linux/arch/x86/kernel/xsave.c

638 lines
16 KiB
C
Raw Normal View History

/*
* xsave/xrstor support.
*
* Author: Suresh Siddha <suresh.b.siddha@intel.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/bootmem.h>
#include <linux/compat.h>
#include <asm/i387.h>
#include <asm/fpu-internal.h>
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
#include <asm/sigframe.h>
#include <asm/xcr.h>
/*
* Supported feature mask by the CPU and the kernel.
*/
u64 pcntxt_mask;
/*
* Represents init state for the supported extended state.
*/
x86, fpu: use non-lazy fpu restore for processors supporting xsave Fundamental model of the current Linux kernel is to lazily init and restore FPU instead of restoring the task state during context switch. This changes that fundamental lazy model to the non-lazy model for the processors supporting xsave feature. Reasons driving this model change are: i. Newer processors support optimized state save/restore using xsaveopt and xrstor by tracking the INIT state and MODIFIED state during context-switch. This is faster than modifying the cr0.TS bit which has serializing semantics. ii. Newer glibc versions use SSE for some of the optimized copy/clear routines. With certain workloads (like boot, kernel-compilation etc), application completes its work with in the first 5 task switches, thus taking upto 5 #DNA traps with the kernel not getting a chance to apply the above mentioned pre-load heuristic. iii. Some xstate features (like AMD's LWP feature) don't honor the cr0.TS bit and thus will not work correctly in the presence of lazy restore. Non-lazy state restore is needed for enabling such features. Some data on a two socket SNB system: * Saved 20K DNA exceptions during boot on a two socket SNB system. * Saved 50K DNA exceptions during kernel-compilation workload. * Improved throughput of the AVX based checksumming function inside the kernel by ~15% as xsave/xrstor is faster than the serializing clts/stts pair. Also now kernel_fpu_begin/end() relies on the patched alternative instructions. So move check_fpu() which uses the kernel_fpu_begin/end() after alternative_instructions(). Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1345842782-24175-7-git-send-email-suresh.b.siddha@intel.com Merge 32-bit boot fix from, Link: http://lkml.kernel.org/r/1347300665-6209-4-git-send-email-suresh.b.siddha@intel.com Cc: Jim Kukunas <james.t.kukunas@linux.intel.com> Cc: NeilBrown <neilb@suse.de> Cc: Avi Kivity <avi@redhat.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-08-24 21:13:02 +00:00
struct xsave_struct *init_xstate_buf;
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
static struct _fpx_sw_bytes fx_sw_reserved, fx_sw_reserved_ia32;
static unsigned int *xstate_offsets, *xstate_sizes, xstate_features;
/*
* If a processor implementation discern that a processor state component is
* in its initialized state it may modify the corresponding bit in the
* xsave_hdr.xstate_bv as '0', with out modifying the corresponding memory
* layout in the case of xsaveopt. While presenting the xstate information to
* the user, we always ensure that the memory layout of a feature will be in
* the init state if the corresponding header bit is zero. This is to ensure
* that the user doesn't see some stale state in the memory layout during
* signal handling, debugging etc.
*/
void __sanitize_i387_state(struct task_struct *tsk)
{
struct i387_fxsave_struct *fx = &tsk->thread.fpu.state->fxsave;
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
int feature_bit = 0x2;
u64 xstate_bv;
if (!fx)
return;
xstate_bv = tsk->thread.fpu.state->xsave.xsave_hdr.xstate_bv;
/*
* None of the feature bits are in init state. So nothing else
* to do for us, as the memory layout is up to date.
*/
if ((xstate_bv & pcntxt_mask) == pcntxt_mask)
return;
/*
* FP is in init state
*/
if (!(xstate_bv & XSTATE_FP)) {
fx->cwd = 0x37f;
fx->swd = 0;
fx->twd = 0;
fx->fop = 0;
fx->rip = 0;
fx->rdp = 0;
memset(&fx->st_space[0], 0, 128);
}
/*
* SSE is in init state
*/
if (!(xstate_bv & XSTATE_SSE))
memset(&fx->xmm_space[0], 0, 256);
xstate_bv = (pcntxt_mask & ~xstate_bv) >> 2;
/*
* Update all the other memory layouts for which the corresponding
* header bit is in the init state.
*/
while (xstate_bv) {
if (xstate_bv & 0x1) {
int offset = xstate_offsets[feature_bit];
int size = xstate_sizes[feature_bit];
memcpy(((void *) fx) + offset,
((void *) init_xstate_buf) + offset,
size);
}
xstate_bv >>= 1;
feature_bit++;
}
}
/*
* Check for the presence of extended state information in the
* user fpstate pointer in the sigcontext.
*/
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
static inline int check_for_xstate(struct i387_fxsave_struct __user *buf,
void __user *fpstate,
struct _fpx_sw_bytes *fx_sw)
{
int min_xstate_size = sizeof(struct i387_fxsave_struct) +
sizeof(struct xsave_hdr_struct);
unsigned int magic2;
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
if (__copy_from_user(fx_sw, &buf->sw_reserved[0], sizeof(*fx_sw)))
return -1;
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
/* Check for the first magic field and other error scenarios. */
if (fx_sw->magic1 != FP_XSTATE_MAGIC1 ||
fx_sw->xstate_size < min_xstate_size ||
fx_sw->xstate_size > xstate_size ||
fx_sw->xstate_size > fx_sw->extended_size)
return -1;
/*
* Check for the presence of second magic word at the end of memory
* layout. This detects the case where the user just copied the legacy
* fpstate layout with out copying the extended state information
* in the memory layout.
*/
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
if (__get_user(magic2, (__u32 __user *)(fpstate + fx_sw->xstate_size))
|| magic2 != FP_XSTATE_MAGIC2)
return -1;
return 0;
}
/*
* Signal frame handlers.
*/
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
static inline int save_fsave_header(struct task_struct *tsk, void __user *buf)
{
if (use_fxsr()) {
struct xsave_struct *xsave = &tsk->thread.fpu.state->xsave;
struct user_i387_ia32_struct env;
struct _fpstate_ia32 __user *fp = buf;
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
convert_from_fxsr(&env, tsk);
if (__copy_to_user(buf, &env, sizeof(env)) ||
__put_user(xsave->i387.swd, &fp->status) ||
__put_user(X86_FXSR_MAGIC, &fp->magic))
return -1;
} else {
struct i387_fsave_struct __user *fp = buf;
u32 swd;
if (__get_user(swd, &fp->swd) || __put_user(swd, &fp->status))
return -1;
}
return 0;
}
static inline int save_xstate_epilog(void __user *buf, int ia32_frame)
{
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
struct xsave_struct __user *x = buf;
struct _fpx_sw_bytes *sw_bytes;
u32 xstate_bv;
int err;
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
/* Setup the bytes not touched by the [f]xsave and reserved for SW. */
sw_bytes = ia32_frame ? &fx_sw_reserved_ia32 : &fx_sw_reserved;
err = __copy_to_user(&x->i387.sw_reserved, sw_bytes, sizeof(*sw_bytes));
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
if (!use_xsave())
return err;
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
err |= __put_user(FP_XSTATE_MAGIC2, (__u32 *)(buf + xstate_size));
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
/*
* Read the xstate_bv which we copied (directly from the cpu or
* from the state in task struct) to the user buffers.
*/
err |= __get_user(xstate_bv, (__u32 *)&x->xsave_hdr.xstate_bv);
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
/*
* For legacy compatible, we always set FP/SSE bits in the bit
* vector while saving the state to the user context. This will
* enable us capturing any changes(during sigreturn) to
* the FP/SSE bits by the legacy applications which don't touch
* xstate_bv in the xsave header.
*
* xsave aware apps can change the xstate_bv in the xsave
* header as well as change any contents in the memory layout.
* xrestore as part of sigreturn will capture all the changes.
*/
xstate_bv |= XSTATE_FPSSE;
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
err |= __put_user(xstate_bv, (__u32 *)&x->xsave_hdr.xstate_bv);
return err;
}
static inline int save_user_xstate(struct xsave_struct __user *buf)
{
int err;
if (use_xsave())
err = xsave_user(buf);
else if (use_fxsr())
err = fxsave_user((struct i387_fxsave_struct __user *) buf);
else
err = fsave_user((struct i387_fsave_struct __user *) buf);
if (unlikely(err) && __clear_user(buf, xstate_size))
err = -EFAULT;
return err;
}
/*
* Save the fpu, extended register state to the user signal frame.
*
* 'buf_fx' is the 64-byte aligned pointer at which the [f|fx|x]save
* state is copied.
* 'buf' points to the 'buf_fx' or to the fsave header followed by 'buf_fx'.
*
* buf == buf_fx for 64-bit frames and 32-bit fsave frame.
* buf != buf_fx for 32-bit frames with fxstate.
*
* If the fpu, extended register state is live, save the state directly
* to the user frame pointed by the aligned pointer 'buf_fx'. Otherwise,
* copy the thread's fpu state to the user frame starting at 'buf_fx'.
*
* If this is a 32-bit frame with fxstate, put a fsave header before
* the aligned state at 'buf_fx'.
*
* For [f]xsave state, update the SW reserved fields in the [f]xsave frame
* indicating the absence/presence of the extended state to the user.
*/
int save_xstate_sig(void __user *buf, void __user *buf_fx, int size)
{
struct xsave_struct *xsave = &current->thread.fpu.state->xsave;
struct task_struct *tsk = current;
int ia32_fxstate = (buf != buf_fx);
ia32_fxstate &= (config_enabled(CONFIG_X86_32) ||
config_enabled(CONFIG_IA32_EMULATION));
if (!access_ok(VERIFY_WRITE, buf, size))
return -EACCES;
if (!static_cpu_has(X86_FEATURE_FPU))
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
return fpregs_soft_get(current, NULL, 0,
sizeof(struct user_i387_ia32_struct), NULL,
(struct _fpstate_ia32 __user *) buf) ? -1 : 1;
if (user_has_fpu()) {
/* Save the live register state to the user directly. */
if (save_user_xstate(buf_fx))
return -1;
/* Update the thread's fxstate to save the fsave header. */
if (ia32_fxstate)
fpu_fxsave(&tsk->thread.fpu);
} else {
sanitize_i387_state(tsk);
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
if (__copy_to_user(buf_fx, xsave, xstate_size))
return -1;
}
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
/* Save the fsave header for the 32-bit frames. */
if ((ia32_fxstate || !use_fxsr()) && save_fsave_header(tsk, buf))
return -1;
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
if (use_fxsr() && save_xstate_epilog(buf_fx, ia32_fxstate))
return -1;
x86, fpu: use non-lazy fpu restore for processors supporting xsave Fundamental model of the current Linux kernel is to lazily init and restore FPU instead of restoring the task state during context switch. This changes that fundamental lazy model to the non-lazy model for the processors supporting xsave feature. Reasons driving this model change are: i. Newer processors support optimized state save/restore using xsaveopt and xrstor by tracking the INIT state and MODIFIED state during context-switch. This is faster than modifying the cr0.TS bit which has serializing semantics. ii. Newer glibc versions use SSE for some of the optimized copy/clear routines. With certain workloads (like boot, kernel-compilation etc), application completes its work with in the first 5 task switches, thus taking upto 5 #DNA traps with the kernel not getting a chance to apply the above mentioned pre-load heuristic. iii. Some xstate features (like AMD's LWP feature) don't honor the cr0.TS bit and thus will not work correctly in the presence of lazy restore. Non-lazy state restore is needed for enabling such features. Some data on a two socket SNB system: * Saved 20K DNA exceptions during boot on a two socket SNB system. * Saved 50K DNA exceptions during kernel-compilation workload. * Improved throughput of the AVX based checksumming function inside the kernel by ~15% as xsave/xrstor is faster than the serializing clts/stts pair. Also now kernel_fpu_begin/end() relies on the patched alternative instructions. So move check_fpu() which uses the kernel_fpu_begin/end() after alternative_instructions(). Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1345842782-24175-7-git-send-email-suresh.b.siddha@intel.com Merge 32-bit boot fix from, Link: http://lkml.kernel.org/r/1347300665-6209-4-git-send-email-suresh.b.siddha@intel.com Cc: Jim Kukunas <james.t.kukunas@linux.intel.com> Cc: NeilBrown <neilb@suse.de> Cc: Avi Kivity <avi@redhat.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-08-24 21:13:02 +00:00
drop_init_fpu(tsk); /* trigger finit */
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
return 0;
}
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
static inline void
sanitize_restored_xstate(struct task_struct *tsk,
struct user_i387_ia32_struct *ia32_env,
u64 xstate_bv, int fx_only)
{
struct xsave_struct *xsave = &tsk->thread.fpu.state->xsave;
struct xsave_hdr_struct *xsave_hdr = &xsave->xsave_hdr;
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
if (use_xsave()) {
/* These bits must be zero. */
xsave_hdr->reserved1[0] = xsave_hdr->reserved1[1] = 0;
/*
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
* Init the state that is not present in the memory
* layout and not enabled by the OS.
*/
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
if (fx_only)
xsave_hdr->xstate_bv = XSTATE_FPSSE;
else
xsave_hdr->xstate_bv &= (pcntxt_mask & xstate_bv);
}
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
if (use_fxsr()) {
/*
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
* mscsr reserved bits must be masked to zero for security
* reasons.
*/
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
xsave->i387.mxcsr &= mxcsr_feature_mask;
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
convert_to_fxsr(tsk, ia32_env);
}
}
/*
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
* Restore the extended state if present. Otherwise, restore the FP/SSE state.
*/
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
static inline int restore_user_xstate(void __user *buf, u64 xbv, int fx_only)
{
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
if (use_xsave()) {
if ((unsigned long)buf % 64 || fx_only) {
u64 init_bv = pcntxt_mask & ~XSTATE_FPSSE;
xrstor_state(init_xstate_buf, init_bv);
return fxrstor_user(buf);
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
} else {
u64 init_bv = pcntxt_mask & ~xbv;
if (unlikely(init_bv))
xrstor_state(init_xstate_buf, init_bv);
return xrestore_user(buf, xbv);
}
} else if (use_fxsr()) {
return fxrstor_user(buf);
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
} else
return frstor_user(buf);
}
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
int __restore_xstate_sig(void __user *buf, void __user *buf_fx, int size)
{
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
int ia32_fxstate = (buf != buf_fx);
struct task_struct *tsk = current;
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
int state_size = xstate_size;
u64 xstate_bv = 0;
int fx_only = 0;
ia32_fxstate &= (config_enabled(CONFIG_X86_32) ||
config_enabled(CONFIG_IA32_EMULATION));
if (!buf) {
x86, fpu: use non-lazy fpu restore for processors supporting xsave Fundamental model of the current Linux kernel is to lazily init and restore FPU instead of restoring the task state during context switch. This changes that fundamental lazy model to the non-lazy model for the processors supporting xsave feature. Reasons driving this model change are: i. Newer processors support optimized state save/restore using xsaveopt and xrstor by tracking the INIT state and MODIFIED state during context-switch. This is faster than modifying the cr0.TS bit which has serializing semantics. ii. Newer glibc versions use SSE for some of the optimized copy/clear routines. With certain workloads (like boot, kernel-compilation etc), application completes its work with in the first 5 task switches, thus taking upto 5 #DNA traps with the kernel not getting a chance to apply the above mentioned pre-load heuristic. iii. Some xstate features (like AMD's LWP feature) don't honor the cr0.TS bit and thus will not work correctly in the presence of lazy restore. Non-lazy state restore is needed for enabling such features. Some data on a two socket SNB system: * Saved 20K DNA exceptions during boot on a two socket SNB system. * Saved 50K DNA exceptions during kernel-compilation workload. * Improved throughput of the AVX based checksumming function inside the kernel by ~15% as xsave/xrstor is faster than the serializing clts/stts pair. Also now kernel_fpu_begin/end() relies on the patched alternative instructions. So move check_fpu() which uses the kernel_fpu_begin/end() after alternative_instructions(). Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1345842782-24175-7-git-send-email-suresh.b.siddha@intel.com Merge 32-bit boot fix from, Link: http://lkml.kernel.org/r/1347300665-6209-4-git-send-email-suresh.b.siddha@intel.com Cc: Jim Kukunas <james.t.kukunas@linux.intel.com> Cc: NeilBrown <neilb@suse.de> Cc: Avi Kivity <avi@redhat.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-08-24 21:13:02 +00:00
drop_init_fpu(tsk);
return 0;
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
}
if (!access_ok(VERIFY_READ, buf, size))
return -EACCES;
if (!used_math() && init_fpu(tsk))
return -1;
if (!static_cpu_has(X86_FEATURE_FPU))
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
return fpregs_soft_set(current, NULL,
0, sizeof(struct user_i387_ia32_struct),
NULL, buf) != 0;
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
if (use_xsave()) {
struct _fpx_sw_bytes fx_sw_user;
if (unlikely(check_for_xstate(buf_fx, buf_fx, &fx_sw_user))) {
/*
* Couldn't find the extended state information in the
* memory layout. Restore just the FP/SSE and init all
* the other extended state.
*/
state_size = sizeof(struct i387_fxsave_struct);
fx_only = 1;
} else {
state_size = fx_sw_user.xstate_size;
xstate_bv = fx_sw_user.xstate_bv;
}
}
if (ia32_fxstate) {
/*
* For 32-bit frames with fxstate, copy the user state to the
* thread's fpu state, reconstruct fxstate from the fsave
* header. Sanitize the copied state etc.
*/
struct xsave_struct *xsave = &tsk->thread.fpu.state->xsave;
struct user_i387_ia32_struct env;
x86, fpu: use non-lazy fpu restore for processors supporting xsave Fundamental model of the current Linux kernel is to lazily init and restore FPU instead of restoring the task state during context switch. This changes that fundamental lazy model to the non-lazy model for the processors supporting xsave feature. Reasons driving this model change are: i. Newer processors support optimized state save/restore using xsaveopt and xrstor by tracking the INIT state and MODIFIED state during context-switch. This is faster than modifying the cr0.TS bit which has serializing semantics. ii. Newer glibc versions use SSE for some of the optimized copy/clear routines. With certain workloads (like boot, kernel-compilation etc), application completes its work with in the first 5 task switches, thus taking upto 5 #DNA traps with the kernel not getting a chance to apply the above mentioned pre-load heuristic. iii. Some xstate features (like AMD's LWP feature) don't honor the cr0.TS bit and thus will not work correctly in the presence of lazy restore. Non-lazy state restore is needed for enabling such features. Some data on a two socket SNB system: * Saved 20K DNA exceptions during boot on a two socket SNB system. * Saved 50K DNA exceptions during kernel-compilation workload. * Improved throughput of the AVX based checksumming function inside the kernel by ~15% as xsave/xrstor is faster than the serializing clts/stts pair. Also now kernel_fpu_begin/end() relies on the patched alternative instructions. So move check_fpu() which uses the kernel_fpu_begin/end() after alternative_instructions(). Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1345842782-24175-7-git-send-email-suresh.b.siddha@intel.com Merge 32-bit boot fix from, Link: http://lkml.kernel.org/r/1347300665-6209-4-git-send-email-suresh.b.siddha@intel.com Cc: Jim Kukunas <james.t.kukunas@linux.intel.com> Cc: NeilBrown <neilb@suse.de> Cc: Avi Kivity <avi@redhat.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-08-24 21:13:02 +00:00
int err = 0;
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
x86, fpu: use non-lazy fpu restore for processors supporting xsave Fundamental model of the current Linux kernel is to lazily init and restore FPU instead of restoring the task state during context switch. This changes that fundamental lazy model to the non-lazy model for the processors supporting xsave feature. Reasons driving this model change are: i. Newer processors support optimized state save/restore using xsaveopt and xrstor by tracking the INIT state and MODIFIED state during context-switch. This is faster than modifying the cr0.TS bit which has serializing semantics. ii. Newer glibc versions use SSE for some of the optimized copy/clear routines. With certain workloads (like boot, kernel-compilation etc), application completes its work with in the first 5 task switches, thus taking upto 5 #DNA traps with the kernel not getting a chance to apply the above mentioned pre-load heuristic. iii. Some xstate features (like AMD's LWP feature) don't honor the cr0.TS bit and thus will not work correctly in the presence of lazy restore. Non-lazy state restore is needed for enabling such features. Some data on a two socket SNB system: * Saved 20K DNA exceptions during boot on a two socket SNB system. * Saved 50K DNA exceptions during kernel-compilation workload. * Improved throughput of the AVX based checksumming function inside the kernel by ~15% as xsave/xrstor is faster than the serializing clts/stts pair. Also now kernel_fpu_begin/end() relies on the patched alternative instructions. So move check_fpu() which uses the kernel_fpu_begin/end() after alternative_instructions(). Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1345842782-24175-7-git-send-email-suresh.b.siddha@intel.com Merge 32-bit boot fix from, Link: http://lkml.kernel.org/r/1347300665-6209-4-git-send-email-suresh.b.siddha@intel.com Cc: Jim Kukunas <james.t.kukunas@linux.intel.com> Cc: NeilBrown <neilb@suse.de> Cc: Avi Kivity <avi@redhat.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-08-24 21:13:02 +00:00
/*
* Drop the current fpu which clears used_math(). This ensures
* that any context-switch during the copy of the new state,
* avoids the intermediate state from getting restored/saved.
* Thus avoiding the new restored state from getting corrupted.
* We will be ready to restore/save the state only after
* set_used_math() is again set.
*/
drop_fpu(tsk);
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
if (__copy_from_user(xsave, buf_fx, state_size) ||
x86, fpu: use non-lazy fpu restore for processors supporting xsave Fundamental model of the current Linux kernel is to lazily init and restore FPU instead of restoring the task state during context switch. This changes that fundamental lazy model to the non-lazy model for the processors supporting xsave feature. Reasons driving this model change are: i. Newer processors support optimized state save/restore using xsaveopt and xrstor by tracking the INIT state and MODIFIED state during context-switch. This is faster than modifying the cr0.TS bit which has serializing semantics. ii. Newer glibc versions use SSE for some of the optimized copy/clear routines. With certain workloads (like boot, kernel-compilation etc), application completes its work with in the first 5 task switches, thus taking upto 5 #DNA traps with the kernel not getting a chance to apply the above mentioned pre-load heuristic. iii. Some xstate features (like AMD's LWP feature) don't honor the cr0.TS bit and thus will not work correctly in the presence of lazy restore. Non-lazy state restore is needed for enabling such features. Some data on a two socket SNB system: * Saved 20K DNA exceptions during boot on a two socket SNB system. * Saved 50K DNA exceptions during kernel-compilation workload. * Improved throughput of the AVX based checksumming function inside the kernel by ~15% as xsave/xrstor is faster than the serializing clts/stts pair. Also now kernel_fpu_begin/end() relies on the patched alternative instructions. So move check_fpu() which uses the kernel_fpu_begin/end() after alternative_instructions(). Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1345842782-24175-7-git-send-email-suresh.b.siddha@intel.com Merge 32-bit boot fix from, Link: http://lkml.kernel.org/r/1347300665-6209-4-git-send-email-suresh.b.siddha@intel.com Cc: Jim Kukunas <james.t.kukunas@linux.intel.com> Cc: NeilBrown <neilb@suse.de> Cc: Avi Kivity <avi@redhat.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-08-24 21:13:02 +00:00
__copy_from_user(&env, buf, sizeof(env))) {
err = -1;
} else {
sanitize_restored_xstate(tsk, &env, xstate_bv, fx_only);
set_used_math();
}
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
if (use_eager_fpu())
x86, fpu: use non-lazy fpu restore for processors supporting xsave Fundamental model of the current Linux kernel is to lazily init and restore FPU instead of restoring the task state during context switch. This changes that fundamental lazy model to the non-lazy model for the processors supporting xsave feature. Reasons driving this model change are: i. Newer processors support optimized state save/restore using xsaveopt and xrstor by tracking the INIT state and MODIFIED state during context-switch. This is faster than modifying the cr0.TS bit which has serializing semantics. ii. Newer glibc versions use SSE for some of the optimized copy/clear routines. With certain workloads (like boot, kernel-compilation etc), application completes its work with in the first 5 task switches, thus taking upto 5 #DNA traps with the kernel not getting a chance to apply the above mentioned pre-load heuristic. iii. Some xstate features (like AMD's LWP feature) don't honor the cr0.TS bit and thus will not work correctly in the presence of lazy restore. Non-lazy state restore is needed for enabling such features. Some data on a two socket SNB system: * Saved 20K DNA exceptions during boot on a two socket SNB system. * Saved 50K DNA exceptions during kernel-compilation workload. * Improved throughput of the AVX based checksumming function inside the kernel by ~15% as xsave/xrstor is faster than the serializing clts/stts pair. Also now kernel_fpu_begin/end() relies on the patched alternative instructions. So move check_fpu() which uses the kernel_fpu_begin/end() after alternative_instructions(). Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1345842782-24175-7-git-send-email-suresh.b.siddha@intel.com Merge 32-bit boot fix from, Link: http://lkml.kernel.org/r/1347300665-6209-4-git-send-email-suresh.b.siddha@intel.com Cc: Jim Kukunas <james.t.kukunas@linux.intel.com> Cc: NeilBrown <neilb@suse.de> Cc: Avi Kivity <avi@redhat.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-08-24 21:13:02 +00:00
math_state_restore();
return err;
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
} else {
/*
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
* For 64-bit frames and 32-bit fsave frames, restore the user
* state to the registers directly (with exceptions handled).
*/
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
user_fpu_begin();
if (restore_user_xstate(buf_fx, xstate_bv, fx_only)) {
x86, fpu: use non-lazy fpu restore for processors supporting xsave Fundamental model of the current Linux kernel is to lazily init and restore FPU instead of restoring the task state during context switch. This changes that fundamental lazy model to the non-lazy model for the processors supporting xsave feature. Reasons driving this model change are: i. Newer processors support optimized state save/restore using xsaveopt and xrstor by tracking the INIT state and MODIFIED state during context-switch. This is faster than modifying the cr0.TS bit which has serializing semantics. ii. Newer glibc versions use SSE for some of the optimized copy/clear routines. With certain workloads (like boot, kernel-compilation etc), application completes its work with in the first 5 task switches, thus taking upto 5 #DNA traps with the kernel not getting a chance to apply the above mentioned pre-load heuristic. iii. Some xstate features (like AMD's LWP feature) don't honor the cr0.TS bit and thus will not work correctly in the presence of lazy restore. Non-lazy state restore is needed for enabling such features. Some data on a two socket SNB system: * Saved 20K DNA exceptions during boot on a two socket SNB system. * Saved 50K DNA exceptions during kernel-compilation workload. * Improved throughput of the AVX based checksumming function inside the kernel by ~15% as xsave/xrstor is faster than the serializing clts/stts pair. Also now kernel_fpu_begin/end() relies on the patched alternative instructions. So move check_fpu() which uses the kernel_fpu_begin/end() after alternative_instructions(). Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1345842782-24175-7-git-send-email-suresh.b.siddha@intel.com Merge 32-bit boot fix from, Link: http://lkml.kernel.org/r/1347300665-6209-4-git-send-email-suresh.b.siddha@intel.com Cc: Jim Kukunas <james.t.kukunas@linux.intel.com> Cc: NeilBrown <neilb@suse.de> Cc: Avi Kivity <avi@redhat.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-08-24 21:13:02 +00:00
drop_init_fpu(tsk);
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
return -1;
}
}
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
return 0;
}
/*
* Prepare the SW reserved portion of the fxsave memory layout, indicating
* the presence of the extended state information in the memory layout
* pointed by the fpstate pointer in the sigcontext.
* This will be saved when ever the FP and extended state context is
* saved on the user stack during the signal handler delivery to the user.
*/
static void prepare_fx_sw_frame(void)
{
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
int fsave_header_size = sizeof(struct i387_fsave_struct);
int size = xstate_size + FP_XSTATE_MAGIC2_SIZE;
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
if (config_enabled(CONFIG_X86_32))
size += fsave_header_size;
fx_sw_reserved.magic1 = FP_XSTATE_MAGIC1;
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
fx_sw_reserved.extended_size = size;
fx_sw_reserved.xstate_bv = pcntxt_mask;
fx_sw_reserved.xstate_size = xstate_size;
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied to/from the fpstate in the task struct. And in the case of signal delivery for x86_64 binaries, if the fpstate is live in the CPU registers, then the live state is copied directly to the user sigframe. Otherwise fpstate in the task struct is copied to the user sigframe. During restore, fpstate in the user sigframe is restored directly to the live CPU registers. Historically, different code paths led to different bugs. For example, x86_64 code path was not preemption safe till recently. Also there is lot of code duplication for support of new features like xsave etc. Unify signal handling code paths for x86 and x86_64 kernels. New strategy is as follows: Signal delivery: Both for 32/64-bit frames, align the core math frame area to 64bytes as needed by xsave (this where the main fpu/extended state gets copied to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave frames). If the state is live, copy the register state directly to the user frame. If not live, copy the state in the thread struct to the user frame. And for 32-bit [f]xsave frames, construct the fsave header separately before the actual [f]xsave area. Signal return: As the 32-bit frames with [f]xstate has an additional 'fsave' header, copy everything back from the user sigframe to the fpstate in the task structure and reconstruct the fxstate from the 'fsave' header (Also user passed pointers may not be correctly aligned for any attempt to directly restore any partial state). At the next fpstate usage, everything will be restored to the live CPU registers. For all the 64-bit frames and the 32-bit fsave frame, restore the state from the user sigframe directly to the live CPU registers. 64-bit signals always restored the math frame directly, so we can expect the math frame pointer to be correctly aligned. For 32-bit fsave frames, there are no alignment requirements, so we can restore the state directly. "lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are with in the noise range with this change. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com [ Merged in compilation fix ] Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-07-24 23:05:29 +00:00
if (config_enabled(CONFIG_IA32_EMULATION)) {
fx_sw_reserved_ia32 = fx_sw_reserved;
fx_sw_reserved_ia32.extended_size += fsave_header_size;
}
}
/*
* Enable the extended processor state save/restore feature
*/
static inline void xstate_enable(void)
{
set_in_cr4(X86_CR4_OSXSAVE);
xsetbv(XCR_XFEATURE_ENABLED_MASK, pcntxt_mask);
}
/*
* Record the offsets and sizes of different state managed by the xsave
* memory layout.
*/
static void __init setup_xstate_features(void)
{
int eax, ebx, ecx, edx, leaf = 0x2;
xstate_features = fls64(pcntxt_mask);
xstate_offsets = alloc_bootmem(xstate_features * sizeof(int));
xstate_sizes = alloc_bootmem(xstate_features * sizeof(int));
do {
cpuid_count(XSTATE_CPUID, leaf, &eax, &ebx, &ecx, &edx);
if (eax == 0)
break;
xstate_offsets[leaf] = ebx;
xstate_sizes[leaf] = eax;
leaf++;
} while (1);
}
/*
* setup the xstate image representing the init state
*/
static void __init setup_init_fpu_buf(void)
{
/*
* Setup init_xstate_buf to represent the init state of
* all the features managed by the xsave
*/
init_xstate_buf = alloc_bootmem_align(xstate_size,
__alignof__(struct xsave_struct));
fx_finit(&init_xstate_buf->i387);
if (!cpu_has_xsave)
return;
setup_xstate_features();
/*
* Init all the features state with header_bv being 0x0
*/
xrstor_state(init_xstate_buf, -1);
/*
* Dump the init state again. This is to identify the init state
* of any feature which is not represented by all zero's.
*/
xsave_state(init_xstate_buf, -1);
}
static enum { AUTO, ENABLE, DISABLE } eagerfpu = AUTO;
static int __init eager_fpu_setup(char *s)
{
if (!strcmp(s, "on"))
eagerfpu = ENABLE;
else if (!strcmp(s, "off"))
eagerfpu = DISABLE;
else if (!strcmp(s, "auto"))
eagerfpu = AUTO;
return 1;
}
__setup("eagerfpu=", eager_fpu_setup);
/*
* Enable and initialize the xsave feature.
*/
static void __init xstate_enable_boot_cpu(void)
{
unsigned int eax, ebx, ecx, edx;
if (boot_cpu_data.cpuid_level < XSTATE_CPUID) {
WARN(1, KERN_ERR "XSTATE_CPUID missing\n");
return;
}
cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
pcntxt_mask = eax + ((u64)edx << 32);
if ((pcntxt_mask & XSTATE_FPSSE) != XSTATE_FPSSE) {
pr_err("FP/SSE not shown under xsave features 0x%llx\n",
pcntxt_mask);
BUG();
}
/*
* Support only the state known to OS.
*/
pcntxt_mask = pcntxt_mask & XCNTXT_MASK;
xstate_enable();
/*
* Recompute the context size for enabled features
*/
cpuid_count(XSTATE_CPUID, 0, &eax, &ebx, &ecx, &edx);
xstate_size = ebx;
update_regset_xstate_info(xstate_size, pcntxt_mask);
prepare_fx_sw_frame();
setup_init_fpu_buf();
/* Auto enable eagerfpu for xsaveopt */
if (cpu_has_xsaveopt && eagerfpu != DISABLE)
eagerfpu = ENABLE;
if (pcntxt_mask & XSTATE_EAGER) {
if (eagerfpu == DISABLE) {
pr_err("eagerfpu not present, disabling some xstate features: 0x%llx\n",
pcntxt_mask & XSTATE_EAGER);
pcntxt_mask &= ~XSTATE_EAGER;
} else {
eagerfpu = ENABLE;
}
}
pr_info("enabled xstate_bv 0x%llx, cntxt size 0x%x\n",
pcntxt_mask, xstate_size);
}
/*
* For the very first instance, this calls xstate_enable_boot_cpu();
* for all subsequent instances, this calls xstate_enable().
*
* This is somewhat obfuscated due to the lack of powerful enough
* overrides for the section checks.
*/
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-18 22:23:59 +00:00
void xsave_init(void)
{
static __refdata void (*next_func)(void) = xstate_enable_boot_cpu;
void (*this_func)(void);
if (!cpu_has_xsave)
return;
this_func = next_func;
next_func = xstate_enable;
this_func();
}
static inline void __init eager_fpu_init_bp(void)
{
current->thread.fpu.state =
alloc_bootmem_align(xstate_size, __alignof__(struct xsave_struct));
if (!init_xstate_buf)
setup_init_fpu_buf();
}
x86: delete __cpuinit usage from all x86 files The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) are flagged as __cpuinit -- so if we remove the __cpuinit from arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. This removes all the arch/x86 uses of the __cpuinit macros from all C files. x86 only had the one __CPUINIT used in assembly files, and it wasn't paired off with a .previous or a __FINIT, so we can delete it directly w/o any corresponding additional change there. [1] https://lkml.org/lkml/2013/5/20/589 Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2013-06-18 22:23:59 +00:00
void eager_fpu_init(void)
{
static __refdata void (*boot_func)(void) = eager_fpu_init_bp;
clear_used_math();
current_thread_info()->status = 0;
if (eagerfpu == ENABLE)
setup_force_cpu_cap(X86_FEATURE_EAGER_FPU);
if (!cpu_has_eager_fpu) {
stts();
return;
}
if (boot_func) {
boot_func();
boot_func = NULL;
}
/*
* This is same as math_state_restore(). But use_xsave() is
* not yet patched to use math_state_restore().
*/
init_fpu(current);
__thread_fpu_begin(current);
if (cpu_has_xsave)
xrstor_state(init_xstate_buf, -1);
else
fxrstor_checking(&init_xstate_buf->i387);
}