[],
unsigned int *seq_size);
static const void *cc_larval_digest(struct device *dev, u32 mode);
struct cc_hash_alg {
struct list_head entry;
int hash_mode;
int hw_mode;
int inter_digestsize;
struct cc_drvdata *drvdata;
struct ahash_alg ahash_alg;
};
struct hash_key_req_ctx {
u32 keylen;
dma_addr_t key_dma_addr;
u8 *key;
};
/* hash per-session context */
struct cc_hash_ctx {
struct cc_drvdata *drvdata;
/* holds the origin digest; the digest after "setkey" if HMAC,*
* the initial digest if HASH.
*/
u8 digest_buff[CC_MAX_HASH_DIGEST_SIZE] ____cacheline_aligned;
u8 opad_tmp_keys_buff[CC_MAX_OPAD_KEYS_SIZE] ____cacheline_aligned;
dma_addr_t opad_tmp_keys_dma_addr ____cacheline_aligned;
dma_addr_t digest_buff_dma_addr;
/* use for hmac with key large then mode block size */
struct hash_key_req_ctx key_params;
int hash_mode;
int hw_mode;
int inter_digestsize;
unsigned int hash_len;
struct completion setkey_comp;
bool is_hmac;
};
static void cc_set_desc(struct ahash_req_ctx *areq_ctx, struct cc_hash_ctx *ctx,
unsigned int flow_mode, struct cc_hw_desc desc[],
bool is_not_last_data, unsigned int *seq_size);
static void cc_set_endianity(u32 mode, struct cc_hw_desc *desc)
{
if (mode == DRV_HASH_MD5 || mode == DRV_HASH_SHA384 ||
mode == DRV_HASH_SHA512) {
set_bytes_swap(desc, 1);
} else {
set_cipher_config0(desc, HASH_DIGEST_RESULT_LITTLE_ENDIAN);
}
}
static int cc_map_result(struct device *dev, struct ahash_req_ctx *state,
unsigned int digestsize)
{
state->digest_result_dma_addr =
dma_map_single(dev, state->digest_result_buff,
digestsize, DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, state->digest_result_dma_addr)) {
dev_err(dev, "Mapping digest result buffer %u B for DMA failed\n",
digestsize);
return -ENOMEM;
}
dev_dbg(dev, "Mapped digest result buffer %u B at va=%pK to dma=%pad\n",
digestsize, state->digest_result_buff,
&state->digest_result_dma_addr);
return 0;
}
static void cc_init_req(struct device *dev, struct ahash_req_ctx *state,
struct cc_hash_ctx *ctx)
{
bool is_hmac = ctx->is_hmac;
memset(state, 0, sizeof(*state));
if (is_hmac) {
if (ctx->hw_mode != DRV_CIPHER_XCBC_MAC &&
ctx->hw_mode != DRV_CIPHER_CMAC) {
dma_sync_single_for_cpu(dev, ctx->digest_buff_dma_addr,
ctx->inter_digestsize,
DMA_BIDIRECTIONAL);
memcpy(state->digest_buff, ctx->digest_buff,
ctx->inter_digestsize);
if (ctx->hash_mode == DRV_HASH_SHA512 ||
ctx->hash_mode == DRV_HASH_SHA384)
memcpy(state->digest_bytes_len,
cc_digest_len_sha512_init,
ctx->hash_len);
else
memcpy(state->digest_bytes_len,
cc_digest_len_init,
ctx->hash_len);
}
if (ctx->hash_mode != DRV_HASH_NULL) {
dma_sync_single_for_cpu(dev,
ctx->opad_tmp_keys_dma_addr,
ctx->inter_digestsize,
DMA_BIDIRECTIONAL);
memcpy(state->opad_digest_buff,
ctx->opad_tmp_keys_buff, ctx->inter_digestsize);
}
} else { /*hash*/
/* Copy the initial digests if hash flow. */
const void *larval = cc_larval_digest(dev, ctx->hash_mode);
memcpy(state->digest_buff, larval, ctx->inter_digestsize);
}
}
static int cc_map_req(struct device *dev, struct ahash_req_ctx *state,
struct cc_hash_ctx *ctx)
{
bool is_hmac = ctx->is_hmac;
state->digest_buff_dma_addr =
dma_map_single(dev, state->digest_buff,
ctx->inter_digestsize, DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, state->digest_buff_dma_addr)) {
dev_err(dev, "Mapping digest len %d B at va=%pK for DMA failed\n",
ctx->inter_digestsize, state->digest_buff);
return -EINVAL;
}
dev_dbg(dev, "Mapped digest %d B at va=%pK to dma=%pad\n",
ctx->inter_digestsize, state->digest_buff,
&state->digest_buff_dma_addr);
if (ctx->hw_mode != DRV_CIPHER_XCBC_MAC) {
state->digest_bytes_len_dma_addr =
dma_map_single(dev, state->digest_bytes_len,
HASH_MAX_LEN_SIZE, DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, state->digest_bytes_len_dma_addr)) {
dev_err(dev, "Mapping digest len %u B at va=%pK for DMA failed\n",
HASH_MAX_LEN_SIZE, state->digest_bytes_len);
goto unmap_digest_buf;
}
dev_dbg(dev, "Mapped digest len %u B at va=%pK to dma=%pad\n",
HASH_MAX_LEN_SIZE, state->digest_bytes_len,
&state->digest_bytes_len_dma_addr);
}
if (is_hmac && ctx->hash_mode != DRV_HASH_NULL) {
state->opad_digest_dma_addr =
dma_map_single(dev, state->opad_digest_buff,
ctx->inter_digestsize,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, state->opad_digest_dma_addr)) {
dev_err(dev, "Mapping opad digest %d B at va=%pK for DMA failed\n",
ctx->inter_digestsize,
state->opad_digest_buff);
goto unmap_digest_len;
}
dev_dbg(dev, "Mapped opad digest %d B at va=%pK to dma=%pad\n",
ctx->inter_digestsize, state->opad_digest_buff,
&state->opad_digest_dma_addr);
}
return 0;
unmap_digest_len:
if (state->digest_bytes_len_dma_addr) {
dma_unmap_single(dev, state->digest_bytes_len_dma_addr,
HASH_MAX_LEN_SIZE, DMA_BIDIRECTIONAL);
state->digest_bytes_len_dma_addr = 0;
}
unmap_digest_buf:
if (state->digest_buff_dma_addr) {
dma_unmap_single(dev, state->digest_buff_dma_addr,
ctx->inter_digestsize, DMA_BIDIRECTIONAL);
state->digest_buff_dma_addr = 0;
}
return -EINVAL;
}
static void cc_unmap_req(struct device *dev, struct ahash_req_ctx *state,
struct cc_hash_ctx *ctx)
{
if (state->digest_buff_dma_addr) {
dma_unmap_single(dev, state->digest_buff_dma_addr,
ctx->inter_digestsize, DMA_BIDIRECTIONAL);
dev_dbg(dev, "Unmapped digest-buffer: digest_buff_dma_addr=%pad\n",
&state->digest_buff_dma_addr);
state->digest_buff_dma_addr = 0;
}
if (state->digest_bytes_len_dma_addr) {
dma_unmap_single(dev, state->digest_bytes_len_dma_addr,
HASH_MAX_LEN_SIZE, DMA_BIDIRECTIONAL);
dev_dbg(dev, "Unmapped digest-bytes-len buffer: digest_bytes_len_dma_addr=%pad\n",
&state->digest_bytes_len_dma_addr);
state->digest_bytes_len_dma_addr = 0;
}
if (state->opad_digest_dma_addr) {
dma_unmap_single(dev, state->opad_digest_dma_addr,
ctx->inter_digestsize, DMA_BIDIRECTIONAL);
dev_dbg(dev, "Unmapped opad-digest: opad_digest_dma_addr=%pad\n",
&state->opad_digest_dma_addr);
state->opad_digest_dma_addr = 0;
}
}
static void cc_unmap_result(struct device *dev, struct ahash_req_ctx *state,
unsigned int digestsize, u8 *result)
{
if (state->digest_result_dma_addr) {
dma_unmap_single(dev, state->digest_result_dma_addr, digestsize,
DMA_BIDIRECTIONAL);
dev_dbg(dev, "unmpa digest result buffer va (%pK) pa (%pad) len %u\n",
state->digest_result_buff,
&state->digest_result_dma_addr, digestsize);
memcpy(result, state->digest_result_buff, digestsize);
}
state->digest_result_dma_addr = 0;
}
static void cc_update_complete(struct device *dev, void *cc_req, int err)
{
struct ahash_request *req = (struct ahash_request *)cc_req;
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
dev_dbg(dev, "req=%pK\n", req);
if (err != -EINPROGRESS) {
/* Not a BACKLOG notification */
cc_unmap_hash_request(dev, state, req->src, false);
cc_unmap_req(dev, state, ctx);
}
ahash_request_complete(req, err);
}
static void cc_digest_complete(struct device *dev, void *cc_req, int err)
{
struct ahash_request *req = (struct ahash_request *)cc_req;
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
u32 digestsize = crypto_ahash_digestsize(tfm);
dev_dbg(dev, "req=%pK\n", req);
if (err != -EINPROGRESS) {
/* Not a BACKLOG notification */
cc_unmap_hash_request(dev, state, req->src, false);
cc_unmap_result(dev, state, digestsize, req->result);
cc_unmap_req(dev, state, ctx);
}
ahash_request_complete(req, err);
}
static void cc_hash_complete(struct device *dev, void *cc_req, int err)
{
struct ahash_request *req = (struct ahash_request *)cc_req;
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
u32 digestsize = crypto_ahash_digestsize(tfm);
dev_dbg(dev, "req=%pK\n", req);
if (err != -EINPROGRESS) {
/* Not a BACKLOG notification */
cc_unmap_hash_request(dev, state, req->src, false);
cc_unmap_result(dev, state, digestsize, req->result);
cc_unmap_req(dev, state, ctx);
}
ahash_request_complete(req, err);
}
static int cc_fin_result(struct cc_hw_desc *desc, struct ahash_request *req,
int idx)
{
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
u32 digestsize = crypto_ahash_digestsize(tfm);
/* Get final MAC result */
hw_desc_init(&desc[idx]);
set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode);
set_dout_dlli(&desc[idx], state->digest_result_dma_addr, digestsize,
NS_BIT, 1);
set_queue_last_ind(ctx->drvdata, &desc[idx]);
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
cc_set_endianity(ctx->hash_mode, &desc[idx]);
idx++;
return idx;
}
static int cc_fin_hmac(struct cc_hw_desc *desc, struct ahash_request *req,
int idx)
{
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
u32 digestsize = crypto_ahash_digestsize(tfm);
/* store the hash digest result in the context */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], ctx->hw_mode);
set_dout_dlli(&desc[idx], state->digest_buff_dma_addr, digestsize,
NS_BIT, 0);
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
cc_set_endianity(ctx->hash_mode, &desc[idx]);
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
idx++;
/* Loading hash opad xor key state */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], ctx->hw_mode);
set_din_type(&desc[idx], DMA_DLLI, state->opad_digest_dma_addr,
ctx->inter_digestsize, NS_BIT);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
idx++;
/* Load the hash current length */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], ctx->hw_mode);
set_din_sram(&desc[idx],
cc_digest_len_addr(ctx->drvdata, ctx->hash_mode),
ctx->hash_len);
set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
idx++;
/* Memory Barrier: wait for IPAD/OPAD axi write to complete */
hw_desc_init(&desc[idx]);
set_din_no_dma(&desc[idx], 0, 0xfffff0);
set_dout_no_dma(&desc[idx], 0, 0, 1);
idx++;
/* Perform HASH update */
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
digestsize, NS_BIT);
set_flow_mode(&desc[idx], DIN_HASH);
idx++;
return idx;
}
static int cc_hash_digest(struct ahash_request *req)
{
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
u32 digestsize = crypto_ahash_digestsize(tfm);
struct scatterlist *src = req->src;
unsigned int nbytes = req->nbytes;
u8 *result = req->result;
struct device *dev = drvdata_to_dev(ctx->drvdata);
bool is_hmac = ctx->is_hmac;
struct cc_crypto_req cc_req = {};
struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
u32 larval_digest_addr;
int idx = 0;
int rc = 0;
gfp_t flags = cc_gfp_flags(&req->base);
dev_dbg(dev, "===== %s-digest (%d) ====\n", is_hmac ? "hmac" : "hash",
nbytes);
cc_init_req(dev, state, ctx);
if (cc_map_req(dev, state, ctx)) {
dev_err(dev, "map_ahash_source() failed\n");
return -ENOMEM;
}
if (cc_map_result(dev, state, digestsize)) {
dev_err(dev, "map_ahash_digest() failed\n");
cc_unmap_req(dev, state, ctx);
return -ENOMEM;
}
if (cc_map_hash_request_final(ctx->drvdata, state, src, nbytes, 1,
flags)) {
dev_err(dev, "map_ahash_request_final() failed\n");
cc_unmap_result(dev, state, digestsize, result);
cc_unmap_req(dev, state, ctx);
return -ENOMEM;
}
/* Setup request structure */
cc_req.user_cb = cc_digest_complete;
cc_req.user_arg = req;
/* If HMAC then load hash IPAD xor key, if HASH then load initial
* digest
*/
hw_desc_init(&desc[idx]);
set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode);
if (is_hmac) {
set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
ctx->inter_digestsize, NS_BIT);
} else {
larval_digest_addr = cc_larval_digest_addr(ctx->drvdata,
ctx->hash_mode);
set_din_sram(&desc[idx], larval_digest_addr,
ctx->inter_digestsize);
}
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
idx++;
/* Load the hash current length */
hw_desc_init(&desc[idx]);
set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode);
if (is_hmac) {
set_din_type(&desc[idx], DMA_DLLI,
state->digest_bytes_len_dma_addr,
ctx->hash_len, NS_BIT);
} else {
set_din_const(&desc[idx], 0, ctx->hash_len);
if (nbytes)
set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
else
set_cipher_do(&desc[idx], DO_PAD);
}
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
idx++;
cc_set_desc(state, ctx, DIN_HASH, desc, false, &idx);
if (is_hmac) {
/* HW last hash block padding (aka. "DO_PAD") */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], ctx->hw_mode);
set_dout_dlli(&desc[idx], state->digest_buff_dma_addr,
ctx->hash_len, NS_BIT, 0);
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
set_cipher_do(&desc[idx], DO_PAD);
idx++;
idx = cc_fin_hmac(desc, req, idx);
}
idx = cc_fin_result(desc, req, idx);
rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
if (rc != -EINPROGRESS && rc != -EBUSY) {
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
cc_unmap_hash_request(dev, state, src, true);
cc_unmap_result(dev, state, digestsize, result);
cc_unmap_req(dev, state, ctx);
}
return rc;
}
static int cc_restore_hash(struct cc_hw_desc *desc, struct cc_hash_ctx *ctx,
struct ahash_req_ctx *state, unsigned int idx)
{
/* Restore hash digest */
hw_desc_init(&desc[idx]);
set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode);
set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
ctx->inter_digestsize, NS_BIT);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
idx++;
/* Restore hash current length */
hw_desc_init(&desc[idx]);
set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode);
set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
set_din_type(&desc[idx], DMA_DLLI, state->digest_bytes_len_dma_addr,
ctx->hash_len, NS_BIT);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
idx++;
cc_set_desc(state, ctx, DIN_HASH, desc, false, &idx);
return idx;
}
static int cc_hash_update(struct ahash_request *req)
{
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
unsigned int block_size = crypto_tfm_alg_blocksize(&tfm->base);
struct scatterlist *src = req->src;
unsigned int nbytes = req->nbytes;
struct device *dev = drvdata_to_dev(ctx->drvdata);
struct cc_crypto_req cc_req = {};
struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
u32 idx = 0;
int rc;
gfp_t flags = cc_gfp_flags(&req->base);
dev_dbg(dev, "===== %s-update (%d) ====\n", ctx->is_hmac ?
"hmac" : "hash", nbytes);
if (nbytes == 0) {
/* no real updates required */
return 0;
}
rc = cc_map_hash_request_update(ctx->drvdata, state, src, nbytes,
block_size, flags);
if (rc) {
if (rc == 1) {
dev_dbg(dev, " data size not require HW update %x\n",
nbytes);
/* No hardware updates are required */
return 0;
}
dev_err(dev, "map_ahash_request_update() failed\n");
return -ENOMEM;
}
if (cc_map_req(dev, state, ctx)) {
dev_err(dev, "map_ahash_source() failed\n");
cc_unmap_hash_request(dev, state, src, true);
return -EINVAL;
}
/* Setup request structure */
cc_req.user_cb = cc_update_complete;
cc_req.user_arg = req;
idx = cc_restore_hash(desc, ctx, state, idx);
/* store the hash digest result in context */
hw_desc_init(&desc[idx]);
set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode);
set_dout_dlli(&desc[idx], state->digest_buff_dma_addr,
ctx->inter_digestsize, NS_BIT, 0);
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
idx++;
/* store current hash length in context */
hw_desc_init(&desc[idx]);
set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode);
set_dout_dlli(&desc[idx], state->digest_bytes_len_dma_addr,
ctx->hash_len, NS_BIT, 1);
set_queue_last_ind(ctx->drvdata, &desc[idx]);
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
idx++;
rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
if (rc != -EINPROGRESS && rc != -EBUSY) {
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
cc_unmap_hash_request(dev, state, src, true);
cc_unmap_req(dev, state, ctx);
}
return rc;
}
static int cc_do_finup(struct ahash_request *req, bool update)
{
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
u32 digestsize = crypto_ahash_digestsize(tfm);
struct scatterlist *src = req->src;
unsigned int nbytes = req->nbytes;
u8 *result = req->result;
struct device *dev = drvdata_to_dev(ctx->drvdata);
bool is_hmac = ctx->is_hmac;
struct cc_crypto_req cc_req = {};
struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
unsigned int idx = 0;
int rc;
gfp_t flags = cc_gfp_flags(&req->base);
dev_dbg(dev, "===== %s-%s (%d) ====\n", is_hmac ? "hmac" : "hash",
update ? "finup" : "final", nbytes);
if (cc_map_req(dev, state, ctx)) {
dev_err(dev, "map_ahash_source() failed\n");
return -EINVAL;
}
if (cc_map_hash_request_final(ctx->drvdata, state, src, nbytes, update,
flags)) {
dev_err(dev, "map_ahash_request_final() failed\n");
cc_unmap_req(dev, state, ctx);
return -ENOMEM;
}
if (cc_map_result(dev, state, digestsize)) {
dev_err(dev, "map_ahash_digest() failed\n");
cc_unmap_hash_request(dev, state, src, true);
cc_unmap_req(dev, state, ctx);
return -ENOMEM;
}
/* Setup request structure */
cc_req.user_cb = cc_hash_complete;
cc_req.user_arg = req;
idx = cc_restore_hash(desc, ctx, state, idx);
/* Pad the hash */
hw_desc_init(&desc[idx]);
set_cipher_do(&desc[idx], DO_PAD);
set_hash_cipher_mode(&desc[idx], ctx->hw_mode, ctx->hash_mode);
set_dout_dlli(&desc[idx], state->digest_bytes_len_dma_addr,
ctx->hash_len, NS_BIT, 0);
set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
idx++;
if (is_hmac)
idx = cc_fin_hmac(desc, req, idx);
idx = cc_fin_result(desc, req, idx);
rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
if (rc != -EINPROGRESS && rc != -EBUSY) {
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
cc_unmap_hash_request(dev, state, src, true);
cc_unmap_result(dev, state, digestsize, result);
cc_unmap_req(dev, state, ctx);
}
return rc;
}
static int cc_hash_finup(struct ahash_request *req)
{
return cc_do_finup(req, true);
}
static int cc_hash_final(struct ahash_request *req)
{
return cc_do_finup(req, false);
}
static int cc_hash_init(struct ahash_request *req)
{
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx->drvdata);
dev_dbg(dev, "===== init (%d) ====\n", req->nbytes);
cc_init_req(dev, state, ctx);
return 0;
}
static int cc_hash_setkey(struct crypto_ahash *ahash, const u8 *key,
unsigned int keylen)
{
unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST };
struct cc_crypto_req cc_req = {};
struct cc_hash_ctx *ctx = NULL;
int blocksize = 0;
int digestsize = 0;
int i, idx = 0, rc = 0;
struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
u32 larval_addr;
struct device *dev;
ctx = crypto_ahash_ctx(ahash);
dev = drvdata_to_dev(ctx->drvdata);
dev_dbg(dev, "start keylen: %d", keylen);
blocksize = crypto_tfm_alg_blocksize(&ahash->base);
digestsize = crypto_ahash_digestsize(ahash);
larval_addr = cc_larval_digest_addr(ctx->drvdata, ctx->hash_mode);
/* The keylen value distinguishes HASH in case keylen is ZERO bytes,
* any NON-ZERO value utilizes HMAC flow
*/
ctx->key_params.keylen = keylen;
ctx->key_params.key_dma_addr = 0;
ctx->is_hmac = true;
ctx->key_params.key = NULL;
if (keylen) {
ctx->key_params.key = kmemdup(key, keylen, GFP_KERNEL);
if (!ctx->key_params.key)
return -ENOMEM;
ctx->key_params.key_dma_addr =
dma_map_single(dev, ctx->key_params.key, keylen,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, ctx->key_params.key_dma_addr)) {
dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
ctx->key_params.key, keylen);
mm, treewide: rename kzfree() to kfree_sensitive() As said by Linus: A symmetric naming is only helpful if it implies symmetries in use. Otherwise it's actively misleading. In "kzalloc()", the z is meaningful and an important part of what the caller wants. In "kzfree()", the z is actively detrimental, because maybe in the future we really _might_ want to use that "memfill(0xdeadbeef)" or something. The "zero" part of the interface isn't even _relevant_. The main reason that kzfree() exists is to clear sensitive information that should not be leaked to other future users of the same memory objects. Rename kzfree() to kfree_sensitive() to follow the example of the recently added kvfree_sensitive() and make the intention of the API more explicit. In addition, memzero_explicit() is used to clear the memory to make sure that it won't get optimized away by the compiler. The renaming is done by using the command sequence: git grep -w --name-only kzfree |\ xargs sed -i 's/kzfree/kfree_sensitive/' followed by some editing of the kfree_sensitive() kerneldoc and adding a kzfree backward compatibility macro in slab.h. [akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h] [akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more] Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:18:13 +00:00
kfree_sensitive(ctx->key_params.key);
return -ENOMEM;
}
dev_dbg(dev, "mapping key-buffer: key_dma_addr=%pad keylen=%u\n",
&ctx->key_params.key_dma_addr, ctx->key_params.keylen);
if (keylen > blocksize) {
/* Load hash initial state */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], ctx->hw_mode);
set_din_sram(&desc[idx], larval_addr,
ctx->inter_digestsize);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
idx++;
/* Load the hash current length*/
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], ctx->hw_mode);
set_din_const(&desc[idx], 0, ctx->hash_len);
set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
idx++;
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI,
ctx->key_params.key_dma_addr, keylen,
NS_BIT);
set_flow_mode(&desc[idx], DIN_HASH);
idx++;
/* Get hashed key */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], ctx->hw_mode);
set_dout_dlli(&desc[idx], ctx->opad_tmp_keys_dma_addr,
digestsize, NS_BIT, 0);
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
cc_set_endianity(ctx->hash_mode, &desc[idx]);
idx++;
hw_desc_init(&desc[idx]);
set_din_const(&desc[idx], 0, (blocksize - digestsize));
set_flow_mode(&desc[idx], BYPASS);
set_dout_dlli(&desc[idx],
(ctx->opad_tmp_keys_dma_addr +
digestsize),
(blocksize - digestsize), NS_BIT, 0);
idx++;
} else {
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI,
ctx->key_params.key_dma_addr, keylen,
NS_BIT);
set_flow_mode(&desc[idx], BYPASS);
set_dout_dlli(&desc[idx], ctx->opad_tmp_keys_dma_addr,
keylen, NS_BIT, 0);
idx++;
if ((blocksize - keylen)) {
hw_desc_init(&desc[idx]);
set_din_const(&desc[idx], 0,
(blocksize - keylen));
set_flow_mode(&desc[idx], BYPASS);
set_dout_dlli(&desc[idx],
(ctx->opad_tmp_keys_dma_addr +
keylen), (blocksize - keylen),
NS_BIT, 0);
idx++;
}
}
} else {
hw_desc_init(&desc[idx]);
set_din_const(&desc[idx], 0, blocksize);
set_flow_mode(&desc[idx], BYPASS);
set_dout_dlli(&desc[idx], (ctx->opad_tmp_keys_dma_addr),
blocksize, NS_BIT, 0);
idx++;
}
rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
if (rc) {
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
goto out;
}
/* calc derived HMAC key */
for (idx = 0, i = 0; i < 2; i++) {
/* Load hash initial state */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], ctx->hw_mode);
set_din_sram(&desc[idx], larval_addr, ctx->inter_digestsize);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
idx++;
/* Load the hash current length*/
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], ctx->hw_mode);
set_din_const(&desc[idx], 0, ctx->hash_len);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
idx++;
/* Prepare ipad key */
hw_desc_init(&desc[idx]);
set_xor_val(&desc[idx], hmac_pad_const[i]);
set_cipher_mode(&desc[idx], ctx->hw_mode);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
idx++;
/* Perform HASH update */
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI, ctx->opad_tmp_keys_dma_addr,
blocksize, NS_BIT);
set_cipher_mode(&desc[idx], ctx->hw_mode);
set_xor_active(&desc[idx]);
set_flow_mode(&desc[idx], DIN_HASH);
idx++;
/* Get the IPAD/OPAD xor key (Note, IPAD is the initial digest
* of the first HASH "update" state)
*/
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], ctx->hw_mode);
if (i > 0) /* Not first iteration */
set_dout_dlli(&desc[idx], ctx->opad_tmp_keys_dma_addr,
ctx->inter_digestsize, NS_BIT, 0);
else /* First iteration */
set_dout_dlli(&desc[idx], ctx->digest_buff_dma_addr,
ctx->inter_digestsize, NS_BIT, 0);
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
idx++;
}
rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
out:
if (ctx->key_params.key_dma_addr) {
dma_unmap_single(dev, ctx->key_params.key_dma_addr,
ctx->key_params.keylen, DMA_TO_DEVICE);
dev_dbg(dev, "Unmapped key-buffer: key_dma_addr=%pad keylen=%u\n",
&ctx->key_params.key_dma_addr, ctx->key_params.keylen);
}
mm, treewide: rename kzfree() to kfree_sensitive() As said by Linus: A symmetric naming is only helpful if it implies symmetries in use. Otherwise it's actively misleading. In "kzalloc()", the z is meaningful and an important part of what the caller wants. In "kzfree()", the z is actively detrimental, because maybe in the future we really _might_ want to use that "memfill(0xdeadbeef)" or something. The "zero" part of the interface isn't even _relevant_. The main reason that kzfree() exists is to clear sensitive information that should not be leaked to other future users of the same memory objects. Rename kzfree() to kfree_sensitive() to follow the example of the recently added kvfree_sensitive() and make the intention of the API more explicit. In addition, memzero_explicit() is used to clear the memory to make sure that it won't get optimized away by the compiler. The renaming is done by using the command sequence: git grep -w --name-only kzfree |\ xargs sed -i 's/kzfree/kfree_sensitive/' followed by some editing of the kfree_sensitive() kerneldoc and adding a kzfree backward compatibility macro in slab.h. [akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h] [akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more] Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:18:13 +00:00
kfree_sensitive(ctx->key_params.key);
return rc;
}
static int cc_xcbc_setkey(struct crypto_ahash *ahash,
const u8 *key, unsigned int keylen)
{
struct cc_crypto_req cc_req = {};
struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct device *dev = drvdata_to_dev(ctx->drvdata);
int rc = 0;
unsigned int idx = 0;
struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
dev_dbg(dev, "===== setkey (%d) ====\n", keylen);
switch (keylen) {
case AES_KEYSIZE_128:
case AES_KEYSIZE_192:
case AES_KEYSIZE_256:
break;
default:
return -EINVAL;
}
ctx->key_params.keylen = keylen;
ctx->key_params.key = kmemdup(key, keylen, GFP_KERNEL);
if (!ctx->key_params.key)
return -ENOMEM;
ctx->key_params.key_dma_addr =
dma_map_single(dev, ctx->key_params.key, keylen, DMA_TO_DEVICE);
if (dma_mapping_error(dev, ctx->key_params.key_dma_addr)) {
dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
key, keylen);
mm, treewide: rename kzfree() to kfree_sensitive() As said by Linus: A symmetric naming is only helpful if it implies symmetries in use. Otherwise it's actively misleading. In "kzalloc()", the z is meaningful and an important part of what the caller wants. In "kzfree()", the z is actively detrimental, because maybe in the future we really _might_ want to use that "memfill(0xdeadbeef)" or something. The "zero" part of the interface isn't even _relevant_. The main reason that kzfree() exists is to clear sensitive information that should not be leaked to other future users of the same memory objects. Rename kzfree() to kfree_sensitive() to follow the example of the recently added kvfree_sensitive() and make the intention of the API more explicit. In addition, memzero_explicit() is used to clear the memory to make sure that it won't get optimized away by the compiler. The renaming is done by using the command sequence: git grep -w --name-only kzfree |\ xargs sed -i 's/kzfree/kfree_sensitive/' followed by some editing of the kfree_sensitive() kerneldoc and adding a kzfree backward compatibility macro in slab.h. [akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h] [akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more] Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:18:13 +00:00
kfree_sensitive(ctx->key_params.key);
return -ENOMEM;
}
dev_dbg(dev, "mapping key-buffer: key_dma_addr=%pad keylen=%u\n",
&ctx->key_params.key_dma_addr, ctx->key_params.keylen);
ctx->is_hmac = true;
/* 1. Load the AES key */
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI, ctx->key_params.key_dma_addr,
keylen, NS_BIT);
set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
set_key_size_aes(&desc[idx], keylen);
set_flow_mode(&desc[idx], S_DIN_to_AES);
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
idx++;
hw_desc_init(&desc[idx]);
set_din_const(&desc[idx], 0x01010101, CC_AES_128_BIT_KEY_SIZE);
set_flow_mode(&desc[idx], DIN_AES_DOUT);
set_dout_dlli(&desc[idx],
(ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K1_OFFSET),
CC_AES_128_BIT_KEY_SIZE, NS_BIT, 0);
idx++;
hw_desc_init(&desc[idx]);
set_din_const(&desc[idx], 0x02020202, CC_AES_128_BIT_KEY_SIZE);
set_flow_mode(&desc[idx], DIN_AES_DOUT);
set_dout_dlli(&desc[idx],
(ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K2_OFFSET),
CC_AES_128_BIT_KEY_SIZE, NS_BIT, 0);
idx++;
hw_desc_init(&desc[idx]);
set_din_const(&desc[idx], 0x03030303, CC_AES_128_BIT_KEY_SIZE);
set_flow_mode(&desc[idx], DIN_AES_DOUT);
set_dout_dlli(&desc[idx],
(ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K3_OFFSET),
CC_AES_128_BIT_KEY_SIZE, NS_BIT, 0);
idx++;
rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
dma_unmap_single(dev, ctx->key_params.key_dma_addr,
ctx->key_params.keylen, DMA_TO_DEVICE);
dev_dbg(dev, "Unmapped key-buffer: key_dma_addr=%pad keylen=%u\n",
&ctx->key_params.key_dma_addr, ctx->key_params.keylen);
mm, treewide: rename kzfree() to kfree_sensitive() As said by Linus: A symmetric naming is only helpful if it implies symmetries in use. Otherwise it's actively misleading. In "kzalloc()", the z is meaningful and an important part of what the caller wants. In "kzfree()", the z is actively detrimental, because maybe in the future we really _might_ want to use that "memfill(0xdeadbeef)" or something. The "zero" part of the interface isn't even _relevant_. The main reason that kzfree() exists is to clear sensitive information that should not be leaked to other future users of the same memory objects. Rename kzfree() to kfree_sensitive() to follow the example of the recently added kvfree_sensitive() and make the intention of the API more explicit. In addition, memzero_explicit() is used to clear the memory to make sure that it won't get optimized away by the compiler. The renaming is done by using the command sequence: git grep -w --name-only kzfree |\ xargs sed -i 's/kzfree/kfree_sensitive/' followed by some editing of the kfree_sensitive() kerneldoc and adding a kzfree backward compatibility macro in slab.h. [akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h] [akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more] Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 06:18:13 +00:00
kfree_sensitive(ctx->key_params.key);
return rc;
}
static int cc_cmac_setkey(struct crypto_ahash *ahash,
const u8 *key, unsigned int keylen)
{
struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct device *dev = drvdata_to_dev(ctx->drvdata);
dev_dbg(dev, "===== setkey (%d) ====\n", keylen);
ctx->is_hmac = true;
switch (keylen) {
case AES_KEYSIZE_128:
case AES_KEYSIZE_192:
case AES_KEYSIZE_256:
break;
default:
return -EINVAL;
}
ctx->key_params.keylen = keylen;
/* STAT_PHASE_1: Copy key to ctx */
dma_sync_single_for_cpu(dev, ctx->opad_tmp_keys_dma_addr,
keylen, DMA_TO_DEVICE);
memcpy(ctx->opad_tmp_keys_buff, key, keylen);
if (keylen == 24) {
memset(ctx->opad_tmp_keys_buff + 24, 0,
CC_AES_KEY_SIZE_MAX - 24);
}
dma_sync_single_for_device(dev, ctx->opad_tmp_keys_dma_addr,
keylen, DMA_TO_DEVICE);
ctx->key_params.keylen = keylen;
return 0;
}
static void cc_free_ctx(struct cc_hash_ctx *ctx)
{
struct device *dev = drvdata_to_dev(ctx->drvdata);
if (ctx->digest_buff_dma_addr) {
dma_unmap_single(dev, ctx->digest_buff_dma_addr,
sizeof(ctx->digest_buff), DMA_BIDIRECTIONAL);
dev_dbg(dev, "Unmapped digest-buffer: digest_buff_dma_addr=%pad\n",
&ctx->digest_buff_dma_addr);
ctx->digest_buff_dma_addr = 0;
}
if (ctx->opad_tmp_keys_dma_addr) {
dma_unmap_single(dev, ctx->opad_tmp_keys_dma_addr,
sizeof(ctx->opad_tmp_keys_buff),
DMA_BIDIRECTIONAL);
dev_dbg(dev, "Unmapped opad-digest: opad_tmp_keys_dma_addr=%pad\n",
&ctx->opad_tmp_keys_dma_addr);
ctx->opad_tmp_keys_dma_addr = 0;
}
ctx->key_params.keylen = 0;
}
static int cc_alloc_ctx(struct cc_hash_ctx *ctx)
{
struct device *dev = drvdata_to_dev(ctx->drvdata);
ctx->key_params.keylen = 0;
ctx->digest_buff_dma_addr =
dma_map_single(dev, ctx->digest_buff, sizeof(ctx->digest_buff),
DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, ctx->digest_buff_dma_addr)) {
dev_err(dev, "Mapping digest len %zu B at va=%pK for DMA failed\n",
sizeof(ctx->digest_buff), ctx->digest_buff);
goto fail;
}
dev_dbg(dev, "Mapped digest %zu B at va=%pK to dma=%pad\n",
sizeof(ctx->digest_buff), ctx->digest_buff,
&ctx->digest_buff_dma_addr);
ctx->opad_tmp_keys_dma_addr =
dma_map_single(dev, ctx->opad_tmp_keys_buff,
sizeof(ctx->opad_tmp_keys_buff),
DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, ctx->opad_tmp_keys_dma_addr)) {
dev_err(dev, "Mapping opad digest %zu B at va=%pK for DMA failed\n",
sizeof(ctx->opad_tmp_keys_buff),
ctx->opad_tmp_keys_buff);
goto fail;
}
dev_dbg(dev, "Mapped opad_tmp_keys %zu B at va=%pK to dma=%pad\n",
sizeof(ctx->opad_tmp_keys_buff), ctx->opad_tmp_keys_buff,
&ctx->opad_tmp_keys_dma_addr);
ctx->is_hmac = false;
return 0;
fail:
cc_free_ctx(ctx);
return -ENOMEM;
}
static int cc_get_hash_len(struct crypto_tfm *tfm)
{
struct cc_hash_ctx *ctx = crypto_tfm_ctx(tfm);
if (ctx->hash_mode == DRV_HASH_SM3)
return CC_SM3_HASH_LEN_SIZE;
else
return cc_get_default_hash_len(ctx->drvdata);
}
static int cc_cra_init(struct crypto_tfm *tfm)
{
struct cc_hash_ctx *ctx = crypto_tfm_ctx(tfm);
struct hash_alg_common *hash_alg_common =
container_of(tfm->__crt_alg, struct hash_alg_common, base);
struct ahash_alg *ahash_alg =
container_of(hash_alg_common, struct ahash_alg, halg);
struct cc_hash_alg *cc_alg =
container_of(ahash_alg, struct cc_hash_alg, ahash_alg);
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct ahash_req_ctx));
ctx->hash_mode = cc_alg->hash_mode;
ctx->hw_mode = cc_alg->hw_mode;
ctx->inter_digestsize = cc_alg->inter_digestsize;
ctx->drvdata = cc_alg->drvdata;
ctx->hash_len = cc_get_hash_len(tfm);
return cc_alloc_ctx(ctx);
}
static void cc_cra_exit(struct crypto_tfm *tfm)
{
struct cc_hash_ctx *ctx = crypto_tfm_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx->drvdata);
dev_dbg(dev, "cc_cra_exit");
cc_free_ctx(ctx);
}
static int cc_mac_update(struct ahash_request *req)
{
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx->drvdata);
unsigned int block_size = crypto_tfm_alg_blocksize(&tfm->base);
struct cc_crypto_req cc_req = {};
struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
int rc;
u32 idx = 0;
gfp_t flags = cc_gfp_flags(&req->base);
if (req->nbytes == 0) {
/* no real updates required */
return 0;
}
state->xcbc_count++;
rc = cc_map_hash_request_update(ctx->drvdata, state, req->src,
req->nbytes, block_size, flags);
if (rc) {
if (rc == 1) {
dev_dbg(dev, " data size not require HW update %x\n",
req->nbytes);
/* No hardware updates are required */
return 0;
}
dev_err(dev, "map_ahash_request_update() failed\n");
return -ENOMEM;
}
if (cc_map_req(dev, state, ctx)) {
dev_err(dev, "map_ahash_source() failed\n");
return -EINVAL;
}
if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC)
cc_setup_xcbc(req, desc, &idx);
else
cc_setup_cmac(req, desc, &idx);
cc_set_desc(state, ctx, DIN_AES_DOUT, desc, true, &idx);
/* store the hash digest result in context */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], ctx->hw_mode);
set_dout_dlli(&desc[idx], state->digest_buff_dma_addr,
ctx->inter_digestsize, NS_BIT, 1);
set_queue_last_ind(ctx->drvdata, &desc[idx]);
set_flow_mode(&desc[idx], S_AES_to_DOUT);
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
idx++;
/* Setup request structure */
cc_req.user_cb = cc_update_complete;
cc_req.user_arg = req;
rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
if (rc != -EINPROGRESS && rc != -EBUSY) {
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
cc_unmap_hash_request(dev, state, req->src, true);
cc_unmap_req(dev, state, ctx);
}
return rc;
}
static int cc_mac_final(struct ahash_request *req)
{
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx->drvdata);
struct cc_crypto_req cc_req = {};
struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
int idx = 0;
int rc = 0;
u32 key_size, key_len;
u32 digestsize = crypto_ahash_digestsize(tfm);
gfp_t flags = cc_gfp_flags(&req->base);
u32 rem_cnt = *cc_hash_buf_cnt(state);
if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) {
key_size = CC_AES_128_BIT_KEY_SIZE;
key_len = CC_AES_128_BIT_KEY_SIZE;
} else {
key_size = (ctx->key_params.keylen == 24) ? AES_MAX_KEY_SIZE :
ctx->key_params.keylen;
key_len = ctx->key_params.keylen;
}
dev_dbg(dev, "===== final xcbc reminder (%d) ====\n", rem_cnt);
if (cc_map_req(dev, state, ctx)) {
dev_err(dev, "map_ahash_source() failed\n");
return -EINVAL;
}
if (cc_map_hash_request_final(ctx->drvdata, state, req->src,
req->nbytes, 0, flags)) {
dev_err(dev, "map_ahash_request_final() failed\n");
cc_unmap_req(dev, state, ctx);
return -ENOMEM;
}
if (cc_map_result(dev, state, digestsize)) {
dev_err(dev, "map_ahash_digest() failed\n");
cc_unmap_hash_request(dev, state, req->src, true);
cc_unmap_req(dev, state, ctx);
return -ENOMEM;
}
/* Setup request structure */
cc_req.user_cb = cc_hash_complete;
cc_req.user_arg = req;
if (state->xcbc_count && rem_cnt == 0) {
/* Load key for ECB decryption */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_DECRYPT);
set_din_type(&desc[idx], DMA_DLLI,
(ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K1_OFFSET),
key_size, NS_BIT);
set_key_size_aes(&desc[idx], key_len);
set_flow_mode(&desc[idx], S_DIN_to_AES);
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
idx++;
/* Initiate decryption of block state to previous
* block_state-XOR-M[n]
*/
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
CC_AES_BLOCK_SIZE, NS_BIT);
set_dout_dlli(&desc[idx], state->digest_buff_dma_addr,
CC_AES_BLOCK_SIZE, NS_BIT, 0);
set_flow_mode(&desc[idx], DIN_AES_DOUT);
idx++;
/* Memory Barrier: wait for axi write to complete */
hw_desc_init(&desc[idx]);
set_din_no_dma(&desc[idx], 0, 0xfffff0);
set_dout_no_dma(&desc[idx], 0, 0, 1);
idx++;
}
if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC)
cc_setup_xcbc(req, desc, &idx);
else
cc_setup_cmac(req, desc, &idx);
if (state->xcbc_count == 0) {
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], ctx->hw_mode);
set_key_size_aes(&desc[idx], key_len);
set_cmac_size0_mode(&desc[idx]);
set_flow_mode(&desc[idx], S_DIN_to_AES);
idx++;
} else if (rem_cnt > 0) {
cc_set_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx);
} else {
hw_desc_init(&desc[idx]);
set_din_const(&desc[idx], 0x00, CC_AES_BLOCK_SIZE);
set_flow_mode(&desc[idx], DIN_AES_DOUT);
idx++;
}
/* Get final MAC result */
hw_desc_init(&desc[idx]);
set_dout_dlli(&desc[idx], state->digest_result_dma_addr,
digestsize, NS_BIT, 1);
set_queue_last_ind(ctx->drvdata, &desc[idx]);
set_flow_mode(&desc[idx], S_AES_to_DOUT);
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
set_cipher_mode(&desc[idx], ctx->hw_mode);
idx++;
rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
if (rc != -EINPROGRESS && rc != -EBUSY) {
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
cc_unmap_hash_request(dev, state, req->src, true);
cc_unmap_result(dev, state, digestsize, req->result);
cc_unmap_req(dev, state, ctx);
}
return rc;
}
static int cc_mac_finup(struct ahash_request *req)
{
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx->drvdata);
struct cc_crypto_req cc_req = {};
struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
int idx = 0;
int rc = 0;
u32 key_len = 0;
u32 digestsize = crypto_ahash_digestsize(tfm);
gfp_t flags = cc_gfp_flags(&req->base);
dev_dbg(dev, "===== finup xcbc(%d) ====\n", req->nbytes);
if (state->xcbc_count > 0 && req->nbytes == 0) {
dev_dbg(dev, "No data to update. Call to fdx_mac_final\n");
return cc_mac_final(req);
}
if (cc_map_req(dev, state, ctx)) {
dev_err(dev, "map_ahash_source() failed\n");
return -EINVAL;
}
if (cc_map_hash_request_final(ctx->drvdata, state, req->src,
req->nbytes, 1, flags)) {
dev_err(dev, "map_ahash_request_final() failed\n");
cc_unmap_req(dev, state, ctx);
return -ENOMEM;
}
if (cc_map_result(dev, state, digestsize)) {
dev_err(dev, "map_ahash_digest() failed\n");
cc_unmap_hash_request(dev, state, req->src, true);
cc_unmap_req(dev, state, ctx);
return -ENOMEM;
}
/* Setup request structure */
cc_req.user_cb = cc_hash_complete;
cc_req.user_arg = req;
if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) {
key_len = CC_AES_128_BIT_KEY_SIZE;
cc_setup_xcbc(req, desc, &idx);
} else {
key_len = ctx->key_params.keylen;
cc_setup_cmac(req, desc, &idx);
}
if (req->nbytes == 0) {
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], ctx->hw_mode);
set_key_size_aes(&desc[idx], key_len);
set_cmac_size0_mode(&desc[idx]);
set_flow_mode(&desc[idx], S_DIN_to_AES);
idx++;
} else {
cc_set_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx);
}
/* Get final MAC result */
hw_desc_init(&desc[idx]);
set_dout_dlli(&desc[idx], state->digest_result_dma_addr,
digestsize, NS_BIT, 1);
set_queue_last_ind(ctx->drvdata, &desc[idx]);
set_flow_mode(&desc[idx], S_AES_to_DOUT);
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
set_cipher_mode(&desc[idx], ctx->hw_mode);
idx++;
rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
if (rc != -EINPROGRESS && rc != -EBUSY) {
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
cc_unmap_hash_request(dev, state, req->src, true);
cc_unmap_result(dev, state, digestsize, req->result);
cc_unmap_req(dev, state, ctx);
}
return rc;
}
static int cc_mac_digest(struct ahash_request *req)
{
struct ahash_req_ctx *state = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx->drvdata);
u32 digestsize = crypto_ahash_digestsize(tfm);
struct cc_crypto_req cc_req = {};
struct cc_hw_desc desc[CC_MAX_HASH_SEQ_LEN];
u32 key_len;
unsigned int idx = 0;
int rc;
gfp_t flags = cc_gfp_flags(&req->base);
dev_dbg(dev, "===== -digest mac (%d) ====\n", req->nbytes);
cc_init_req(dev, state, ctx);
if (cc_map_req(dev, state, ctx)) {
dev_err(dev, "map_ahash_source() failed\n");
return -ENOMEM;
}
if (cc_map_result(dev, state, digestsize)) {
dev_err(dev, "map_ahash_digest() failed\n");
cc_unmap_req(dev, state, ctx);
return -ENOMEM;
}
if (cc_map_hash_request_final(ctx->drvdata, state, req->src,
req->nbytes, 1, flags)) {
dev_err(dev, "map_ahash_request_final() failed\n");
cc_unmap_req(dev, state, ctx);
return -ENOMEM;
}
/* Setup request structure */
cc_req.user_cb = cc_digest_complete;
cc_req.user_arg = req;
if (ctx->hw_mode == DRV_CIPHER_XCBC_MAC) {
key_len = CC_AES_128_BIT_KEY_SIZE;
cc_setup_xcbc(req, desc, &idx);
} else {
key_len = ctx->key_params.keylen;
cc_setup_cmac(req, desc, &idx);
}
if (req->nbytes == 0) {
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], ctx->hw_mode);
set_key_size_aes(&desc[idx], key_len);
set_cmac_size0_mode(&desc[idx]);
set_flow_mode(&desc[idx], S_DIN_to_AES);
idx++;
} else {
cc_set_desc(state, ctx, DIN_AES_DOUT, desc, false, &idx);
}
/* Get final MAC result */
hw_desc_init(&desc[idx]);
set_dout_dlli(&desc[idx], state->digest_result_dma_addr,
CC_AES_BLOCK_SIZE, NS_BIT, 1);
set_queue_last_ind(ctx->drvdata, &desc[idx]);
set_flow_mode(&desc[idx], S_AES_to_DOUT);
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
set_cipher_mode(&desc[idx], ctx->hw_mode);
idx++;
rc = cc_send_request(ctx->drvdata, &cc_req, desc, idx, &req->base);
if (rc != -EINPROGRESS && rc != -EBUSY) {
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
cc_unmap_hash_request(dev, state, req->src, true);
cc_unmap_result(dev, state, digestsize, req->result);
cc_unmap_req(dev, state, ctx);
}
return rc;
}
static int cc_hash_export(struct ahash_request *req, void *out)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct ahash_req_ctx *state = ahash_request_ctx(req);
u8 *curr_buff = cc_hash_buf(state);
u32 curr_buff_cnt = *cc_hash_buf_cnt(state);
const u32 tmp = CC_EXPORT_MAGIC;
memcpy(out, &tmp, sizeof(u32));
out += sizeof(u32);
memcpy(out, state->digest_buff, ctx->inter_digestsize);
out += ctx->inter_digestsize;
memcpy(out, state->digest_bytes_len, ctx->hash_len);
out += ctx->hash_len;
memcpy(out, &curr_buff_cnt, sizeof(u32));
out += sizeof(u32);
memcpy(out, curr_buff, curr_buff_cnt);
return 0;
}
static int cc_hash_import(struct ahash_request *req, const void *in)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
struct cc_hash_ctx *ctx = crypto_ahash_ctx(ahash);
struct device *dev = drvdata_to_dev(ctx->drvdata);
struct ahash_req_ctx *state = ahash_request_ctx(req);
u32 tmp;
memcpy(&tmp, in, sizeof(u32));
if (tmp != CC_EXPORT_MAGIC)
return -EINVAL;
in += sizeof(u32);
cc_init_req(dev, state, ctx);
memcpy(state->digest_buff, in, ctx->inter_digestsize);
in += ctx->inter_digestsize;
memcpy(state->digest_bytes_len, in, ctx->hash_len);
in += ctx->hash_len;
/* Sanity check the data as much as possible */
memcpy(&tmp, in, sizeof(u32));
if (tmp > CC_MAX_HASH_BLCK_SIZE)
return -EINVAL;
in += sizeof(u32);
state->buf_cnt[0] = tmp;
memcpy(state->buffers[0], in, tmp);
return 0;
}
struct cc_hash_template {
char name[CRYPTO_MAX_ALG_NAME];
char driver_name[CRYPTO_MAX_ALG_NAME];
char mac_name[CRYPTO_MAX_ALG_NAME];
char mac_driver_name[CRYPTO_MAX_ALG_NAME];
unsigned int blocksize;
bool is_mac;
bool synchronize;
struct ahash_alg template_ahash;
int hash_mode;
int hw_mode;
int inter_digestsize;
struct cc_drvdata *drvdata;
u32 min_hw_rev;
enum cc_std_body std_body;
};
#define CC_STATE_SIZE(_x) \
((_x) + HASH_MAX_LEN_SIZE + CC_MAX_HASH_BLCK_SIZE + (2 * sizeof(u32)))
/* hash descriptors */
static struct cc_hash_template driver_hash[] = {
//Asynchronize hash template
{
.name = "sha1",
.driver_name = "sha1-ccree",
.mac_name = "hmac(sha1)",
.mac_driver_name = "hmac-sha1-ccree",
.blocksize = SHA1_BLOCK_SIZE,
.is_mac = true,
.synchronize = false,
.template_ahash = {
.init = cc_hash_init,
.update = cc_hash_update,
.final = cc_hash_final,
.finup = cc_hash_finup,
.digest = cc_hash_digest,
.export = cc_hash_export,
.import = cc_hash_import,
.setkey = cc_hash_setkey,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = CC_STATE_SIZE(SHA1_DIGEST_SIZE),
},
},
.hash_mode = DRV_HASH_SHA1,
.hw_mode = DRV_HASH_HW_SHA1,
.inter_digestsize = SHA1_DIGEST_SIZE,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "sha256",
.driver_name = "sha256-ccree",
.mac_name = "hmac(sha256)",
.mac_driver_name = "hmac-sha256-ccree",
.blocksize = SHA256_BLOCK_SIZE,
.is_mac = true,
.template_ahash = {
.init = cc_hash_init,
.update = cc_hash_update,
.final = cc_hash_final,
.finup = cc_hash_finup,
.digest = cc_hash_digest,
.export = cc_hash_export,
.import = cc_hash_import,
.setkey = cc_hash_setkey,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = CC_STATE_SIZE(SHA256_DIGEST_SIZE)
},
},
.hash_mode = DRV_HASH_SHA256,
.hw_mode = DRV_HASH_HW_SHA256,
.inter_digestsize = SHA256_DIGEST_SIZE,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "sha224",
.driver_name = "sha224-ccree",
.mac_name = "hmac(sha224)",
.mac_driver_name = "hmac-sha224-ccree",
.blocksize = SHA224_BLOCK_SIZE,
.is_mac = true,
.template_ahash = {
.init = cc_hash_init,
.update = cc_hash_update,
.final = cc_hash_final,
.finup = cc_hash_finup,
.digest = cc_hash_digest,
.export = cc_hash_export,
.import = cc_hash_import,
.setkey = cc_hash_setkey,
.halg = {
.digestsize = SHA224_DIGEST_SIZE,
.statesize = CC_STATE_SIZE(SHA256_DIGEST_SIZE),
},
},
.hash_mode = DRV_HASH_SHA224,
.hw_mode = DRV_HASH_HW_SHA256,
.inter_digestsize = SHA256_DIGEST_SIZE,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "sha384",
.driver_name = "sha384-ccree",
.mac_name = "hmac(sha384)",
.mac_driver_name = "hmac-sha384-ccree",
.blocksize = SHA384_BLOCK_SIZE,
.is_mac = true,
.template_ahash = {
.init = cc_hash_init,
.update = cc_hash_update,
.final = cc_hash_final,
.finup = cc_hash_finup,
.digest = cc_hash_digest,
.export = cc_hash_export,
.import = cc_hash_import,
.setkey = cc_hash_setkey,
.halg = {
.digestsize = SHA384_DIGEST_SIZE,
.statesize = CC_STATE_SIZE(SHA512_DIGEST_SIZE),
},
},
.hash_mode = DRV_HASH_SHA384,
.hw_mode = DRV_HASH_HW_SHA512,
.inter_digestsize = SHA512_DIGEST_SIZE,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
},
{
.name = "sha512",
.driver_name = "sha512-ccree",
.mac_name = "hmac(sha512)",
.mac_driver_name = "hmac-sha512-ccree",
.blocksize = SHA512_BLOCK_SIZE,
.is_mac = true,
.template_ahash = {
.init = cc_hash_init,
.update = cc_hash_update,
.final = cc_hash_final,
.finup = cc_hash_finup,
.digest = cc_hash_digest,
.export = cc_hash_export,
.import = cc_hash_import,
.setkey = cc_hash_setkey,
.halg = {
.digestsize = SHA512_DIGEST_SIZE,
.statesize = CC_STATE_SIZE(SHA512_DIGEST_SIZE),
},
},
.hash_mode = DRV_HASH_SHA512,
.hw_mode = DRV_HASH_HW_SHA512,
.inter_digestsize = SHA512_DIGEST_SIZE,
.min_hw_rev = CC_HW_REV_712,
.std_body = CC_STD_NIST,
},
{
.name = "md5",
.driver_name = "md5-ccree",
.mac_name = "hmac(md5)",
.mac_driver_name = "hmac-md5-ccree",
.blocksize = MD5_HMAC_BLOCK_SIZE,
.is_mac = true,
.template_ahash = {
.init = cc_hash_init,
.update = cc_hash_update,
.final = cc_hash_final,
.finup = cc_hash_finup,
.digest = cc_hash_digest,
.export = cc_hash_export,
.import = cc_hash_import,
.setkey = cc_hash_setkey,
.halg = {
.digestsize = MD5_DIGEST_SIZE,
.statesize = CC_STATE_SIZE(MD5_DIGEST_SIZE),
},
},
.hash_mode = DRV_HASH_MD5,
.hw_mode = DRV_HASH_HW_MD5,
.inter_digestsize = MD5_DIGEST_SIZE,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.name = "sm3",
.driver_name = "sm3-ccree",
.blocksize = SM3_BLOCK_SIZE,
.is_mac = false,
.template_ahash = {
.init = cc_hash_init,
.update = cc_hash_update,
.final = cc_hash_final,
.finup = cc_hash_finup,
.digest = cc_hash_digest,
.export = cc_hash_export,
.import = cc_hash_import,
.setkey = cc_hash_setkey,
.halg = {
.digestsize = SM3_DIGEST_SIZE,
.statesize = CC_STATE_SIZE(SM3_DIGEST_SIZE),
},
},
.hash_mode = DRV_HASH_SM3,
.hw_mode = DRV_HASH_HW_SM3,
.inter_digestsize = SM3_DIGEST_SIZE,
.min_hw_rev = CC_HW_REV_713,
.std_body = CC_STD_OSCCA,
},
{
.mac_name = "xcbc(aes)",
.mac_driver_name = "xcbc-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.is_mac = true,
.template_ahash = {
.init = cc_hash_init,
.update = cc_mac_update,
.final = cc_mac_final,
.finup = cc_mac_finup,
.digest = cc_mac_digest,
.setkey = cc_xcbc_setkey,
.export = cc_hash_export,
.import = cc_hash_import,
.halg = {
.digestsize = AES_BLOCK_SIZE,
.statesize = CC_STATE_SIZE(AES_BLOCK_SIZE),
},
},
.hash_mode = DRV_HASH_NULL,
.hw_mode = DRV_CIPHER_XCBC_MAC,
.inter_digestsize = AES_BLOCK_SIZE,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
{
.mac_name = "cmac(aes)",
.mac_driver_name = "cmac-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.is_mac = true,
.template_ahash = {
.init = cc_hash_init,
.update = cc_mac_update,
.final = cc_mac_final,
.finup = cc_mac_finup,
.digest = cc_mac_digest,
.setkey = cc_cmac_setkey,
.export = cc_hash_export,
.import = cc_hash_import,
.halg = {
.digestsize = AES_BLOCK_SIZE,
.statesize = CC_STATE_SIZE(AES_BLOCK_SIZE),
},
},
.hash_mode = DRV_HASH_NULL,
.hw_mode = DRV_CIPHER_CMAC,
.inter_digestsize = AES_BLOCK_SIZE,
.min_hw_rev = CC_HW_REV_630,
.std_body = CC_STD_NIST,
},
};
static struct cc_hash_alg *cc_alloc_hash_alg(struct cc_hash_template *template,
struct device *dev, bool keyed)
{
struct cc_hash_alg *t_crypto_alg;
struct crypto_alg *alg;
struct ahash_alg *halg;
t_crypto_alg = devm_kzalloc(dev, sizeof(*t_crypto_alg), GFP_KERNEL);
if (!t_crypto_alg)
return ERR_PTR(-ENOMEM);
t_crypto_alg->ahash_alg = template->template_ahash;
halg = &t_crypto_alg->ahash_alg;
alg = &halg->halg.base;
if (keyed) {
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
template->mac_name);
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
template->mac_driver_name);
} else {
halg->setkey = NULL;
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
template->name);
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
template->driver_name);
}
alg->cra_module = THIS_MODULE;
alg->cra_ctxsize = sizeof(struct cc_hash_ctx);
alg->cra_priority = CC_CRA_PRIO;
alg->cra_blocksize = template->blocksize;
alg->cra_alignmask = 0;
alg->cra_exit = cc_cra_exit;
alg->cra_init = cc_cra_init;
alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
t_crypto_alg->hash_mode = template->hash_mode;
t_crypto_alg->hw_mode = template->hw_mode;
t_crypto_alg->inter_digestsize = template->inter_digestsize;
return t_crypto_alg;
}
static int cc_init_copy_sram(struct cc_drvdata *drvdata, const u32 *data,
unsigned int size, u32 *sram_buff_ofs)
{
struct cc_hw_desc larval_seq[CC_DIGEST_SIZE_MAX / sizeof(u32)];
unsigned int larval_seq_len = 0;
int rc;
cc_set_sram_desc(data, *sram_buff_ofs, size / sizeof(*data),
larval_seq, &larval_seq_len);
rc = send_request_init(drvdata, larval_seq, larval_seq_len);
if (rc)
return rc;
*sram_buff_ofs += size;
return 0;
}
int cc_init_hash_sram(struct cc_drvdata *drvdata)
{
struct cc_hash_handle *hash_handle = drvdata->hash_handle;
u32 sram_buff_ofs = hash_handle->digest_len_sram_addr;
bool large_sha_supported = (drvdata->hw_rev >= CC_HW_REV_712);
bool sm3_supported = (drvdata->hw_rev >= CC_HW_REV_713);
int rc = 0;
/* Copy-to-sram digest-len */
rc = cc_init_copy_sram(drvdata, cc_digest_len_init,
sizeof(cc_digest_len_init), &sram_buff_ofs);
if (rc)
goto init_digest_const_err;
if (large_sha_supported) {
/* Copy-to-sram digest-len for sha384/512 */
rc = cc_init_copy_sram(drvdata, cc_digest_len_sha512_init,
sizeof(cc_digest_len_sha512_init),
&sram_buff_ofs);
if (rc)
goto init_digest_const_err;
}
/* The initial digests offset */
hash_handle->larval_digest_sram_addr = sram_buff_ofs;
/* Copy-to-sram initial SHA* digests */
rc = cc_init_copy_sram(drvdata, cc_md5_init, sizeof(cc_md5_init),
&sram_buff_ofs);
if (rc)
goto init_digest_const_err;
rc = cc_init_copy_sram(drvdata, cc_sha1_init, sizeof(cc_sha1_init),
&sram_buff_ofs);
if (rc)
goto init_digest_const_err;
rc = cc_init_copy_sram(drvdata, cc_sha224_init, sizeof(cc_sha224_init),
&sram_buff_ofs);
if (rc)
goto init_digest_const_err;
rc = cc_init_copy_sram(drvdata, cc_sha256_init, sizeof(cc_sha256_init),
&sram_buff_ofs);
if (rc)
goto init_digest_const_err;
if (sm3_supported) {
rc = cc_init_copy_sram(drvdata, cc_sm3_init,
sizeof(cc_sm3_init), &sram_buff_ofs);
if (rc)
goto init_digest_const_err;
}
if (large_sha_supported) {
rc = cc_init_copy_sram(drvdata, cc_sha384_init,
sizeof(cc_sha384_init), &sram_buff_ofs);
if (rc)
goto init_digest_const_err;
rc = cc_init_copy_sram(drvdata, cc_sha512_init,
sizeof(cc_sha512_init), &sram_buff_ofs);
if (rc)
goto init_digest_const_err;
}
init_digest_const_err:
return rc;
}
int cc_hash_alloc(struct cc_drvdata *drvdata)
{
struct cc_hash_handle *hash_handle;
u32 sram_buff;
u32 sram_size_to_alloc;
struct device *dev = drvdata_to_dev(drvdata);
int rc = 0;
int alg;
hash_handle = devm_kzalloc(dev, sizeof(*hash_handle), GFP_KERNEL);
if (!hash_handle)
return -ENOMEM;
INIT_LIST_HEAD(&hash_handle->hash_list);
drvdata->hash_handle = hash_handle;
sram_size_to_alloc = sizeof(cc_digest_len_init) +
sizeof(cc_md5_init) +
sizeof(cc_sha1_init) +
sizeof(cc_sha224_init) +
sizeof(cc_sha256_init);
if (drvdata->hw_rev >= CC_HW_REV_713)
sram_size_to_alloc += sizeof(cc_sm3_init);
if (drvdata->hw_rev >= CC_HW_REV_712)
sram_size_to_alloc += sizeof(cc_digest_len_sha512_init) +
sizeof(cc_sha384_init) + sizeof(cc_sha512_init);
sram_buff = cc_sram_alloc(drvdata, sram_size_to_alloc);
if (sram_buff == NULL_SRAM_ADDR) {
rc = -ENOMEM;
goto fail;
}
/* The initial digest-len offset */
hash_handle->digest_len_sram_addr = sram_buff;
/*must be set before the alg registration as it is being used there*/
rc = cc_init_hash_sram(drvdata);
if (rc) {
dev_err(dev, "Init digest CONST failed (rc=%d)\n", rc);
goto fail;
}
/* ahash registration */
for (alg = 0; alg < ARRAY_SIZE(driver_hash); alg++) {
struct cc_hash_alg *t_alg;
int hw_mode = driver_hash[alg].hw_mode;
/* Check that the HW revision and variants are suitable */
if ((driver_hash[alg].min_hw_rev > drvdata->hw_rev) ||
!(drvdata->std_bodies & driver_hash[alg].std_body))
continue;
if (driver_hash[alg].is_mac) {
/* register hmac version */
t_alg = cc_alloc_hash_alg(&driver_hash[alg], dev, true);
if (IS_ERR(t_alg)) {
rc = PTR_ERR(t_alg);
dev_err(dev, "%s alg allocation failed\n",
driver_hash[alg].driver_name);
goto fail;
}
t_alg->drvdata = drvdata;
rc = crypto_register_ahash(&t_alg->ahash_alg);
if (rc) {
dev_err(dev, "%s alg registration failed\n",
driver_hash[alg].driver_name);
goto fail;
}
list_add_tail(&t_alg->entry, &hash_handle->hash_list);
}
if (hw_mode == DRV_CIPHER_XCBC_MAC ||
hw_mode == DRV_CIPHER_CMAC)
continue;
/* register hash version */
t_alg = cc_alloc_hash_alg(&driver_hash[alg], dev, false);
if (IS_ERR(t_alg)) {
rc = PTR_ERR(t_alg);
dev_err(dev, "%s alg allocation failed\n",
driver_hash[alg].driver_name);
goto fail;
}
t_alg->drvdata = drvdata;
rc = crypto_register_ahash(&t_alg->ahash_alg);
if (rc) {
dev_err(dev, "%s alg registration failed\n",
driver_hash[alg].driver_name);
goto fail;
}
list_add_tail(&t_alg->entry, &hash_handle->hash_list);
}
return 0;
fail:
cc_hash_free(drvdata);
return rc;
}
int cc_hash_free(struct cc_drvdata *drvdata)
{
struct cc_hash_alg *t_hash_alg, *hash_n;
struct cc_hash_handle *hash_handle = drvdata->hash_handle;
list_for_each_entry_safe(t_hash_alg, hash_n, &hash_handle->hash_list,
entry) {
crypto_unregister_ahash(&t_hash_alg->ahash_alg);
list_del(&t_hash_alg->entry);
}
return 0;
}
static void cc_setup_xcbc(struct ahash_request *areq, struct cc_hw_desc desc[],
unsigned int *seq_size)
{
unsigned int idx = *seq_size;
struct ahash_req_ctx *state = ahash_request_ctx(areq);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
/* Setup XCBC MAC K1 */
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI, (ctx->opad_tmp_keys_dma_addr +
XCBC_MAC_K1_OFFSET),
CC_AES_128_BIT_KEY_SIZE, NS_BIT);
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
set_hash_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC, ctx->hash_mode);
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
set_flow_mode(&desc[idx], S_DIN_to_AES);
idx++;
/* Setup XCBC MAC K2 */
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI,
(ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K2_OFFSET),
CC_AES_128_BIT_KEY_SIZE, NS_BIT);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
set_flow_mode(&desc[idx], S_DIN_to_AES);
idx++;
/* Setup XCBC MAC K3 */
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI,
(ctx->opad_tmp_keys_dma_addr + XCBC_MAC_K3_OFFSET),
CC_AES_128_BIT_KEY_SIZE, NS_BIT);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE2);
set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
set_flow_mode(&desc[idx], S_DIN_to_AES);
idx++;
/* Loading MAC state */
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
CC_AES_BLOCK_SIZE, NS_BIT);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
set_flow_mode(&desc[idx], S_DIN_to_AES);
idx++;
*seq_size = idx;
}
static void cc_setup_cmac(struct ahash_request *areq, struct cc_hw_desc desc[],
unsigned int *seq_size)
{
unsigned int idx = *seq_size;
struct ahash_req_ctx *state = ahash_request_ctx(areq);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
struct cc_hash_ctx *ctx = crypto_ahash_ctx(tfm);
/* Setup CMAC Key */
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI, ctx->opad_tmp_keys_dma_addr,
((ctx->key_params.keylen == 24) ? AES_MAX_KEY_SIZE :
ctx->key_params.keylen), NS_BIT);
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
set_cipher_mode(&desc[idx], DRV_CIPHER_CMAC);
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
set_key_size_aes(&desc[idx], ctx->key_params.keylen);
set_flow_mode(&desc[idx], S_DIN_to_AES);
idx++;
/* Load MAC state */
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI, state->digest_buff_dma_addr,
CC_AES_BLOCK_SIZE, NS_BIT);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
set_cipher_mode(&desc[idx], DRV_CIPHER_CMAC);
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
set_key_size_aes(&desc[idx], ctx->key_params.keylen);
set_flow_mode(&desc[idx], S_DIN_to_AES);
idx++;
*seq_size = idx;
}
static void cc_set_desc(struct ahash_req_ctx *areq_ctx,
struct cc_hash_ctx *ctx, unsigned int flow_mode,
struct cc_hw_desc desc[], bool is_not_last_data,
unsigned int *seq_size)
{
unsigned int idx = *seq_size;
struct device *dev = drvdata_to_dev(ctx->drvdata);
if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_DLLI) {
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI,
sg_dma_address(areq_ctx->curr_sg),
areq_ctx->curr_sg->length, NS_BIT);
set_flow_mode(&desc[idx], flow_mode);
idx++;
} else {
if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_NULL) {
dev_dbg(dev, " NULL mode\n");
/* nothing to build */
return;
}
/* bypass */
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI,
areq_ctx->mlli_params.mlli_dma_addr,
areq_ctx->mlli_params.mlli_len, NS_BIT);
set_dout_sram(&desc[idx], ctx->drvdata->mlli_sram_addr,
areq_ctx->mlli_params.mlli_len);
set_flow_mode(&desc[idx], BYPASS);
idx++;
/* process */
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_MLLI,
ctx->drvdata->mlli_sram_addr,
areq_ctx->mlli_nents, NS_BIT);
set_flow_mode(&desc[idx], flow_mode);
idx++;
}
if (is_not_last_data)
set_din_not_last_indication(&desc[(idx - 1)]);
/* return updated desc sequence size */
*seq_size = idx;
}
static const void *cc_larval_digest(struct device *dev, u32 mode)
{
switch (mode) {
case DRV_HASH_MD5:
return cc_md5_init;
case DRV_HASH_SHA1:
return cc_sha1_init;
case DRV_HASH_SHA224:
return cc_sha224_init;
case DRV_HASH_SHA256:
return cc_sha256_init;
case DRV_HASH_SHA384:
return cc_sha384_init;
case DRV_HASH_SHA512:
return cc_sha512_init;
case DRV_HASH_SM3:
return cc_sm3_init;
default:
dev_err(dev, "Invalid hash mode (%d)\n", mode);
return cc_md5_init;
}
}
/**
* cc_larval_digest_addr() - Get the address of the initial digest in SRAM
* according to the given hash mode
*
* @drvdata: Associated device driver context
* @mode: The Hash mode. Supported modes: MD5/SHA1/SHA224/SHA256
*
* Return:
* The address of the initial digest in SRAM
*/
u32 cc_larval_digest_addr(void *drvdata, u32 mode)
{
struct cc_drvdata *_drvdata = (struct cc_drvdata *)drvdata;
struct cc_hash_handle *hash_handle = _drvdata->hash_handle;
struct device *dev = drvdata_to_dev(_drvdata);
bool sm3_supported = (_drvdata->hw_rev >= CC_HW_REV_713);
u32 addr;
switch (mode) {
case DRV_HASH_NULL:
break; /*Ignore*/
case DRV_HASH_MD5:
return (hash_handle->larval_digest_sram_addr);
case DRV_HASH_SHA1:
return (hash_handle->larval_digest_sram_addr +
sizeof(cc_md5_init));
case DRV_HASH_SHA224:
return (hash_handle->larval_digest_sram_addr +
sizeof(cc_md5_init) +
sizeof(cc_sha1_init));
case DRV_HASH_SHA256:
return (hash_handle->larval_digest_sram_addr +
sizeof(cc_md5_init) +
sizeof(cc_sha1_init) +
sizeof(cc_sha224_init));
case DRV_HASH_SM3:
return (hash_handle->larval_digest_sram_addr +
sizeof(cc_md5_init) +
sizeof(cc_sha1_init) +
sizeof(cc_sha224_init) +
sizeof(cc_sha256_init));
case DRV_HASH_SHA384:
addr = (hash_handle->larval_digest_sram_addr +
sizeof(cc_md5_init) +
sizeof(cc_sha1_init) +
sizeof(cc_sha224_init) +
sizeof(cc_sha256_init));
if (sm3_supported)
addr += sizeof(cc_sm3_init);
return addr;
case DRV_HASH_SHA512:
addr = (hash_handle->larval_digest_sram_addr +
sizeof(cc_md5_init) +
sizeof(cc_sha1_init) +
sizeof(cc_sha224_init) +
sizeof(cc_sha256_init) +
sizeof(cc_sha384_init));
if (sm3_supported)
addr += sizeof(cc_sm3_init);
return addr;
default:
dev_err(dev, "Invalid hash mode (%d)\n", mode);
}
/*This is valid wrong value to avoid kernel crash*/
return hash_handle->larval_digest_sram_addr;
}
u32 cc_digest_len_addr(void *drvdata, u32 mode)
{
struct cc_drvdata *_drvdata = (struct cc_drvdata *)drvdata;
struct cc_hash_handle *hash_handle = _drvdata->hash_handle;
u32 digest_len_addr = hash_handle->digest_len_sram_addr;
switch (mode) {
case DRV_HASH_SHA1:
case DRV_HASH_SHA224:
case DRV_HASH_SHA256:
case DRV_HASH_MD5:
return digest_len_addr;
case DRV_HASH_SHA384:
case DRV_HASH_SHA512:
return digest_len_addr + sizeof(cc_digest_len_init);
default:
return digest_len_addr; /*to avoid kernel crash*/
}
}