License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
|
|
|
# SPDX-License-Identifier: GPL-2.0
|
2018-01-31 13:54:02 +00:00
|
|
|
# Kernel does not boot with instrumentation of tlb.c and mem_encrypt*.c
|
|
|
|
KCOV_INSTRUMENT_tlb.o := n
|
2021-12-06 13:55:05 +00:00
|
|
|
KCOV_INSTRUMENT_mem_encrypt.o := n
|
2021-12-06 13:55:04 +00:00
|
|
|
KCOV_INSTRUMENT_mem_encrypt_amd.o := n
|
2018-01-31 13:54:02 +00:00
|
|
|
KCOV_INSTRUMENT_mem_encrypt_identity.o := n
|
2022-08-24 08:47:26 +00:00
|
|
|
KCOV_INSTRUMENT_pgprot.o := n
|
2017-10-10 19:45:04 +00:00
|
|
|
|
2021-12-06 13:55:05 +00:00
|
|
|
KASAN_SANITIZE_mem_encrypt.o := n
|
2021-12-06 13:55:04 +00:00
|
|
|
KASAN_SANITIZE_mem_encrypt_amd.o := n
|
2018-01-31 13:54:02 +00:00
|
|
|
KASAN_SANITIZE_mem_encrypt_identity.o := n
|
2022-08-24 08:47:26 +00:00
|
|
|
KASAN_SANITIZE_pgprot.o := n
|
2017-10-10 19:45:04 +00:00
|
|
|
|
2019-11-14 18:03:03 +00:00
|
|
|
# Disable KCSAN entirely, because otherwise we get warnings that some functions
|
|
|
|
# reference __initdata sections.
|
|
|
|
KCSAN_SANITIZE := n
|
2022-09-15 15:04:06 +00:00
|
|
|
# Avoid recursion by not calling KMSAN hooks for CEA code.
|
|
|
|
KMSAN_SANITIZE_cpu_entry_area.o := n
|
2024-03-08 04:44:01 +00:00
|
|
|
KMSAN_SANITIZE_mem_encrypt_identity.o := n
|
2019-11-14 18:03:03 +00:00
|
|
|
|
2017-10-10 19:45:04 +00:00
|
|
|
ifdef CONFIG_FUNCTION_TRACER
|
2021-12-06 13:55:05 +00:00
|
|
|
CFLAGS_REMOVE_mem_encrypt.o = -pg
|
2021-12-06 13:55:04 +00:00
|
|
|
CFLAGS_REMOVE_mem_encrypt_amd.o = -pg
|
2018-01-31 13:54:02 +00:00
|
|
|
CFLAGS_REMOVE_mem_encrypt_identity.o = -pg
|
2022-08-24 08:47:26 +00:00
|
|
|
CFLAGS_REMOVE_pgprot.o = -pg
|
2017-10-10 19:45:04 +00:00
|
|
|
endif
|
kernel: add kcov code coverage
kcov provides code coverage collection for coverage-guided fuzzing
(randomized testing). Coverage-guided fuzzing is a testing technique
that uses coverage feedback to determine new interesting inputs to a
system. A notable user-space example is AFL
(http://lcamtuf.coredump.cx/afl/). However, this technique is not
widely used for kernel testing due to missing compiler and kernel
support.
kcov does not aim to collect as much coverage as possible. It aims to
collect more or less stable coverage that is function of syscall inputs.
To achieve this goal it does not collect coverage in soft/hard
interrupts and instrumentation of some inherently non-deterministic or
non-interesting parts of kernel is disbled (e.g. scheduler, locking).
Currently there is a single coverage collection mode (tracing), but the
API anticipates additional collection modes. Initially I also
implemented a second mode which exposes coverage in a fixed-size hash
table of counters (what Quentin used in his original patch). I've
dropped the second mode for simplicity.
This patch adds the necessary support on kernel side. The complimentary
compiler support was added in gcc revision 231296.
We've used this support to build syzkaller system call fuzzer, which has
found 90 kernel bugs in just 2 months:
https://github.com/google/syzkaller/wiki/Found-Bugs
We've also found 30+ bugs in our internal systems with syzkaller.
Another (yet unexplored) direction where kcov coverage would greatly
help is more traditional "blob mutation". For example, mounting a
random blob as a filesystem, or receiving a random blob over wire.
Why not gcov. Typical fuzzing loop looks as follows: (1) reset
coverage, (2) execute a bit of code, (3) collect coverage, repeat. A
typical coverage can be just a dozen of basic blocks (e.g. an invalid
input). In such context gcov becomes prohibitively expensive as
reset/collect coverage steps depend on total number of basic
blocks/edges in program (in case of kernel it is about 2M). Cost of
kcov depends only on number of executed basic blocks/edges. On top of
that, kernel requires per-thread coverage because there are always
background threads and unrelated processes that also produce coverage.
With inlined gcov instrumentation per-thread coverage is not possible.
kcov exposes kernel PCs and control flow to user-space which is
insecure. But debugfs should not be mapped as user accessible.
Based on a patch by Quentin Casasnovas.
[akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode']
[akpm@linux-foundation.org: unbreak allmodconfig]
[akpm@linux-foundation.org: follow x86 Makefile layout standards]
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Kees Cook <keescook@google.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Drysdale <drysdale@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-22 21:27:30 +00:00
|
|
|
|
2019-12-10 09:08:09 +00:00
|
|
|
obj-y := init.o init_$(BITS).o fault.o ioremap.o extable.o mmap.o \
|
2022-05-26 19:32:41 +00:00
|
|
|
pgtable.o physaddr.o tlb.o cpu_entry_area.o maccess.o pgprot.o
|
2019-12-10 09:08:09 +00:00
|
|
|
|
|
|
|
obj-y += pat/
|
2008-04-17 15:40:45 +00:00
|
|
|
|
2009-08-27 19:46:35 +00:00
|
|
|
# Make sure __phys_addr has no stackprotector
|
2020-06-26 18:59:12 +00:00
|
|
|
CFLAGS_physaddr.o := -fno-stack-protector
|
|
|
|
CFLAGS_mem_encrypt_identity.o := -fno-stack-protector
|
2009-08-27 19:46:35 +00:00
|
|
|
|
kbuild: use $(src) instead of $(srctree)/$(src) for source directory
Kbuild conventionally uses $(obj)/ for generated files, and $(src)/ for
checked-in source files. It is merely a convention without any functional
difference. In fact, $(obj) and $(src) are exactly the same, as defined
in scripts/Makefile.build:
src := $(obj)
When the kernel is built in a separate output directory, $(src) does
not accurately reflect the source directory location. While Kbuild
resolves this discrepancy by specifying VPATH=$(srctree) to search for
source files, it does not cover all cases. For example, when adding a
header search path for local headers, -I$(srctree)/$(src) is typically
passed to the compiler.
This introduces inconsistency between upstream and downstream Makefiles
because $(src) is used instead of $(srctree)/$(src) for the latter.
To address this inconsistency, this commit changes the semantics of
$(src) so that it always points to the directory in the source tree.
Going forward, the variables used in Makefiles will have the following
meanings:
$(obj) - directory in the object tree
$(src) - directory in the source tree (changed by this commit)
$(objtree) - the top of the kernel object tree
$(srctree) - the top of the kernel source tree
Consequently, $(srctree)/$(src) in upstream Makefiles need to be replaced
with $(src).
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Nicolas Schier <nicolas@fjasle.eu>
2024-04-27 14:55:02 +00:00
|
|
|
CFLAGS_fault.o := -I $(src)/../include/asm/trace
|
2013-10-30 20:39:03 +00:00
|
|
|
|
2008-10-31 02:37:09 +00:00
|
|
|
obj-$(CONFIG_X86_32) += pgtable_32.o iomap_32.o
|
2008-04-17 15:40:45 +00:00
|
|
|
|
|
|
|
obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o
|
2020-02-04 01:36:24 +00:00
|
|
|
obj-$(CONFIG_PTDUMP_CORE) += dump_pagetables.o
|
|
|
|
obj-$(CONFIG_PTDUMP_DEBUGFS) += debug_pagetables.o
|
2008-04-17 15:40:45 +00:00
|
|
|
|
|
|
|
obj-$(CONFIG_HIGHMEM) += highmem_32.o
|
|
|
|
|
2015-02-13 22:39:25 +00:00
|
|
|
KASAN_SANITIZE_kasan_init_$(BITS).o := n
|
|
|
|
obj-$(CONFIG_KASAN) += kasan_init_$(BITS).o
|
|
|
|
|
2022-09-28 12:32:19 +00:00
|
|
|
KMSAN_SANITIZE_kmsan_shadow.o := n
|
|
|
|
obj-$(CONFIG_KMSAN) += kmsan_shadow.o
|
|
|
|
|
2008-05-12 19:20:59 +00:00
|
|
|
obj-$(CONFIG_MMIOTRACE) += mmiotrace.o
|
2008-10-24 17:08:11 +00:00
|
|
|
mmiotrace-y := kmmio.o pf_in.o mmio-mod.o
|
2008-05-12 19:20:59 +00:00
|
|
|
obj-$(CONFIG_MMIOTRACE_TEST) += testmmiotrace.o
|
|
|
|
|
2009-03-13 04:19:52 +00:00
|
|
|
obj-$(CONFIG_NUMA) += numa.o numa_$(BITS).o
|
2011-05-02 15:24:48 +00:00
|
|
|
obj-$(CONFIG_AMD_NUMA) += amdtopology.o
|
2011-05-02 12:18:53 +00:00
|
|
|
obj-$(CONFIG_ACPI_NUMA) += srat.o
|
2011-02-22 10:10:08 +00:00
|
|
|
obj-$(CONFIG_NUMA_EMU) += numa_emulation.o
|
2008-07-06 18:42:11 +00:00
|
|
|
|
2017-12-04 14:07:36 +00:00
|
|
|
obj-$(CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) += pkeys.o
|
|
|
|
obj-$(CONFIG_RANDOMIZE_MEMORY) += kaslr.o
|
2023-11-21 16:07:31 +00:00
|
|
|
obj-$(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION) += pti.o
|
mm/core, x86/mm/pkeys: Add execute-only protection keys support
Protection keys provide new page-based protection in hardware.
But, they have an interesting attribute: they only affect data
accesses and never affect instruction fetches. That means that
if we set up some memory which is set as "access-disabled" via
protection keys, we can still execute from it.
This patch uses protection keys to set up mappings to do just that.
If a user calls:
mmap(..., PROT_EXEC);
or
mprotect(ptr, sz, PROT_EXEC);
(note PROT_EXEC-only without PROT_READ/WRITE), the kernel will
notice this, and set a special protection key on the memory. It
also sets the appropriate bits in the Protection Keys User Rights
(PKRU) register so that the memory becomes unreadable and
unwritable.
I haven't found any userspace that does this today. With this
facility in place, we expect userspace to move to use it
eventually. Userspace _could_ start doing this today. Any
PROT_EXEC calls get converted to PROT_READ inside the kernel, and
would transparently be upgraded to "true" PROT_EXEC with this
code. IOW, userspace never has to do any PROT_EXEC runtime
detection.
This feature provides enhanced protection against leaking
executable memory contents. This helps thwart attacks which are
attempting to find ROP gadgets on the fly.
But, the security provided by this approach is not comprehensive.
The PKRU register which controls access permissions is a normal
user register writable from unprivileged userspace. An attacker
who can execute the 'wrpkru' instruction can easily disable the
protection provided by this feature.
The protection key that is used for execute-only support is
permanently dedicated at compile time. This is fine for now
because there is currently no API to set a protection key other
than this one.
Despite there being a constant PKRU value across the entire
system, we do not set it unless this feature is in use in a
process. That is to preserve the PKRU XSAVE 'init state',
which can lead to faster context switches.
PKRU *is* a user register and the kernel is modifying it. That
means that code doing:
pkru = rdpkru()
pkru |= 0x100;
mmap(..., PROT_EXEC);
wrpkru(pkru);
could lose the bits in PKRU that enforce execute-only
permissions. To avoid this, we suggest avoiding ever calling
mmap() or mprotect() when the PKRU value is expected to be
unstable.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Chen Gang <gang.chen.5i5j@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: David Hildenbrand <dahi@linux.vnet.ibm.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Piotr Kwapulinski <kwapulinski.piotr@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Vladimir Murzin <vladimir.murzin@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: keescook@google.com
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20160212210240.CB4BB5CA@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-12 21:02:40 +00:00
|
|
|
|
2021-12-06 13:55:05 +00:00
|
|
|
obj-$(CONFIG_X86_MEM_ENCRYPT) += mem_encrypt.o
|
2021-12-06 13:55:04 +00:00
|
|
|
obj-$(CONFIG_AMD_MEM_ENCRYPT) += mem_encrypt_amd.o
|
2021-12-06 13:55:05 +00:00
|
|
|
|
2018-01-31 13:54:02 +00:00
|
|
|
obj-$(CONFIG_AMD_MEM_ENCRYPT) += mem_encrypt_identity.o
|
2017-07-17 21:10:32 +00:00
|
|
|
obj-$(CONFIG_AMD_MEM_ENCRYPT) += mem_encrypt_boot.o
|