linux/mm/show_mem.c

427 lines
12 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Generic show_mem() implementation
*
* Copyright (C) 2008 Johannes Weiner <hannes@saeurebad.de>
*/
#include <linux/blkdev.h>
#include <linux/cma.h>
#include <linux/cpuset.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/swap.h>
#include <linux/vmstat.h>
#include "internal.h"
#include "swap.h"
atomic_long_t _totalram_pages __read_mostly;
EXPORT_SYMBOL(_totalram_pages);
unsigned long totalreserve_pages __read_mostly;
unsigned long totalcma_pages __read_mostly;
static inline void show_node(struct zone *zone)
{
if (IS_ENABLED(CONFIG_NUMA))
printk("Node %d ", zone_to_nid(zone));
}
long si_mem_available(void)
{
long available;
unsigned long pagecache;
unsigned long wmark_low = 0;
unsigned long reclaimable;
struct zone *zone;
for_each_zone(zone)
wmark_low += low_wmark_pages(zone);
/*
* Estimate the amount of memory available for userspace allocations,
* without causing swapping or OOM.
*/
available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
/*
* Not all the page cache can be freed, otherwise the system will
* start swapping or thrashing. Assume at least half of the page
* cache, or the low watermark worth of cache, needs to stay.
*/
pagecache = global_node_page_state(NR_ACTIVE_FILE) +
global_node_page_state(NR_INACTIVE_FILE);
pagecache -= min(pagecache / 2, wmark_low);
available += pagecache;
/*
* Part of the reclaimable slab and other kernel memory consists of
* items that are in use, and cannot be freed. Cap this estimate at the
* low watermark.
*/
reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
reclaimable -= min(reclaimable / 2, wmark_low);
available += reclaimable;
if (available < 0)
available = 0;
return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);
void si_meminfo(struct sysinfo *val)
{
val->totalram = totalram_pages();
val->sharedram = global_node_page_state(NR_SHMEM);
val->freeram = global_zone_page_state(NR_FREE_PAGES);
val->bufferram = nr_blockdev_pages();
val->totalhigh = totalhigh_pages();
val->freehigh = nr_free_highpages();
val->mem_unit = PAGE_SIZE;
}
EXPORT_SYMBOL(si_meminfo);
#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
int zone_type; /* needs to be signed */
unsigned long managed_pages = 0;
unsigned long managed_highpages = 0;
unsigned long free_highpages = 0;
pg_data_t *pgdat = NODE_DATA(nid);
for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
val->totalram = managed_pages;
val->sharedram = node_page_state(pgdat, NR_SHMEM);
val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
#ifdef CONFIG_HIGHMEM
for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
struct zone *zone = &pgdat->node_zones[zone_type];
if (is_highmem(zone)) {
managed_highpages += zone_managed_pages(zone);
free_highpages += zone_page_state(zone, NR_FREE_PAGES);
}
}
val->totalhigh = managed_highpages;
val->freehigh = free_highpages;
#else
val->totalhigh = managed_highpages;
val->freehigh = free_highpages;
#endif
val->mem_unit = PAGE_SIZE;
}
#endif
/*
* Determine whether the node should be displayed or not, depending on whether
* SHOW_MEM_FILTER_NODES was passed to show_free_areas().
*/
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
{
if (!(flags & SHOW_MEM_FILTER_NODES))
return false;
/*
* no node mask - aka implicit memory numa policy. Do not bother with
* the synchronization - read_mems_allowed_begin - because we do not
* have to be precise here.
*/
if (!nodemask)
nodemask = &cpuset_current_mems_allowed;
return !node_isset(nid, *nodemask);
}
static void show_migration_types(unsigned char type)
{
static const char types[MIGRATE_TYPES] = {
[MIGRATE_UNMOVABLE] = 'U',
[MIGRATE_MOVABLE] = 'M',
[MIGRATE_RECLAIMABLE] = 'E',
[MIGRATE_HIGHATOMIC] = 'H',
#ifdef CONFIG_CMA
[MIGRATE_CMA] = 'C',
#endif
#ifdef CONFIG_MEMORY_ISOLATION
[MIGRATE_ISOLATE] = 'I',
#endif
};
char tmp[MIGRATE_TYPES + 1];
char *p = tmp;
int i;
for (i = 0; i < MIGRATE_TYPES; i++) {
if (type & (1 << i))
*p++ = types[i];
}
*p = '\0';
printk(KERN_CONT "(%s) ", tmp);
}
static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
{
int zone_idx;
for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
if (zone_managed_pages(pgdat->node_zones + zone_idx))
return true;
return false;
}
/*
* Show free area list (used inside shift_scroll-lock stuff)
* We also calculate the percentage fragmentation. We do this by counting the
* memory on each free list with the exception of the first item on the list.
*
* Bits in @filter:
* SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
* cpuset.
*/
static void show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
{
unsigned long free_pcp = 0;
int cpu, nid;
struct zone *zone;
pg_data_t *pgdat;
for_each_populated_zone(zone) {
if (zone_idx(zone) > max_zone_idx)
continue;
if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
continue;
for_each_online_cpu(cpu)
free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
}
printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
" unevictable:%lu dirty:%lu writeback:%lu\n"
" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
" mapped:%lu shmem:%lu pagetables:%lu\n"
" sec_pagetables:%lu bounce:%lu\n"
" kernel_misc_reclaimable:%lu\n"
" free:%lu free_pcp:%lu free_cma:%lu\n",
global_node_page_state(NR_ACTIVE_ANON),
global_node_page_state(NR_INACTIVE_ANON),
global_node_page_state(NR_ISOLATED_ANON),
global_node_page_state(NR_ACTIVE_FILE),
global_node_page_state(NR_INACTIVE_FILE),
global_node_page_state(NR_ISOLATED_FILE),
global_node_page_state(NR_UNEVICTABLE),
global_node_page_state(NR_FILE_DIRTY),
global_node_page_state(NR_WRITEBACK),
global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
global_node_page_state(NR_FILE_MAPPED),
global_node_page_state(NR_SHMEM),
global_node_page_state(NR_PAGETABLE),
global_node_page_state(NR_SECONDARY_PAGETABLE),
global_zone_page_state(NR_BOUNCE),
global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
global_zone_page_state(NR_FREE_PAGES),
free_pcp,
global_zone_page_state(NR_FREE_CMA_PAGES));
for_each_online_pgdat(pgdat) {
if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
continue;
if (!node_has_managed_zones(pgdat, max_zone_idx))
continue;
printk("Node %d"
" active_anon:%lukB"
" inactive_anon:%lukB"
" active_file:%lukB"
" inactive_file:%lukB"
" unevictable:%lukB"
" isolated(anon):%lukB"
" isolated(file):%lukB"
" mapped:%lukB"
" dirty:%lukB"
" writeback:%lukB"
" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
" shmem_thp:%lukB"
" shmem_pmdmapped:%lukB"
" anon_thp:%lukB"
#endif
" writeback_tmp:%lukB"
" kernel_stack:%lukB"
#ifdef CONFIG_SHADOW_CALL_STACK
" shadow_call_stack:%lukB"
#endif
" pagetables:%lukB"
" sec_pagetables:%lukB"
" all_unreclaimable? %s"
"\n",
pgdat->node_id,
K(node_page_state(pgdat, NR_ACTIVE_ANON)),
K(node_page_state(pgdat, NR_INACTIVE_ANON)),
K(node_page_state(pgdat, NR_ACTIVE_FILE)),
K(node_page_state(pgdat, NR_INACTIVE_FILE)),
K(node_page_state(pgdat, NR_UNEVICTABLE)),
K(node_page_state(pgdat, NR_ISOLATED_ANON)),
K(node_page_state(pgdat, NR_ISOLATED_FILE)),
K(node_page_state(pgdat, NR_FILE_MAPPED)),
K(node_page_state(pgdat, NR_FILE_DIRTY)),
K(node_page_state(pgdat, NR_WRITEBACK)),
K(node_page_state(pgdat, NR_SHMEM)),
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
K(node_page_state(pgdat, NR_SHMEM_THPS)),
K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
K(node_page_state(pgdat, NR_ANON_THPS)),
#endif
K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
node_page_state(pgdat, NR_KERNEL_STACK_KB),
#ifdef CONFIG_SHADOW_CALL_STACK
node_page_state(pgdat, NR_KERNEL_SCS_KB),
#endif
K(node_page_state(pgdat, NR_PAGETABLE)),
K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
"yes" : "no");
}
for_each_populated_zone(zone) {
int i;
if (zone_idx(zone) > max_zone_idx)
continue;
if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
continue;
free_pcp = 0;
for_each_online_cpu(cpu)
free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
show_node(zone);
printk(KERN_CONT
"%s"
" free:%lukB"
" boost:%lukB"
" min:%lukB"
" low:%lukB"
" high:%lukB"
" reserved_highatomic:%luKB"
" active_anon:%lukB"
" inactive_anon:%lukB"
" active_file:%lukB"
" inactive_file:%lukB"
" unevictable:%lukB"
" writepending:%lukB"
" present:%lukB"
" managed:%lukB"
" mlocked:%lukB"
" bounce:%lukB"
" free_pcp:%lukB"
" local_pcp:%ukB"
" free_cma:%lukB"
"\n",
zone->name,
K(zone_page_state(zone, NR_FREE_PAGES)),
K(zone->watermark_boost),
K(min_wmark_pages(zone)),
K(low_wmark_pages(zone)),
K(high_wmark_pages(zone)),
K(zone->nr_reserved_highatomic),
K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
K(zone->present_pages),
K(zone_managed_pages(zone)),
K(zone_page_state(zone, NR_MLOCK)),
K(zone_page_state(zone, NR_BOUNCE)),
K(free_pcp),
K(this_cpu_read(zone->per_cpu_pageset->count)),
K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
printk("lowmem_reserve[]:");
for (i = 0; i < MAX_NR_ZONES; i++)
printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
printk(KERN_CONT "\n");
}
for_each_populated_zone(zone) {
unsigned int order;
unsigned long nr[NR_PAGE_ORDERS], flags, total = 0;
unsigned char types[NR_PAGE_ORDERS];
if (zone_idx(zone) > max_zone_idx)
continue;
if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
continue;
show_node(zone);
printk(KERN_CONT "%s: ", zone->name);
spin_lock_irqsave(&zone->lock, flags);
for (order = 0; order < NR_PAGE_ORDERS; order++) {
struct free_area *area = &zone->free_area[order];
int type;
nr[order] = area->nr_free;
total += nr[order] << order;
types[order] = 0;
for (type = 0; type < MIGRATE_TYPES; type++) {
if (!free_area_empty(area, type))
types[order] |= 1 << type;
}
}
spin_unlock_irqrestore(&zone->lock, flags);
for (order = 0; order < NR_PAGE_ORDERS; order++) {
printk(KERN_CONT "%lu*%lukB ",
nr[order], K(1UL) << order);
if (nr[order])
show_migration_types(types[order]);
}
printk(KERN_CONT "= %lukB\n", K(total));
}
for_each_online_node(nid) {
if (show_mem_node_skip(filter, nid, nodemask))
continue;
hugetlb_show_meminfo_node(nid);
}
printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
show_swap_cache_info();
}
void __show_mem(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
{
unsigned long total = 0, reserved = 0, highmem = 0;
struct zone *zone;
printk("Mem-Info:\n");
show_free_areas(filter, nodemask, max_zone_idx);
for_each_populated_zone(zone) {
total += zone->present_pages;
reserved += zone->present_pages - zone_managed_pages(zone);
if (is_highmem(zone))
highmem += zone->present_pages;
}
printk("%lu pages RAM\n", total);
printk("%lu pages HighMem/MovableOnly\n", highmem);
printk("%lu pages reserved\n", reserved);
#ifdef CONFIG_CMA
printk("%lu pages cma reserved\n", totalcma_pages);
#endif
#ifdef CONFIG_MEMORY_FAILURE
printk("%lu pages hwpoisoned\n", atomic_long_read(&num_poisoned_pages));
#endif
}