linux/fs/cifs/cifsencrypt.c

428 lines
12 KiB
C
Raw Normal View History

/*
* fs/cifs/cifsencrypt.c
*
* Copyright (C) International Business Machines Corp., 2005,2006
* Author(s): Steve French (sfrench@us.ibm.com)
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/fs.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include "cifspdu.h"
#include "cifsglob.h"
#include "cifs_debug.h"
#include "md5.h"
#include "cifs_unicode.h"
#include "cifsproto.h"
#include <linux/ctype.h>
#include <linux/random.h>
/* Calculate and return the CIFS signature based on the mac key and SMB PDU */
/* the 16 byte signature must be allocated by the caller */
/* Note we only use the 1st eight bytes */
/* Note that the smb header signature field on input contains the
sequence number before this function is called */
extern void mdfour(unsigned char *out, unsigned char *in, int n);
extern void E_md4hash(const unsigned char *passwd, unsigned char *p16);
extern void SMBencrypt(unsigned char *passwd, const unsigned char *c8,
unsigned char *p24);
static int cifs_calculate_signature(const struct smb_hdr *cifs_pdu,
const struct mac_key *key, char *signature)
{
struct MD5Context context;
if ((cifs_pdu == NULL) || (signature == NULL) || (key == NULL))
return -EINVAL;
cifs_MD5_init(&context);
cifs_MD5_update(&context, (char *)&key->data, key->len);
cifs_MD5_update(&context, cifs_pdu->Protocol, cifs_pdu->smb_buf_length);
cifs_MD5_final(signature, &context);
return 0;
}
int cifs_sign_smb(struct smb_hdr *cifs_pdu, struct TCP_Server_Info *server,
__u32 *pexpected_response_sequence_number)
{
int rc = 0;
char smb_signature[20];
if ((cifs_pdu == NULL) || (server == NULL))
return -EINVAL;
if ((cifs_pdu->Flags2 & SMBFLG2_SECURITY_SIGNATURE) == 0)
return rc;
spin_lock(&GlobalMid_Lock);
cifs_pdu->Signature.Sequence.SequenceNumber =
cpu_to_le32(server->sequence_number);
cifs_pdu->Signature.Sequence.Reserved = 0;
*pexpected_response_sequence_number = server->sequence_number++;
server->sequence_number++;
spin_unlock(&GlobalMid_Lock);
rc = cifs_calculate_signature(cifs_pdu, &server->mac_signing_key,
smb_signature);
if (rc)
memset(cifs_pdu->Signature.SecuritySignature, 0, 8);
else
memcpy(cifs_pdu->Signature.SecuritySignature, smb_signature, 8);
return rc;
}
static int cifs_calc_signature2(const struct kvec *iov, int n_vec,
const struct mac_key *key, char *signature)
{
struct MD5Context context;
int i;
if ((iov == NULL) || (signature == NULL) || (key == NULL))
return -EINVAL;
cifs_MD5_init(&context);
cifs_MD5_update(&context, (char *)&key->data, key->len);
for (i = 0; i < n_vec; i++) {
if (iov[i].iov_len == 0)
continue;
if (iov[i].iov_base == NULL) {
cERROR(1, ("null iovec entry"));
return -EIO;
}
/* The first entry includes a length field (which does not get
signed that occupies the first 4 bytes before the header */
if (i == 0) {
if (iov[0].iov_len <= 8) /* cmd field at offset 9 */
break; /* nothing to sign or corrupt header */
cifs_MD5_update(&context, iov[0].iov_base+4,
iov[0].iov_len-4);
} else
cifs_MD5_update(&context, iov[i].iov_base, iov[i].iov_len);
}
cifs_MD5_final(signature, &context);
return 0;
}
int cifs_sign_smb2(struct kvec *iov, int n_vec, struct TCP_Server_Info *server,
__u32 *pexpected_response_sequence_number)
{
int rc = 0;
char smb_signature[20];
struct smb_hdr *cifs_pdu = iov[0].iov_base;
if ((cifs_pdu == NULL) || (server == NULL))
return -EINVAL;
if ((cifs_pdu->Flags2 & SMBFLG2_SECURITY_SIGNATURE) == 0)
return rc;
spin_lock(&GlobalMid_Lock);
cifs_pdu->Signature.Sequence.SequenceNumber =
cpu_to_le32(server->sequence_number);
cifs_pdu->Signature.Sequence.Reserved = 0;
*pexpected_response_sequence_number = server->sequence_number++;
server->sequence_number++;
spin_unlock(&GlobalMid_Lock);
rc = cifs_calc_signature2(iov, n_vec, &server->mac_signing_key,
smb_signature);
if (rc)
memset(cifs_pdu->Signature.SecuritySignature, 0, 8);
else
memcpy(cifs_pdu->Signature.SecuritySignature, smb_signature, 8);
return rc;
}
int cifs_verify_signature(struct smb_hdr *cifs_pdu,
const struct mac_key *mac_key,
__u32 expected_sequence_number)
{
unsigned int rc;
char server_response_sig[8];
char what_we_think_sig_should_be[20];
if ((cifs_pdu == NULL) || (mac_key == NULL))
return -EINVAL;
if (cifs_pdu->Command == SMB_COM_NEGOTIATE)
return 0;
if (cifs_pdu->Command == SMB_COM_LOCKING_ANDX) {
struct smb_com_lock_req *pSMB =
(struct smb_com_lock_req *)cifs_pdu;
if (pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE)
return 0;
}
/* BB what if signatures are supposed to be on for session but
server does not send one? BB */
/* Do not need to verify session setups with signature "BSRSPYL " */
if (memcmp(cifs_pdu->Signature.SecuritySignature, "BSRSPYL ", 8) == 0)
cFYI(1, ("dummy signature received for smb command 0x%x",
cifs_pdu->Command));
/* save off the origiginal signature so we can modify the smb and check
its signature against what the server sent */
memcpy(server_response_sig, cifs_pdu->Signature.SecuritySignature, 8);
cifs_pdu->Signature.Sequence.SequenceNumber =
cpu_to_le32(expected_sequence_number);
cifs_pdu->Signature.Sequence.Reserved = 0;
rc = cifs_calculate_signature(cifs_pdu, mac_key,
what_we_think_sig_should_be);
if (rc)
return rc;
/* cifs_dump_mem("what we think it should be: ",
what_we_think_sig_should_be, 16); */
if (memcmp(server_response_sig, what_we_think_sig_should_be, 8))
return -EACCES;
else
return 0;
}
/* We fill in key by putting in 40 byte array which was allocated by caller */
int cifs_calculate_mac_key(struct mac_key *key, const char *rn,
const char *password)
{
char temp_key[16];
if ((key == NULL) || (rn == NULL))
return -EINVAL;
E_md4hash(password, temp_key);
mdfour(key->data.ntlm, temp_key, 16);
memcpy(key->data.ntlm+16, rn, CIFS_SESS_KEY_SIZE);
key->len = 40;
return 0;
}
int CalcNTLMv2_partial_mac_key(struct cifsSesInfo *ses,
const struct nls_table *nls_info)
{
char temp_hash[16];
struct HMACMD5Context ctx;
char *ucase_buf;
__le16 *unicode_buf;
unsigned int i, user_name_len, dom_name_len;
if (ses == NULL)
return -EINVAL;
E_md4hash(ses->password, temp_hash);
hmac_md5_init_limK_to_64(temp_hash, 16, &ctx);
user_name_len = strlen(ses->userName);
if (user_name_len > MAX_USERNAME_SIZE)
return -EINVAL;
if (ses->domainName == NULL)
return -EINVAL; /* BB should we use CIFS_LINUX_DOM */
dom_name_len = strlen(ses->domainName);
if (dom_name_len > MAX_USERNAME_SIZE)
return -EINVAL;
ucase_buf = kmalloc((MAX_USERNAME_SIZE+1), GFP_KERNEL);
if (ucase_buf == NULL)
return -ENOMEM;
unicode_buf = kmalloc((MAX_USERNAME_SIZE+1)*4, GFP_KERNEL);
if (unicode_buf == NULL) {
kfree(ucase_buf);
return -ENOMEM;
}
for (i = 0; i < user_name_len; i++)
ucase_buf[i] = nls_info->charset2upper[(int)ses->userName[i]];
ucase_buf[i] = 0;
user_name_len = cifs_strtoUCS(unicode_buf, ucase_buf,
MAX_USERNAME_SIZE*2, nls_info);
unicode_buf[user_name_len] = 0;
user_name_len++;
for (i = 0; i < dom_name_len; i++)
ucase_buf[i] = nls_info->charset2upper[(int)ses->domainName[i]];
ucase_buf[i] = 0;
dom_name_len = cifs_strtoUCS(unicode_buf+user_name_len, ucase_buf,
MAX_USERNAME_SIZE*2, nls_info);
unicode_buf[user_name_len + dom_name_len] = 0;
hmac_md5_update((const unsigned char *) unicode_buf,
(user_name_len+dom_name_len)*2, &ctx);
hmac_md5_final(ses->server->ntlmv2_hash, &ctx);
kfree(ucase_buf);
kfree(unicode_buf);
return 0;
}
#ifdef CONFIG_CIFS_WEAK_PW_HASH
void calc_lanman_hash(const char *password, const char *cryptkey, bool encrypt,
char *lnm_session_key)
{
int i;
char password_with_pad[CIFS_ENCPWD_SIZE];
memset(password_with_pad, 0, CIFS_ENCPWD_SIZE);
if (password)
strncpy(password_with_pad, password, CIFS_ENCPWD_SIZE);
if (!encrypt && extended_security & CIFSSEC_MAY_PLNTXT) {
memset(lnm_session_key, 0, CIFS_SESS_KEY_SIZE);
memcpy(lnm_session_key, password_with_pad,
CIFS_ENCPWD_SIZE);
return;
}
/* calculate old style session key */
/* calling toupper is less broken than repeatedly
calling nls_toupper would be since that will never
work for UTF8, but neither handles multibyte code pages
but the only alternative would be converting to UCS-16 (Unicode)
(using a routine something like UniStrupr) then
uppercasing and then converting back from Unicode - which
would only worth doing it if we knew it were utf8. Basically
utf8 and other multibyte codepages each need their own strupper
function since a byte at a time will ont work. */
for (i = 0; i < CIFS_ENCPWD_SIZE; i++)
password_with_pad[i] = toupper(password_with_pad[i]);
SMBencrypt(password_with_pad, cryptkey, lnm_session_key);
/* clear password before we return/free memory */
memset(password_with_pad, 0, CIFS_ENCPWD_SIZE);
}
#endif /* CIFS_WEAK_PW_HASH */
static int calc_ntlmv2_hash(struct cifsSesInfo *ses,
const struct nls_table *nls_cp)
{
int rc = 0;
int len;
char nt_hash[16];
struct HMACMD5Context *pctxt;
wchar_t *user;
wchar_t *domain;
pctxt = kmalloc(sizeof(struct HMACMD5Context), GFP_KERNEL);
if (pctxt == NULL)
return -ENOMEM;
/* calculate md4 hash of password */
E_md4hash(ses->password, nt_hash);
/* convert Domainname to unicode and uppercase */
hmac_md5_init_limK_to_64(nt_hash, 16, pctxt);
/* convert ses->userName to unicode and uppercase */
len = strlen(ses->userName);
user = kmalloc(2 + (len * 2), GFP_KERNEL);
if (user == NULL)
goto calc_exit_2;
len = cifs_strtoUCS((__le16 *)user, ses->userName, len, nls_cp);
UniStrupr(user);
hmac_md5_update((char *)user, 2*len, pctxt);
/* convert ses->domainName to unicode and uppercase */
if (ses->domainName) {
len = strlen(ses->domainName);
domain = kmalloc(2 + (len * 2), GFP_KERNEL);
if (domain == NULL)
goto calc_exit_1;
len = cifs_strtoUCS((__le16 *)domain, ses->domainName, len,
nls_cp);
/* the following line was removed since it didn't work well
with lower cased domain name that passed as an option.
Maybe converting the domain name earlier makes sense */
/* UniStrupr(domain); */
hmac_md5_update((char *)domain, 2*len, pctxt);
kfree(domain);
}
calc_exit_1:
kfree(user);
calc_exit_2:
/* BB FIXME what about bytes 24 through 40 of the signing key?
compare with the NTLM example */
hmac_md5_final(ses->server->ntlmv2_hash, pctxt);
kfree(pctxt);
return rc;
}
void setup_ntlmv2_rsp(struct cifsSesInfo *ses, char *resp_buf,
const struct nls_table *nls_cp)
{
int rc;
struct ntlmv2_resp *buf = (struct ntlmv2_resp *)resp_buf;
struct HMACMD5Context context;
buf->blob_signature = cpu_to_le32(0x00000101);
buf->reserved = 0;
buf->time = cpu_to_le64(cifs_UnixTimeToNT(CURRENT_TIME));
get_random_bytes(&buf->client_chal, sizeof(buf->client_chal));
buf->reserved2 = 0;
buf->names[0].type = cpu_to_le16(NTLMSSP_DOMAIN_TYPE);
buf->names[0].length = 0;
buf->names[1].type = 0;
buf->names[1].length = 0;
/* calculate buf->ntlmv2_hash */
rc = calc_ntlmv2_hash(ses, nls_cp);
if (rc)
cERROR(1, ("could not get v2 hash rc %d", rc));
CalcNTLMv2_response(ses, resp_buf);
/* now calculate the MAC key for NTLMv2 */
hmac_md5_init_limK_to_64(ses->server->ntlmv2_hash, 16, &context);
hmac_md5_update(resp_buf, 16, &context);
hmac_md5_final(ses->server->mac_signing_key.data.ntlmv2.key, &context);
memcpy(&ses->server->mac_signing_key.data.ntlmv2.resp, resp_buf,
sizeof(struct ntlmv2_resp));
ses->server->mac_signing_key.len = 16 + sizeof(struct ntlmv2_resp);
}
void CalcNTLMv2_response(const struct cifsSesInfo *ses,
char *v2_session_response)
{
struct HMACMD5Context context;
/* rest of v2 struct already generated */
memcpy(v2_session_response + 8, ses->server->cryptKey, 8);
hmac_md5_init_limK_to_64(ses->server->ntlmv2_hash, 16, &context);
hmac_md5_update(v2_session_response+8,
sizeof(struct ntlmv2_resp) - 8, &context);
hmac_md5_final(v2_session_response, &context);
/* cifs_dump_mem("v2_sess_rsp: ", v2_session_response, 32); */
}