linux/rust/macros/lib.rs

429 lines
12 KiB
Rust
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
//! Crate for all kernel procedural macros.
#[macro_use]
mod quote;
mod concat_idents;
mod helpers;
mod module;
rust: macros: add `paste!` proc macro This macro provides a flexible way to concatenated identifiers together and it allows the resulting identifier to be used to declare new items, which `concat_idents!` does not allow. It also allows identifiers to be transformed before concatenated. The `concat_idents!` example let x_1 = 42; let x_2 = concat_idents!(x, _1); assert!(x_1 == x_2); can be written with `paste!` macro like this: let x_1 = 42; let x_2 = paste!([<x _1>]); assert!(x_1 == x_2); However `paste!` macro is more flexible because it can be used to create a new variable: let x_1 = 42; paste!(let [<x _2>] = [<x _1>];); assert!(x_1 == x_2); While this is not possible with `concat_idents!`. This macro is similar to the `paste!` crate [1], but this is a fresh implementation to avoid vendoring large amount of code directly. Also, I have augmented it to provide a way to specify span of the resulting token, allowing precise control. For example, this code is broken because the variable is declared inside the macro, so Rust macro hygiene rules prevents access from the outside: macro_rules! m { ($id: ident) => { // The resulting token has hygiene of the macro. paste!(let [<$id>] = 1;) } } m!(a); let _ = a; In this version of `paste!` macro I added a `span` modifier to allow this: macro_rules! m { ($id: ident) => { // The resulting token has hygiene of `$id`. paste!(let [<$id:span>] = 1;) } } m!(a); let _ = a; Link: http://docs.rs/paste/ [1] Signed-off-by: Gary Guo <gary@garyguo.net> Reviewed-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Link: https://lore.kernel.org/r/20230628171108.1150742-1-gary@garyguo.net [ Added SPDX license identifier as discussed in the list and fixed typo. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-06-28 17:11:01 +00:00
mod paste;
mod pin_data;
mod pinned_drop;
mod vtable;
mod zeroable;
use proc_macro::TokenStream;
/// Declares a kernel module.
///
/// The `type` argument should be a type which implements the [`Module`]
/// trait. Also accepts various forms of kernel metadata.
///
/// C header: [`include/linux/moduleparam.h`](srctree/include/linux/moduleparam.h)
///
/// [`Module`]: ../kernel/trait.Module.html
///
/// # Examples
///
/// ```ignore
/// use kernel::prelude::*;
///
/// module!{
/// type: MyModule,
/// name: "my_kernel_module",
/// author: "Rust for Linux Contributors",
/// description: "My very own kernel module!",
/// license: "GPL",
/// alias: ["alternate_module_name"],
/// }
///
/// struct MyModule;
///
/// impl kernel::Module for MyModule {
/// fn init() -> Result<Self> {
/// // If the parameter is writeable, then the kparam lock must be
/// // taken to read the parameter:
/// {
/// let lock = THIS_MODULE.kernel_param_lock();
/// pr_info!("i32 param is: {}\n", writeable_i32.read(&lock));
/// }
/// // If the parameter is read only, it can be read without locking
/// // the kernel parameters:
/// pr_info!("i32 param is: {}\n", my_i32.read());
/// Ok(Self)
/// }
/// }
/// ```
///
/// ## Firmware
///
/// The following example shows how to declare a kernel module that needs
/// to load binary firmware files. You need to specify the file names of
/// the firmware in the `firmware` field. The information is embedded
/// in the `modinfo` section of the kernel module. For example, a tool to
/// build an initramfs uses this information to put the firmware files into
/// the initramfs image.
///
/// ```ignore
/// use kernel::prelude::*;
///
/// module!{
/// type: MyDeviceDriverModule,
/// name: "my_device_driver_module",
/// author: "Rust for Linux Contributors",
/// description: "My device driver requires firmware",
/// license: "GPL",
/// firmware: ["my_device_firmware1.bin", "my_device_firmware2.bin"],
/// }
///
/// struct MyDeviceDriverModule;
///
/// impl kernel::Module for MyDeviceDriverModule {
/// fn init() -> Result<Self> {
/// Ok(Self)
/// }
/// }
/// ```
///
/// # Supported argument types
/// - `type`: type which implements the [`Module`] trait (required).
/// - `name`: ASCII string literal of the name of the kernel module (required).
/// - `author`: string literal of the author of the kernel module.
/// - `description`: string literal of the description of the kernel module.
/// - `license`: ASCII string literal of the license of the kernel module (required).
/// - `alias`: array of ASCII string literals of the alias names of the kernel module.
/// - `firmware`: array of ASCII string literals of the firmware files of
/// the kernel module.
#[proc_macro]
pub fn module(ts: TokenStream) -> TokenStream {
module::module(ts)
}
/// Declares or implements a vtable trait.
///
/// Linux's use of pure vtables is very close to Rust traits, but they differ
/// in how unimplemented functions are represented. In Rust, traits can provide
/// default implementation for all non-required methods (and the default
/// implementation could just return `Error::EINVAL`); Linux typically use C
/// `NULL` pointers to represent these functions.
///
/// This attribute closes that gap. A trait can be annotated with the
/// `#[vtable]` attribute. Implementers of the trait will then also have to
/// annotate the trait with `#[vtable]`. This attribute generates a `HAS_*`
/// associated constant bool for each method in the trait that is set to true if
/// the implementer has overridden the associated method.
///
/// For a trait method to be optional, it must have a default implementation.
/// This is also the case for traits annotated with `#[vtable]`, but in this
/// case the default implementation will never be executed. The reason for this
/// is that the functions will be called through function pointers installed in
/// C side vtables. When an optional method is not implemented on a `#[vtable]`
/// trait, a NULL entry is installed in the vtable. Thus the default
/// implementation is never called. Since these traits are not designed to be
/// used on the Rust side, it should not be possible to call the default
/// implementation. This is done to ensure that we call the vtable methods
/// through the C vtable, and not through the Rust vtable. Therefore, the
/// default implementation should call `kernel::build_error`, which prevents
/// calls to this function at compile time:
///
/// ```compile_fail
/// # use kernel::error::VTABLE_DEFAULT_ERROR;
/// kernel::build_error(VTABLE_DEFAULT_ERROR)
/// ```
///
/// Note that you might need to import [`kernel::error::VTABLE_DEFAULT_ERROR`].
///
/// This macro should not be used when all functions are required.
///
/// # Examples
///
/// ```ignore
/// use kernel::error::VTABLE_DEFAULT_ERROR;
/// use kernel::prelude::*;
///
/// // Declares a `#[vtable]` trait
/// #[vtable]
/// pub trait Operations: Send + Sync + Sized {
/// fn foo(&self) -> Result<()> {
/// kernel::build_error(VTABLE_DEFAULT_ERROR)
/// }
///
/// fn bar(&self) -> Result<()> {
/// kernel::build_error(VTABLE_DEFAULT_ERROR)
/// }
/// }
///
/// struct Foo;
///
/// // Implements the `#[vtable]` trait
/// #[vtable]
/// impl Operations for Foo {
/// fn foo(&self) -> Result<()> {
/// # Err(EINVAL)
/// // ...
/// }
/// }
///
/// assert_eq!(<Foo as Operations>::HAS_FOO, true);
/// assert_eq!(<Foo as Operations>::HAS_BAR, false);
/// ```
///
/// [`kernel::error::VTABLE_DEFAULT_ERROR`]: ../kernel/error/constant.VTABLE_DEFAULT_ERROR.html
#[proc_macro_attribute]
pub fn vtable(attr: TokenStream, ts: TokenStream) -> TokenStream {
vtable::vtable(attr, ts)
}
/// Concatenate two identifiers.
///
/// This is useful in macros that need to declare or reference items with names
/// starting with a fixed prefix and ending in a user specified name. The resulting
/// identifier has the span of the second argument.
///
/// # Examples
///
/// ```ignore
/// use kernel::macro::concat_idents;
///
/// macro_rules! pub_no_prefix {
/// ($prefix:ident, $($newname:ident),+) => {
/// $(pub(crate) const $newname: u32 = kernel::macros::concat_idents!($prefix, $newname);)+
/// };
/// }
///
/// pub_no_prefix!(
/// binder_driver_return_protocol_,
/// BR_OK,
/// BR_ERROR,
/// BR_TRANSACTION,
/// BR_REPLY,
/// BR_DEAD_REPLY,
/// BR_TRANSACTION_COMPLETE,
/// BR_INCREFS,
/// BR_ACQUIRE,
/// BR_RELEASE,
/// BR_DECREFS,
/// BR_NOOP,
/// BR_SPAWN_LOOPER,
/// BR_DEAD_BINDER,
/// BR_CLEAR_DEATH_NOTIFICATION_DONE,
/// BR_FAILED_REPLY
/// );
///
/// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK);
/// ```
#[proc_macro]
pub fn concat_idents(ts: TokenStream) -> TokenStream {
concat_idents::concat_idents(ts)
}
/// Used to specify the pinning information of the fields of a struct.
///
/// This is somewhat similar in purpose as
/// [pin-project-lite](https://crates.io/crates/pin-project-lite).
/// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each
/// field you want to structurally pin.
///
/// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`,
/// then `#[pin]` directs the type of initializer that is required.
///
/// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this
/// macro, and change your `Drop` implementation to `PinnedDrop` annotated with
/// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care.
///
/// # Examples
///
/// ```rust,ignore
/// #[pin_data]
/// struct DriverData {
/// #[pin]
/// queue: Mutex<Vec<Command>>,
/// buf: Box<[u8; 1024 * 1024]>,
/// }
/// ```
///
/// ```rust,ignore
/// #[pin_data(PinnedDrop)]
/// struct DriverData {
/// #[pin]
/// queue: Mutex<Vec<Command>>,
/// buf: Box<[u8; 1024 * 1024]>,
/// raw_info: *mut Info,
/// }
///
/// #[pinned_drop]
/// impl PinnedDrop for DriverData {
/// fn drop(self: Pin<&mut Self>) {
/// unsafe { bindings::destroy_info(self.raw_info) };
/// }
/// }
/// ```
///
/// [`pin_init!`]: ../kernel/macro.pin_init.html
// ^ cannot use direct link, since `kernel` is not a dependency of `macros`.
#[proc_macro_attribute]
pub fn pin_data(inner: TokenStream, item: TokenStream) -> TokenStream {
pin_data::pin_data(inner, item)
}
/// Used to implement `PinnedDrop` safely.
///
/// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`.
///
/// # Examples
///
/// ```rust,ignore
/// #[pin_data(PinnedDrop)]
/// struct DriverData {
/// #[pin]
/// queue: Mutex<Vec<Command>>,
/// buf: Box<[u8; 1024 * 1024]>,
/// raw_info: *mut Info,
/// }
///
/// #[pinned_drop]
/// impl PinnedDrop for DriverData {
/// fn drop(self: Pin<&mut Self>) {
/// unsafe { bindings::destroy_info(self.raw_info) };
/// }
/// }
/// ```
#[proc_macro_attribute]
pub fn pinned_drop(args: TokenStream, input: TokenStream) -> TokenStream {
pinned_drop::pinned_drop(args, input)
}
rust: macros: add `paste!` proc macro This macro provides a flexible way to concatenated identifiers together and it allows the resulting identifier to be used to declare new items, which `concat_idents!` does not allow. It also allows identifiers to be transformed before concatenated. The `concat_idents!` example let x_1 = 42; let x_2 = concat_idents!(x, _1); assert!(x_1 == x_2); can be written with `paste!` macro like this: let x_1 = 42; let x_2 = paste!([<x _1>]); assert!(x_1 == x_2); However `paste!` macro is more flexible because it can be used to create a new variable: let x_1 = 42; paste!(let [<x _2>] = [<x _1>];); assert!(x_1 == x_2); While this is not possible with `concat_idents!`. This macro is similar to the `paste!` crate [1], but this is a fresh implementation to avoid vendoring large amount of code directly. Also, I have augmented it to provide a way to specify span of the resulting token, allowing precise control. For example, this code is broken because the variable is declared inside the macro, so Rust macro hygiene rules prevents access from the outside: macro_rules! m { ($id: ident) => { // The resulting token has hygiene of the macro. paste!(let [<$id>] = 1;) } } m!(a); let _ = a; In this version of `paste!` macro I added a `span` modifier to allow this: macro_rules! m { ($id: ident) => { // The resulting token has hygiene of `$id`. paste!(let [<$id:span>] = 1;) } } m!(a); let _ = a; Link: http://docs.rs/paste/ [1] Signed-off-by: Gary Guo <gary@garyguo.net> Reviewed-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Link: https://lore.kernel.org/r/20230628171108.1150742-1-gary@garyguo.net [ Added SPDX license identifier as discussed in the list and fixed typo. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-06-28 17:11:01 +00:00
/// Paste identifiers together.
///
/// Within the `paste!` macro, identifiers inside `[<` and `>]` are concatenated together to form a
/// single identifier.
///
/// This is similar to the [`paste`] crate, but with pasting feature limited to identifiers and
/// literals (lifetimes and documentation strings are not supported). There is a difference in
rust: macros: add `paste!` proc macro This macro provides a flexible way to concatenated identifiers together and it allows the resulting identifier to be used to declare new items, which `concat_idents!` does not allow. It also allows identifiers to be transformed before concatenated. The `concat_idents!` example let x_1 = 42; let x_2 = concat_idents!(x, _1); assert!(x_1 == x_2); can be written with `paste!` macro like this: let x_1 = 42; let x_2 = paste!([<x _1>]); assert!(x_1 == x_2); However `paste!` macro is more flexible because it can be used to create a new variable: let x_1 = 42; paste!(let [<x _2>] = [<x _1>];); assert!(x_1 == x_2); While this is not possible with `concat_idents!`. This macro is similar to the `paste!` crate [1], but this is a fresh implementation to avoid vendoring large amount of code directly. Also, I have augmented it to provide a way to specify span of the resulting token, allowing precise control. For example, this code is broken because the variable is declared inside the macro, so Rust macro hygiene rules prevents access from the outside: macro_rules! m { ($id: ident) => { // The resulting token has hygiene of the macro. paste!(let [<$id>] = 1;) } } m!(a); let _ = a; In this version of `paste!` macro I added a `span` modifier to allow this: macro_rules! m { ($id: ident) => { // The resulting token has hygiene of `$id`. paste!(let [<$id:span>] = 1;) } } m!(a); let _ = a; Link: http://docs.rs/paste/ [1] Signed-off-by: Gary Guo <gary@garyguo.net> Reviewed-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Link: https://lore.kernel.org/r/20230628171108.1150742-1-gary@garyguo.net [ Added SPDX license identifier as discussed in the list and fixed typo. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-06-28 17:11:01 +00:00
/// supported modifiers as well.
///
/// # Example
///
/// ```ignore
/// use kernel::macro::paste;
///
/// macro_rules! pub_no_prefix {
/// ($prefix:ident, $($newname:ident),+) => {
/// paste! {
/// $(pub(crate) const $newname: u32 = [<$prefix $newname>];)+
/// }
/// };
/// }
///
/// pub_no_prefix!(
/// binder_driver_return_protocol_,
/// BR_OK,
/// BR_ERROR,
/// BR_TRANSACTION,
/// BR_REPLY,
/// BR_DEAD_REPLY,
/// BR_TRANSACTION_COMPLETE,
/// BR_INCREFS,
/// BR_ACQUIRE,
/// BR_RELEASE,
/// BR_DECREFS,
/// BR_NOOP,
/// BR_SPAWN_LOOPER,
/// BR_DEAD_BINDER,
/// BR_CLEAR_DEATH_NOTIFICATION_DONE,
/// BR_FAILED_REPLY
/// );
///
/// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK);
/// ```
///
/// # Modifiers
///
/// For each identifier, it is possible to attach one or multiple modifiers to
/// it.
///
/// Currently supported modifiers are:
/// * `span`: change the span of concatenated identifier to the span of the specified token. By
/// default the span of the `[< >]` group is used.
rust: macros: add `paste!` proc macro This macro provides a flexible way to concatenated identifiers together and it allows the resulting identifier to be used to declare new items, which `concat_idents!` does not allow. It also allows identifiers to be transformed before concatenated. The `concat_idents!` example let x_1 = 42; let x_2 = concat_idents!(x, _1); assert!(x_1 == x_2); can be written with `paste!` macro like this: let x_1 = 42; let x_2 = paste!([<x _1>]); assert!(x_1 == x_2); However `paste!` macro is more flexible because it can be used to create a new variable: let x_1 = 42; paste!(let [<x _2>] = [<x _1>];); assert!(x_1 == x_2); While this is not possible with `concat_idents!`. This macro is similar to the `paste!` crate [1], but this is a fresh implementation to avoid vendoring large amount of code directly. Also, I have augmented it to provide a way to specify span of the resulting token, allowing precise control. For example, this code is broken because the variable is declared inside the macro, so Rust macro hygiene rules prevents access from the outside: macro_rules! m { ($id: ident) => { // The resulting token has hygiene of the macro. paste!(let [<$id>] = 1;) } } m!(a); let _ = a; In this version of `paste!` macro I added a `span` modifier to allow this: macro_rules! m { ($id: ident) => { // The resulting token has hygiene of `$id`. paste!(let [<$id:span>] = 1;) } } m!(a); let _ = a; Link: http://docs.rs/paste/ [1] Signed-off-by: Gary Guo <gary@garyguo.net> Reviewed-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Link: https://lore.kernel.org/r/20230628171108.1150742-1-gary@garyguo.net [ Added SPDX license identifier as discussed in the list and fixed typo. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-06-28 17:11:01 +00:00
/// * `lower`: change the identifier to lower case.
/// * `upper`: change the identifier to upper case.
///
/// ```ignore
/// use kernel::macro::paste;
///
/// macro_rules! pub_no_prefix {
/// ($prefix:ident, $($newname:ident),+) => {
/// kernel::macros::paste! {
/// $(pub(crate) const fn [<$newname:lower:span>]: u32 = [<$prefix $newname:span>];)+
/// }
/// };
/// }
///
/// pub_no_prefix!(
/// binder_driver_return_protocol_,
/// BR_OK,
/// BR_ERROR,
/// BR_TRANSACTION,
/// BR_REPLY,
/// BR_DEAD_REPLY,
/// BR_TRANSACTION_COMPLETE,
/// BR_INCREFS,
/// BR_ACQUIRE,
/// BR_RELEASE,
/// BR_DECREFS,
/// BR_NOOP,
/// BR_SPAWN_LOOPER,
/// BR_DEAD_BINDER,
/// BR_CLEAR_DEATH_NOTIFICATION_DONE,
/// BR_FAILED_REPLY
/// );
///
/// assert_eq!(br_ok(), binder_driver_return_protocol_BR_OK);
/// ```
///
/// # Literals
///
/// Literals can also be concatenated with other identifiers:
///
/// ```ignore
/// macro_rules! create_numbered_fn {
/// ($name:literal, $val:literal) => {
/// kernel::macros::paste! {
/// fn [<some_ $name _fn $val>]() -> u32 { $val }
/// }
/// };
/// }
///
/// create_numbered_fn!("foo", 100);
///
/// assert_eq!(some_foo_fn100(), 100)
/// ```
///
rust: macros: add `paste!` proc macro This macro provides a flexible way to concatenated identifiers together and it allows the resulting identifier to be used to declare new items, which `concat_idents!` does not allow. It also allows identifiers to be transformed before concatenated. The `concat_idents!` example let x_1 = 42; let x_2 = concat_idents!(x, _1); assert!(x_1 == x_2); can be written with `paste!` macro like this: let x_1 = 42; let x_2 = paste!([<x _1>]); assert!(x_1 == x_2); However `paste!` macro is more flexible because it can be used to create a new variable: let x_1 = 42; paste!(let [<x _2>] = [<x _1>];); assert!(x_1 == x_2); While this is not possible with `concat_idents!`. This macro is similar to the `paste!` crate [1], but this is a fresh implementation to avoid vendoring large amount of code directly. Also, I have augmented it to provide a way to specify span of the resulting token, allowing precise control. For example, this code is broken because the variable is declared inside the macro, so Rust macro hygiene rules prevents access from the outside: macro_rules! m { ($id: ident) => { // The resulting token has hygiene of the macro. paste!(let [<$id>] = 1;) } } m!(a); let _ = a; In this version of `paste!` macro I added a `span` modifier to allow this: macro_rules! m { ($id: ident) => { // The resulting token has hygiene of `$id`. paste!(let [<$id:span>] = 1;) } } m!(a); let _ = a; Link: http://docs.rs/paste/ [1] Signed-off-by: Gary Guo <gary@garyguo.net> Reviewed-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Link: https://lore.kernel.org/r/20230628171108.1150742-1-gary@garyguo.net [ Added SPDX license identifier as discussed in the list and fixed typo. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-06-28 17:11:01 +00:00
/// [`paste`]: https://docs.rs/paste/
#[proc_macro]
pub fn paste(input: TokenStream) -> TokenStream {
let mut tokens = input.into_iter().collect();
paste::expand(&mut tokens);
tokens.into_iter().collect()
}
/// Derives the [`Zeroable`] trait for the given struct.
///
/// This can only be used for structs where every field implements the [`Zeroable`] trait.
///
/// # Examples
///
/// ```rust,ignore
/// #[derive(Zeroable)]
/// pub struct DriverData {
/// id: i64,
/// buf_ptr: *mut u8,
/// len: usize,
/// }
/// ```
#[proc_macro_derive(Zeroable)]
pub fn derive_zeroable(input: TokenStream) -> TokenStream {
zeroable::derive(input)
}