linux/drivers/dma/sprd-dma.c

1220 lines
32 KiB
C
Raw Normal View History

/*
* Copyright (C) 2017 Spreadtrum Communications Inc.
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/dma/sprd-dma.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_dma.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include "virt-dma.h"
#define SPRD_DMA_CHN_REG_OFFSET 0x1000
#define SPRD_DMA_CHN_REG_LENGTH 0x40
#define SPRD_DMA_MEMCPY_MIN_SIZE 64
/* DMA global registers definition */
#define SPRD_DMA_GLB_PAUSE 0x0
#define SPRD_DMA_GLB_FRAG_WAIT 0x4
#define SPRD_DMA_GLB_REQ_PEND0_EN 0x8
#define SPRD_DMA_GLB_REQ_PEND1_EN 0xc
#define SPRD_DMA_GLB_INT_RAW_STS 0x10
#define SPRD_DMA_GLB_INT_MSK_STS 0x14
#define SPRD_DMA_GLB_REQ_STS 0x18
#define SPRD_DMA_GLB_CHN_EN_STS 0x1c
#define SPRD_DMA_GLB_DEBUG_STS 0x20
#define SPRD_DMA_GLB_ARB_SEL_STS 0x24
#define SPRD_DMA_GLB_2STAGE_GRP1 0x28
#define SPRD_DMA_GLB_2STAGE_GRP2 0x2c
#define SPRD_DMA_GLB_REQ_UID(uid) (0x4 * ((uid) - 1))
#define SPRD_DMA_GLB_REQ_UID_OFFSET 0x2000
/* DMA channel registers definition */
#define SPRD_DMA_CHN_PAUSE 0x0
#define SPRD_DMA_CHN_REQ 0x4
#define SPRD_DMA_CHN_CFG 0x8
#define SPRD_DMA_CHN_INTC 0xc
#define SPRD_DMA_CHN_SRC_ADDR 0x10
#define SPRD_DMA_CHN_DES_ADDR 0x14
#define SPRD_DMA_CHN_FRG_LEN 0x18
#define SPRD_DMA_CHN_BLK_LEN 0x1c
#define SPRD_DMA_CHN_TRSC_LEN 0x20
#define SPRD_DMA_CHN_TRSF_STEP 0x24
#define SPRD_DMA_CHN_WARP_PTR 0x28
#define SPRD_DMA_CHN_WARP_TO 0x2c
#define SPRD_DMA_CHN_LLIST_PTR 0x30
#define SPRD_DMA_CHN_FRAG_STEP 0x34
#define SPRD_DMA_CHN_SRC_BLK_STEP 0x38
#define SPRD_DMA_CHN_DES_BLK_STEP 0x3c
/* SPRD_DMA_GLB_2STAGE_GRP register definition */
#define SPRD_DMA_GLB_2STAGE_EN BIT(24)
#define SPRD_DMA_GLB_CHN_INT_MASK GENMASK(23, 20)
#define SPRD_DMA_GLB_LIST_DONE_TRG BIT(19)
#define SPRD_DMA_GLB_TRANS_DONE_TRG BIT(18)
#define SPRD_DMA_GLB_BLOCK_DONE_TRG BIT(17)
#define SPRD_DMA_GLB_FRAG_DONE_TRG BIT(16)
#define SPRD_DMA_GLB_TRG_OFFSET 16
#define SPRD_DMA_GLB_DEST_CHN_MASK GENMASK(13, 8)
#define SPRD_DMA_GLB_DEST_CHN_OFFSET 8
#define SPRD_DMA_GLB_SRC_CHN_MASK GENMASK(5, 0)
/* SPRD_DMA_CHN_INTC register definition */
#define SPRD_DMA_INT_MASK GENMASK(4, 0)
#define SPRD_DMA_INT_CLR_OFFSET 24
#define SPRD_DMA_FRAG_INT_EN BIT(0)
#define SPRD_DMA_BLK_INT_EN BIT(1)
#define SPRD_DMA_TRANS_INT_EN BIT(2)
#define SPRD_DMA_LIST_INT_EN BIT(3)
#define SPRD_DMA_CFG_ERR_INT_EN BIT(4)
/* SPRD_DMA_CHN_CFG register definition */
#define SPRD_DMA_CHN_EN BIT(0)
#define SPRD_DMA_LINKLIST_EN BIT(4)
#define SPRD_DMA_WAIT_BDONE_OFFSET 24
#define SPRD_DMA_DONOT_WAIT_BDONE 1
/* SPRD_DMA_CHN_REQ register definition */
#define SPRD_DMA_REQ_EN BIT(0)
/* SPRD_DMA_CHN_PAUSE register definition */
#define SPRD_DMA_PAUSE_EN BIT(0)
#define SPRD_DMA_PAUSE_STS BIT(2)
#define SPRD_DMA_PAUSE_CNT 0x2000
/* DMA_CHN_WARP_* register definition */
#define SPRD_DMA_HIGH_ADDR_MASK GENMASK(31, 28)
#define SPRD_DMA_LOW_ADDR_MASK GENMASK(31, 0)
#define SPRD_DMA_HIGH_ADDR_OFFSET 4
/* SPRD_DMA_CHN_INTC register definition */
#define SPRD_DMA_FRAG_INT_STS BIT(16)
#define SPRD_DMA_BLK_INT_STS BIT(17)
#define SPRD_DMA_TRSC_INT_STS BIT(18)
#define SPRD_DMA_LIST_INT_STS BIT(19)
#define SPRD_DMA_CFGERR_INT_STS BIT(20)
#define SPRD_DMA_CHN_INT_STS \
(SPRD_DMA_FRAG_INT_STS | SPRD_DMA_BLK_INT_STS | \
SPRD_DMA_TRSC_INT_STS | SPRD_DMA_LIST_INT_STS | \
SPRD_DMA_CFGERR_INT_STS)
/* SPRD_DMA_CHN_FRG_LEN register definition */
#define SPRD_DMA_SRC_DATAWIDTH_OFFSET 30
#define SPRD_DMA_DES_DATAWIDTH_OFFSET 28
#define SPRD_DMA_SWT_MODE_OFFSET 26
#define SPRD_DMA_REQ_MODE_OFFSET 24
#define SPRD_DMA_REQ_MODE_MASK GENMASK(1, 0)
#define SPRD_DMA_FIX_SEL_OFFSET 21
#define SPRD_DMA_FIX_EN_OFFSET 20
#define SPRD_DMA_LLIST_END BIT(19)
#define SPRD_DMA_FRG_LEN_MASK GENMASK(16, 0)
/* SPRD_DMA_CHN_BLK_LEN register definition */
#define SPRD_DMA_BLK_LEN_MASK GENMASK(16, 0)
/* SPRD_DMA_CHN_TRSC_LEN register definition */
#define SPRD_DMA_TRSC_LEN_MASK GENMASK(27, 0)
/* SPRD_DMA_CHN_TRSF_STEP register definition */
#define SPRD_DMA_DEST_TRSF_STEP_OFFSET 16
#define SPRD_DMA_SRC_TRSF_STEP_OFFSET 0
#define SPRD_DMA_TRSF_STEP_MASK GENMASK(15, 0)
/* define DMA channel mode & trigger mode mask */
#define SPRD_DMA_CHN_MODE_MASK GENMASK(7, 0)
#define SPRD_DMA_TRG_MODE_MASK GENMASK(7, 0)
/* define the DMA transfer step type */
#define SPRD_DMA_NONE_STEP 0
#define SPRD_DMA_BYTE_STEP 1
#define SPRD_DMA_SHORT_STEP 2
#define SPRD_DMA_WORD_STEP 4
#define SPRD_DMA_DWORD_STEP 8
#define SPRD_DMA_SOFTWARE_UID 0
/* dma data width values */
enum sprd_dma_datawidth {
SPRD_DMA_DATAWIDTH_1_BYTE,
SPRD_DMA_DATAWIDTH_2_BYTES,
SPRD_DMA_DATAWIDTH_4_BYTES,
SPRD_DMA_DATAWIDTH_8_BYTES,
};
/* dma channel hardware configuration */
struct sprd_dma_chn_hw {
u32 pause;
u32 req;
u32 cfg;
u32 intc;
u32 src_addr;
u32 des_addr;
u32 frg_len;
u32 blk_len;
u32 trsc_len;
u32 trsf_step;
u32 wrap_ptr;
u32 wrap_to;
u32 llist_ptr;
u32 frg_step;
u32 src_blk_step;
u32 des_blk_step;
};
/* dma request description */
struct sprd_dma_desc {
struct virt_dma_desc vd;
struct sprd_dma_chn_hw chn_hw;
enum dma_transfer_direction dir;
};
/* dma channel description */
struct sprd_dma_chn {
struct virt_dma_chan vc;
void __iomem *chn_base;
struct sprd_dma_linklist linklist;
struct dma_slave_config slave_cfg;
u32 chn_num;
u32 dev_id;
enum sprd_dma_chn_mode chn_mode;
enum sprd_dma_trg_mode trg_mode;
struct sprd_dma_desc *cur_desc;
};
/* SPRD dma device */
struct sprd_dma_dev {
struct dma_device dma_dev;
void __iomem *glb_base;
struct clk *clk;
struct clk *ashb_clk;
int irq;
u32 total_chns;
struct sprd_dma_chn channels[0];
};
static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param);
static struct of_dma_filter_info sprd_dma_info = {
.filter_fn = sprd_dma_filter_fn,
};
static inline struct sprd_dma_chn *to_sprd_dma_chan(struct dma_chan *c)
{
return container_of(c, struct sprd_dma_chn, vc.chan);
}
static inline struct sprd_dma_dev *to_sprd_dma_dev(struct dma_chan *c)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(c);
return container_of(schan, struct sprd_dma_dev, channels[c->chan_id]);
}
static inline struct sprd_dma_desc *to_sprd_dma_desc(struct virt_dma_desc *vd)
{
return container_of(vd, struct sprd_dma_desc, vd);
}
static void sprd_dma_glb_update(struct sprd_dma_dev *sdev, u32 reg,
u32 mask, u32 val)
{
u32 orig = readl(sdev->glb_base + reg);
u32 tmp;
tmp = (orig & ~mask) | val;
writel(tmp, sdev->glb_base + reg);
}
static void sprd_dma_chn_update(struct sprd_dma_chn *schan, u32 reg,
u32 mask, u32 val)
{
u32 orig = readl(schan->chn_base + reg);
u32 tmp;
tmp = (orig & ~mask) | val;
writel(tmp, schan->chn_base + reg);
}
static int sprd_dma_enable(struct sprd_dma_dev *sdev)
{
int ret;
ret = clk_prepare_enable(sdev->clk);
if (ret)
return ret;
/*
* The ashb_clk is optional and only for AGCP DMA controller, so we
* need add one condition to check if the ashb_clk need enable.
*/
if (!IS_ERR(sdev->ashb_clk))
ret = clk_prepare_enable(sdev->ashb_clk);
return ret;
}
static void sprd_dma_disable(struct sprd_dma_dev *sdev)
{
clk_disable_unprepare(sdev->clk);
/*
* Need to check if we need disable the optional ashb_clk for AGCP DMA.
*/
if (!IS_ERR(sdev->ashb_clk))
clk_disable_unprepare(sdev->ashb_clk);
}
static void sprd_dma_set_uid(struct sprd_dma_chn *schan)
{
struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
u32 dev_id = schan->dev_id;
if (dev_id != SPRD_DMA_SOFTWARE_UID) {
u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
SPRD_DMA_GLB_REQ_UID(dev_id);
writel(schan->chn_num + 1, sdev->glb_base + uid_offset);
}
}
static void sprd_dma_unset_uid(struct sprd_dma_chn *schan)
{
struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
u32 dev_id = schan->dev_id;
if (dev_id != SPRD_DMA_SOFTWARE_UID) {
u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
SPRD_DMA_GLB_REQ_UID(dev_id);
writel(0, sdev->glb_base + uid_offset);
}
}
static void sprd_dma_clear_int(struct sprd_dma_chn *schan)
{
sprd_dma_chn_update(schan, SPRD_DMA_CHN_INTC,
SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET,
SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET);
}
static void sprd_dma_enable_chn(struct sprd_dma_chn *schan)
{
sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN,
SPRD_DMA_CHN_EN);
}
static void sprd_dma_disable_chn(struct sprd_dma_chn *schan)
{
sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN, 0);
}
static void sprd_dma_soft_request(struct sprd_dma_chn *schan)
{
sprd_dma_chn_update(schan, SPRD_DMA_CHN_REQ, SPRD_DMA_REQ_EN,
SPRD_DMA_REQ_EN);
}
static void sprd_dma_pause_resume(struct sprd_dma_chn *schan, bool enable)
{
struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
u32 pause, timeout = SPRD_DMA_PAUSE_CNT;
if (enable) {
sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
SPRD_DMA_PAUSE_EN, SPRD_DMA_PAUSE_EN);
do {
pause = readl(schan->chn_base + SPRD_DMA_CHN_PAUSE);
if (pause & SPRD_DMA_PAUSE_STS)
break;
cpu_relax();
} while (--timeout > 0);
if (!timeout)
dev_warn(sdev->dma_dev.dev,
"pause dma controller timeout\n");
} else {
sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
SPRD_DMA_PAUSE_EN, 0);
}
}
static void sprd_dma_stop_and_disable(struct sprd_dma_chn *schan)
{
u32 cfg = readl(schan->chn_base + SPRD_DMA_CHN_CFG);
if (!(cfg & SPRD_DMA_CHN_EN))
return;
sprd_dma_pause_resume(schan, true);
sprd_dma_disable_chn(schan);
}
static unsigned long sprd_dma_get_src_addr(struct sprd_dma_chn *schan)
{
unsigned long addr, addr_high;
addr = readl(schan->chn_base + SPRD_DMA_CHN_SRC_ADDR);
addr_high = readl(schan->chn_base + SPRD_DMA_CHN_WARP_PTR) &
SPRD_DMA_HIGH_ADDR_MASK;
return addr | (addr_high << SPRD_DMA_HIGH_ADDR_OFFSET);
}
static unsigned long sprd_dma_get_dst_addr(struct sprd_dma_chn *schan)
{
unsigned long addr, addr_high;
addr = readl(schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
addr_high = readl(schan->chn_base + SPRD_DMA_CHN_WARP_TO) &
SPRD_DMA_HIGH_ADDR_MASK;
return addr | (addr_high << SPRD_DMA_HIGH_ADDR_OFFSET);
}
static enum sprd_dma_int_type sprd_dma_get_int_type(struct sprd_dma_chn *schan)
{
struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
u32 intc_sts = readl(schan->chn_base + SPRD_DMA_CHN_INTC) &
SPRD_DMA_CHN_INT_STS;
switch (intc_sts) {
case SPRD_DMA_CFGERR_INT_STS:
return SPRD_DMA_CFGERR_INT;
case SPRD_DMA_LIST_INT_STS:
return SPRD_DMA_LIST_INT;
case SPRD_DMA_TRSC_INT_STS:
return SPRD_DMA_TRANS_INT;
case SPRD_DMA_BLK_INT_STS:
return SPRD_DMA_BLK_INT;
case SPRD_DMA_FRAG_INT_STS:
return SPRD_DMA_FRAG_INT;
default:
dev_warn(sdev->dma_dev.dev, "incorrect dma interrupt type\n");
return SPRD_DMA_NO_INT;
}
}
static enum sprd_dma_req_mode sprd_dma_get_req_type(struct sprd_dma_chn *schan)
{
u32 frag_reg = readl(schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
return (frag_reg >> SPRD_DMA_REQ_MODE_OFFSET) & SPRD_DMA_REQ_MODE_MASK;
}
static int sprd_dma_set_2stage_config(struct sprd_dma_chn *schan)
{
struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
u32 val, chn = schan->chn_num + 1;
switch (schan->chn_mode) {
case SPRD_DMA_SRC_CHN0:
val = chn & SPRD_DMA_GLB_SRC_CHN_MASK;
val |= BIT(schan->trg_mode - 1) << SPRD_DMA_GLB_TRG_OFFSET;
val |= SPRD_DMA_GLB_2STAGE_EN;
sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP1, val, val);
break;
case SPRD_DMA_SRC_CHN1:
val = chn & SPRD_DMA_GLB_SRC_CHN_MASK;
val |= BIT(schan->trg_mode - 1) << SPRD_DMA_GLB_TRG_OFFSET;
val |= SPRD_DMA_GLB_2STAGE_EN;
sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP2, val, val);
break;
case SPRD_DMA_DST_CHN0:
val = (chn << SPRD_DMA_GLB_DEST_CHN_OFFSET) &
SPRD_DMA_GLB_DEST_CHN_MASK;
val |= SPRD_DMA_GLB_2STAGE_EN;
sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP1, val, val);
break;
case SPRD_DMA_DST_CHN1:
val = (chn << SPRD_DMA_GLB_DEST_CHN_OFFSET) &
SPRD_DMA_GLB_DEST_CHN_MASK;
val |= SPRD_DMA_GLB_2STAGE_EN;
sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP2, val, val);
break;
default:
dev_err(sdev->dma_dev.dev, "invalid channel mode setting %d\n",
schan->chn_mode);
return -EINVAL;
}
return 0;
}
static void sprd_dma_set_chn_config(struct sprd_dma_chn *schan,
struct sprd_dma_desc *sdesc)
{
struct sprd_dma_chn_hw *cfg = &sdesc->chn_hw;
writel(cfg->pause, schan->chn_base + SPRD_DMA_CHN_PAUSE);
writel(cfg->cfg, schan->chn_base + SPRD_DMA_CHN_CFG);
writel(cfg->intc, schan->chn_base + SPRD_DMA_CHN_INTC);
writel(cfg->src_addr, schan->chn_base + SPRD_DMA_CHN_SRC_ADDR);
writel(cfg->des_addr, schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
writel(cfg->frg_len, schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
writel(cfg->blk_len, schan->chn_base + SPRD_DMA_CHN_BLK_LEN);
writel(cfg->trsc_len, schan->chn_base + SPRD_DMA_CHN_TRSC_LEN);
writel(cfg->trsf_step, schan->chn_base + SPRD_DMA_CHN_TRSF_STEP);
writel(cfg->wrap_ptr, schan->chn_base + SPRD_DMA_CHN_WARP_PTR);
writel(cfg->wrap_to, schan->chn_base + SPRD_DMA_CHN_WARP_TO);
writel(cfg->llist_ptr, schan->chn_base + SPRD_DMA_CHN_LLIST_PTR);
writel(cfg->frg_step, schan->chn_base + SPRD_DMA_CHN_FRAG_STEP);
writel(cfg->src_blk_step, schan->chn_base + SPRD_DMA_CHN_SRC_BLK_STEP);
writel(cfg->des_blk_step, schan->chn_base + SPRD_DMA_CHN_DES_BLK_STEP);
writel(cfg->req, schan->chn_base + SPRD_DMA_CHN_REQ);
}
static void sprd_dma_start(struct sprd_dma_chn *schan)
{
struct virt_dma_desc *vd = vchan_next_desc(&schan->vc);
if (!vd)
return;
list_del(&vd->node);
schan->cur_desc = to_sprd_dma_desc(vd);
/*
* Set 2-stage configuration if the channel starts one 2-stage
* transfer.
*/
if (schan->chn_mode && sprd_dma_set_2stage_config(schan))
return;
/*
* Copy the DMA configuration from DMA descriptor to this hardware
* channel.
*/
sprd_dma_set_chn_config(schan, schan->cur_desc);
sprd_dma_set_uid(schan);
sprd_dma_enable_chn(schan);
if (schan->dev_id == SPRD_DMA_SOFTWARE_UID)
sprd_dma_soft_request(schan);
}
static void sprd_dma_stop(struct sprd_dma_chn *schan)
{
sprd_dma_stop_and_disable(schan);
sprd_dma_unset_uid(schan);
sprd_dma_clear_int(schan);
schan->cur_desc = NULL;
}
static bool sprd_dma_check_trans_done(struct sprd_dma_desc *sdesc,
enum sprd_dma_int_type int_type,
enum sprd_dma_req_mode req_mode)
{
if (int_type == SPRD_DMA_NO_INT)
return false;
if (int_type >= req_mode + 1)
return true;
else
return false;
}
static irqreturn_t dma_irq_handle(int irq, void *dev_id)
{
struct sprd_dma_dev *sdev = (struct sprd_dma_dev *)dev_id;
u32 irq_status = readl(sdev->glb_base + SPRD_DMA_GLB_INT_MSK_STS);
struct sprd_dma_chn *schan;
struct sprd_dma_desc *sdesc;
enum sprd_dma_req_mode req_type;
enum sprd_dma_int_type int_type;
bool trans_done = false, cyclic = false;
u32 i;
while (irq_status) {
i = __ffs(irq_status);
irq_status &= (irq_status - 1);
schan = &sdev->channels[i];
spin_lock(&schan->vc.lock);
int_type = sprd_dma_get_int_type(schan);
req_type = sprd_dma_get_req_type(schan);
sprd_dma_clear_int(schan);
sdesc = schan->cur_desc;
/* cyclic mode schedule callback */
cyclic = schan->linklist.phy_addr ? true : false;
if (cyclic == true) {
vchan_cyclic_callback(&sdesc->vd);
} else {
/* Check if the dma request descriptor is done. */
trans_done = sprd_dma_check_trans_done(sdesc, int_type,
req_type);
if (trans_done == true) {
vchan_cookie_complete(&sdesc->vd);
schan->cur_desc = NULL;
sprd_dma_start(schan);
}
}
spin_unlock(&schan->vc.lock);
}
return IRQ_HANDLED;
}
static int sprd_dma_alloc_chan_resources(struct dma_chan *chan)
{
return pm_runtime_get_sync(chan->device->dev);
}
static void sprd_dma_free_chan_resources(struct dma_chan *chan)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&schan->vc.lock, flags);
sprd_dma_stop(schan);
spin_unlock_irqrestore(&schan->vc.lock, flags);
vchan_free_chan_resources(&schan->vc);
pm_runtime_put(chan->device->dev);
}
static enum dma_status sprd_dma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
struct virt_dma_desc *vd;
unsigned long flags;
enum dma_status ret;
u32 pos;
ret = dma_cookie_status(chan, cookie, txstate);
if (ret == DMA_COMPLETE || !txstate)
return ret;
spin_lock_irqsave(&schan->vc.lock, flags);
vd = vchan_find_desc(&schan->vc, cookie);
if (vd) {
struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
struct sprd_dma_chn_hw *hw = &sdesc->chn_hw;
if (hw->trsc_len > 0)
pos = hw->trsc_len;
else if (hw->blk_len > 0)
pos = hw->blk_len;
else if (hw->frg_len > 0)
pos = hw->frg_len;
else
pos = 0;
} else if (schan->cur_desc && schan->cur_desc->vd.tx.cookie == cookie) {
struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
if (sdesc->dir == DMA_DEV_TO_MEM)
pos = sprd_dma_get_dst_addr(schan);
else
pos = sprd_dma_get_src_addr(schan);
} else {
pos = 0;
}
spin_unlock_irqrestore(&schan->vc.lock, flags);
dma_set_residue(txstate, pos);
return ret;
}
static void sprd_dma_issue_pending(struct dma_chan *chan)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&schan->vc.lock, flags);
if (vchan_issue_pending(&schan->vc) && !schan->cur_desc)
sprd_dma_start(schan);
spin_unlock_irqrestore(&schan->vc.lock, flags);
}
static int sprd_dma_get_datawidth(enum dma_slave_buswidth buswidth)
{
switch (buswidth) {
case DMA_SLAVE_BUSWIDTH_1_BYTE:
case DMA_SLAVE_BUSWIDTH_2_BYTES:
case DMA_SLAVE_BUSWIDTH_4_BYTES:
case DMA_SLAVE_BUSWIDTH_8_BYTES:
return ffs(buswidth) - 1;
default:
return -EINVAL;
}
}
static int sprd_dma_get_step(enum dma_slave_buswidth buswidth)
{
switch (buswidth) {
case DMA_SLAVE_BUSWIDTH_1_BYTE:
case DMA_SLAVE_BUSWIDTH_2_BYTES:
case DMA_SLAVE_BUSWIDTH_4_BYTES:
case DMA_SLAVE_BUSWIDTH_8_BYTES:
return buswidth;
default:
return -EINVAL;
}
}
static int sprd_dma_fill_desc(struct dma_chan *chan,
struct sprd_dma_chn_hw *hw,
unsigned int sglen, int sg_index,
dma_addr_t src, dma_addr_t dst, u32 len,
enum dma_transfer_direction dir,
unsigned long flags,
struct dma_slave_config *slave_cfg)
{
struct sprd_dma_dev *sdev = to_sprd_dma_dev(chan);
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
enum sprd_dma_chn_mode chn_mode = schan->chn_mode;
u32 req_mode = (flags >> SPRD_DMA_REQ_SHIFT) & SPRD_DMA_REQ_MODE_MASK;
u32 int_mode = flags & SPRD_DMA_INT_MASK;
int src_datawidth, dst_datawidth, src_step, dst_step;
u32 temp, fix_mode = 0, fix_en = 0;
if (dir == DMA_MEM_TO_DEV) {
src_step = sprd_dma_get_step(slave_cfg->src_addr_width);
if (src_step < 0) {
dev_err(sdev->dma_dev.dev, "invalid source step\n");
return src_step;
}
/*
* For 2-stage transfer, destination channel step can not be 0,
* since destination device is AON IRAM.
*/
if (chn_mode == SPRD_DMA_DST_CHN0 ||
chn_mode == SPRD_DMA_DST_CHN1)
dst_step = src_step;
else
dst_step = SPRD_DMA_NONE_STEP;
} else {
dst_step = sprd_dma_get_step(slave_cfg->dst_addr_width);
if (dst_step < 0) {
dev_err(sdev->dma_dev.dev, "invalid destination step\n");
return dst_step;
}
src_step = SPRD_DMA_NONE_STEP;
}
src_datawidth = sprd_dma_get_datawidth(slave_cfg->src_addr_width);
if (src_datawidth < 0) {
dev_err(sdev->dma_dev.dev, "invalid source datawidth\n");
return src_datawidth;
}
dst_datawidth = sprd_dma_get_datawidth(slave_cfg->dst_addr_width);
if (dst_datawidth < 0) {
dev_err(sdev->dma_dev.dev, "invalid destination datawidth\n");
return dst_datawidth;
}
if (slave_cfg->slave_id)
schan->dev_id = slave_cfg->slave_id;
hw->cfg = SPRD_DMA_DONOT_WAIT_BDONE << SPRD_DMA_WAIT_BDONE_OFFSET;
/*
* wrap_ptr and wrap_to will save the high 4 bits source address and
* destination address.
*/
hw->wrap_ptr = (src >> SPRD_DMA_HIGH_ADDR_OFFSET) & SPRD_DMA_HIGH_ADDR_MASK;
hw->wrap_to = (dst >> SPRD_DMA_HIGH_ADDR_OFFSET) & SPRD_DMA_HIGH_ADDR_MASK;
hw->src_addr = src & SPRD_DMA_LOW_ADDR_MASK;
hw->des_addr = dst & SPRD_DMA_LOW_ADDR_MASK;
/*
* If the src step and dst step both are 0 or both are not 0, that means
* we can not enable the fix mode. If one is 0 and another one is not,
* we can enable the fix mode.
*/
if ((src_step != 0 && dst_step != 0) || (src_step | dst_step) == 0) {
fix_en = 0;
} else {
fix_en = 1;
if (src_step)
fix_mode = 1;
else
fix_mode = 0;
}
hw->intc = int_mode | SPRD_DMA_CFG_ERR_INT_EN;
temp = src_datawidth << SPRD_DMA_SRC_DATAWIDTH_OFFSET;
temp |= dst_datawidth << SPRD_DMA_DES_DATAWIDTH_OFFSET;
temp |= req_mode << SPRD_DMA_REQ_MODE_OFFSET;
temp |= fix_mode << SPRD_DMA_FIX_SEL_OFFSET;
temp |= fix_en << SPRD_DMA_FIX_EN_OFFSET;
temp |= slave_cfg->src_maxburst & SPRD_DMA_FRG_LEN_MASK;
hw->frg_len = temp;
hw->blk_len = len & SPRD_DMA_BLK_LEN_MASK;
hw->trsc_len = len & SPRD_DMA_TRSC_LEN_MASK;
temp = (dst_step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_DEST_TRSF_STEP_OFFSET;
temp |= (src_step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_SRC_TRSF_STEP_OFFSET;
hw->trsf_step = temp;
/* link-list configuration */
if (schan->linklist.phy_addr) {
hw->cfg |= SPRD_DMA_LINKLIST_EN;
/* link-list index */
temp = sglen ? (sg_index + 1) % sglen : 0;
/* Next link-list configuration's physical address offset */
temp = temp * sizeof(*hw) + SPRD_DMA_CHN_SRC_ADDR;
/*
* Set the link-list pointer point to next link-list
* configuration's physical address.
*/
hw->llist_ptr = schan->linklist.phy_addr + temp;
} else {
hw->llist_ptr = 0;
}
hw->frg_step = 0;
hw->src_blk_step = 0;
hw->des_blk_step = 0;
return 0;
}
static int sprd_dma_fill_linklist_desc(struct dma_chan *chan,
unsigned int sglen, int sg_index,
dma_addr_t src, dma_addr_t dst, u32 len,
enum dma_transfer_direction dir,
unsigned long flags,
struct dma_slave_config *slave_cfg)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
struct sprd_dma_chn_hw *hw;
if (!schan->linklist.virt_addr)
return -EINVAL;
hw = (struct sprd_dma_chn_hw *)(schan->linklist.virt_addr +
sg_index * sizeof(*hw));
return sprd_dma_fill_desc(chan, hw, sglen, sg_index, src, dst, len,
dir, flags, slave_cfg);
}
static struct dma_async_tx_descriptor *
sprd_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
size_t len, unsigned long flags)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
struct sprd_dma_desc *sdesc;
struct sprd_dma_chn_hw *hw;
enum sprd_dma_datawidth datawidth;
u32 step, temp;
sdesc = kzalloc(sizeof(*sdesc), GFP_NOWAIT);
if (!sdesc)
return NULL;
hw = &sdesc->chn_hw;
hw->cfg = SPRD_DMA_DONOT_WAIT_BDONE << SPRD_DMA_WAIT_BDONE_OFFSET;
hw->intc = SPRD_DMA_TRANS_INT | SPRD_DMA_CFG_ERR_INT_EN;
hw->src_addr = src & SPRD_DMA_LOW_ADDR_MASK;
hw->des_addr = dest & SPRD_DMA_LOW_ADDR_MASK;
hw->wrap_ptr = (src >> SPRD_DMA_HIGH_ADDR_OFFSET) &
SPRD_DMA_HIGH_ADDR_MASK;
hw->wrap_to = (dest >> SPRD_DMA_HIGH_ADDR_OFFSET) &
SPRD_DMA_HIGH_ADDR_MASK;
if (IS_ALIGNED(len, 8)) {
datawidth = SPRD_DMA_DATAWIDTH_8_BYTES;
step = SPRD_DMA_DWORD_STEP;
} else if (IS_ALIGNED(len, 4)) {
datawidth = SPRD_DMA_DATAWIDTH_4_BYTES;
step = SPRD_DMA_WORD_STEP;
} else if (IS_ALIGNED(len, 2)) {
datawidth = SPRD_DMA_DATAWIDTH_2_BYTES;
step = SPRD_DMA_SHORT_STEP;
} else {
datawidth = SPRD_DMA_DATAWIDTH_1_BYTE;
step = SPRD_DMA_BYTE_STEP;
}
temp = datawidth << SPRD_DMA_SRC_DATAWIDTH_OFFSET;
temp |= datawidth << SPRD_DMA_DES_DATAWIDTH_OFFSET;
temp |= SPRD_DMA_TRANS_REQ << SPRD_DMA_REQ_MODE_OFFSET;
temp |= len & SPRD_DMA_FRG_LEN_MASK;
hw->frg_len = temp;
hw->blk_len = len & SPRD_DMA_BLK_LEN_MASK;
hw->trsc_len = len & SPRD_DMA_TRSC_LEN_MASK;
temp = (step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_DEST_TRSF_STEP_OFFSET;
temp |= (step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_SRC_TRSF_STEP_OFFSET;
hw->trsf_step = temp;
return vchan_tx_prep(&schan->vc, &sdesc->vd, flags);
}
static struct dma_async_tx_descriptor *
sprd_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sglen, enum dma_transfer_direction dir,
unsigned long flags, void *context)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
struct dma_slave_config *slave_cfg = &schan->slave_cfg;
dma_addr_t src = 0, dst = 0;
struct sprd_dma_desc *sdesc;
struct scatterlist *sg;
u32 len = 0;
int ret, i;
if (!is_slave_direction(dir))
return NULL;
if (context) {
struct sprd_dma_linklist *ll_cfg =
(struct sprd_dma_linklist *)context;
schan->linklist.phy_addr = ll_cfg->phy_addr;
schan->linklist.virt_addr = ll_cfg->virt_addr;
} else {
schan->linklist.phy_addr = 0;
schan->linklist.virt_addr = 0;
}
sdesc = kzalloc(sizeof(*sdesc), GFP_NOWAIT);
if (!sdesc)
return NULL;
sdesc->dir = dir;
for_each_sg(sgl, sg, sglen, i) {
len = sg_dma_len(sg);
if (dir == DMA_MEM_TO_DEV) {
src = sg_dma_address(sg);
dst = slave_cfg->dst_addr;
} else {
src = slave_cfg->src_addr;
dst = sg_dma_address(sg);
}
/*
* The link-list mode needs at least 2 link-list
* configurations. If there is only one sg, it doesn't
* need to fill the link-list configuration.
*/
if (sglen < 2)
break;
ret = sprd_dma_fill_linklist_desc(chan, sglen, i, src, dst, len,
dir, flags, slave_cfg);
if (ret) {
kfree(sdesc);
return NULL;
}
}
/* Set channel mode and trigger mode for 2-stage transfer */
schan->chn_mode =
(flags >> SPRD_DMA_CHN_MODE_SHIFT) & SPRD_DMA_CHN_MODE_MASK;
schan->trg_mode =
(flags >> SPRD_DMA_TRG_MODE_SHIFT) & SPRD_DMA_TRG_MODE_MASK;
ret = sprd_dma_fill_desc(chan, &sdesc->chn_hw, 0, 0, src, dst, len,
dir, flags, slave_cfg);
if (ret) {
kfree(sdesc);
return NULL;
}
return vchan_tx_prep(&schan->vc, &sdesc->vd, flags);
}
static int sprd_dma_slave_config(struct dma_chan *chan,
struct dma_slave_config *config)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
struct dma_slave_config *slave_cfg = &schan->slave_cfg;
memcpy(slave_cfg, config, sizeof(*config));
return 0;
}
static int sprd_dma_pause(struct dma_chan *chan)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&schan->vc.lock, flags);
sprd_dma_pause_resume(schan, true);
spin_unlock_irqrestore(&schan->vc.lock, flags);
return 0;
}
static int sprd_dma_resume(struct dma_chan *chan)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&schan->vc.lock, flags);
sprd_dma_pause_resume(schan, false);
spin_unlock_irqrestore(&schan->vc.lock, flags);
return 0;
}
static int sprd_dma_terminate_all(struct dma_chan *chan)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&schan->vc.lock, flags);
sprd_dma_stop(schan);
vchan_get_all_descriptors(&schan->vc, &head);
spin_unlock_irqrestore(&schan->vc.lock, flags);
vchan_dma_desc_free_list(&schan->vc, &head);
return 0;
}
static void sprd_dma_free_desc(struct virt_dma_desc *vd)
{
struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
kfree(sdesc);
}
static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
u32 slave_id = *(u32 *)param;
schan->dev_id = slave_id;
return true;
}
static int sprd_dma_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct sprd_dma_dev *sdev;
struct sprd_dma_chn *dma_chn;
struct resource *res;
u32 chn_count;
int ret, i;
ret = device_property_read_u32(&pdev->dev, "#dma-channels", &chn_count);
if (ret) {
dev_err(&pdev->dev, "get dma channels count failed\n");
return ret;
}
sdev = devm_kzalloc(&pdev->dev,
struct_size(sdev, channels, chn_count),
GFP_KERNEL);
if (!sdev)
return -ENOMEM;
sdev->clk = devm_clk_get(&pdev->dev, "enable");
if (IS_ERR(sdev->clk)) {
dev_err(&pdev->dev, "get enable clock failed\n");
return PTR_ERR(sdev->clk);
}
/* ashb clock is optional for AGCP DMA */
sdev->ashb_clk = devm_clk_get(&pdev->dev, "ashb_eb");
if (IS_ERR(sdev->ashb_clk))
dev_warn(&pdev->dev, "no optional ashb eb clock\n");
/*
* We have three DMA controllers: AP DMA, AON DMA and AGCP DMA. For AGCP
* DMA controller, it can or do not request the irq, which will save
* system power without resuming system by DMA interrupts if AGCP DMA
* does not request the irq. Thus the DMA interrupts property should
* be optional.
*/
sdev->irq = platform_get_irq(pdev, 0);
if (sdev->irq > 0) {
ret = devm_request_irq(&pdev->dev, sdev->irq, dma_irq_handle,
0, "sprd_dma", (void *)sdev);
if (ret < 0) {
dev_err(&pdev->dev, "request dma irq failed\n");
return ret;
}
} else {
dev_warn(&pdev->dev, "no interrupts for the dma controller\n");
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
sdev->glb_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(sdev->glb_base))
return PTR_ERR(sdev->glb_base);
dma_cap_set(DMA_MEMCPY, sdev->dma_dev.cap_mask);
sdev->total_chns = chn_count;
sdev->dma_dev.chancnt = chn_count;
INIT_LIST_HEAD(&sdev->dma_dev.channels);
INIT_LIST_HEAD(&sdev->dma_dev.global_node);
sdev->dma_dev.dev = &pdev->dev;
sdev->dma_dev.device_alloc_chan_resources = sprd_dma_alloc_chan_resources;
sdev->dma_dev.device_free_chan_resources = sprd_dma_free_chan_resources;
sdev->dma_dev.device_tx_status = sprd_dma_tx_status;
sdev->dma_dev.device_issue_pending = sprd_dma_issue_pending;
sdev->dma_dev.device_prep_dma_memcpy = sprd_dma_prep_dma_memcpy;
sdev->dma_dev.device_prep_slave_sg = sprd_dma_prep_slave_sg;
sdev->dma_dev.device_config = sprd_dma_slave_config;
sdev->dma_dev.device_pause = sprd_dma_pause;
sdev->dma_dev.device_resume = sprd_dma_resume;
sdev->dma_dev.device_terminate_all = sprd_dma_terminate_all;
for (i = 0; i < chn_count; i++) {
dma_chn = &sdev->channels[i];
dma_chn->chn_num = i;
dma_chn->cur_desc = NULL;
/* get each channel's registers base address. */
dma_chn->chn_base = sdev->glb_base + SPRD_DMA_CHN_REG_OFFSET +
SPRD_DMA_CHN_REG_LENGTH * i;
dma_chn->vc.desc_free = sprd_dma_free_desc;
vchan_init(&dma_chn->vc, &sdev->dma_dev);
}
platform_set_drvdata(pdev, sdev);
ret = sprd_dma_enable(sdev);
if (ret)
return ret;
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0)
goto err_rpm;
ret = dma_async_device_register(&sdev->dma_dev);
if (ret < 0) {
dev_err(&pdev->dev, "register dma device failed:%d\n", ret);
goto err_register;
}
sprd_dma_info.dma_cap = sdev->dma_dev.cap_mask;
ret = of_dma_controller_register(np, of_dma_simple_xlate,
&sprd_dma_info);
if (ret)
goto err_of_register;
pm_runtime_put(&pdev->dev);
return 0;
err_of_register:
dma_async_device_unregister(&sdev->dma_dev);
err_register:
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
err_rpm:
sprd_dma_disable(sdev);
return ret;
}
static int sprd_dma_remove(struct platform_device *pdev)
{
struct sprd_dma_dev *sdev = platform_get_drvdata(pdev);
struct sprd_dma_chn *c, *cn;
int ret;
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0)
return ret;
/* explicitly free the irq */
if (sdev->irq > 0)
devm_free_irq(&pdev->dev, sdev->irq, sdev);
list_for_each_entry_safe(c, cn, &sdev->dma_dev.channels,
vc.chan.device_node) {
list_del(&c->vc.chan.device_node);
tasklet_kill(&c->vc.task);
}
of_dma_controller_free(pdev->dev.of_node);
dma_async_device_unregister(&sdev->dma_dev);
sprd_dma_disable(sdev);
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
static const struct of_device_id sprd_dma_match[] = {
{ .compatible = "sprd,sc9860-dma", },
{},
};
static int __maybe_unused sprd_dma_runtime_suspend(struct device *dev)
{
struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
sprd_dma_disable(sdev);
return 0;
}
static int __maybe_unused sprd_dma_runtime_resume(struct device *dev)
{
struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
int ret;
ret = sprd_dma_enable(sdev);
if (ret)
dev_err(sdev->dma_dev.dev, "enable dma failed\n");
return ret;
}
static const struct dev_pm_ops sprd_dma_pm_ops = {
SET_RUNTIME_PM_OPS(sprd_dma_runtime_suspend,
sprd_dma_runtime_resume,
NULL)
};
static struct platform_driver sprd_dma_driver = {
.probe = sprd_dma_probe,
.remove = sprd_dma_remove,
.driver = {
.name = "sprd-dma",
.of_match_table = sprd_dma_match,
.pm = &sprd_dma_pm_ops,
},
};
module_platform_driver(sprd_dma_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("DMA driver for Spreadtrum");
MODULE_AUTHOR("Baolin Wang <baolin.wang@spreadtrum.com>");
MODULE_AUTHOR("Eric Long <eric.long@spreadtrum.com>");
MODULE_ALIAS("platform:sprd-dma");