linux/drivers/mtd/devices/doc2000.c

1310 lines
35 KiB
C
Raw Normal View History

/*
* Linux driver for Disk-On-Chip 2000 and Millennium
* (c) 1999 Machine Vision Holdings, Inc.
* (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
*
* $Id: doc2000.c,v 1.66 2005/01/05 18:05:12 dwmw2 Exp $
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <linux/miscdevice.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/bitops.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/doc2000.h>
#define DOC_SUPPORT_2000
#define DOC_SUPPORT_2000TSOP
#define DOC_SUPPORT_MILLENNIUM
#ifdef DOC_SUPPORT_2000
#define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k)
#else
#define DoC_is_2000(doc) (0)
#endif
#if defined(DOC_SUPPORT_2000TSOP) || defined(DOC_SUPPORT_MILLENNIUM)
#define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil)
#else
#define DoC_is_Millennium(doc) (0)
#endif
/* #define ECC_DEBUG */
/* I have no idea why some DoC chips can not use memcpy_from|to_io().
* This may be due to the different revisions of the ASIC controller built-in or
* simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment
* this:
#undef USE_MEMCPY
*/
static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf);
static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf);
static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel);
static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel);
static int doc_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs,
unsigned long count, loff_t to, size_t *retlen,
u_char *eccbuf, struct nand_oobinfo *oobsel);
static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
size_t *retlen, u_char *buf);
static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
size_t *retlen, const u_char *buf);
static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
size_t *retlen, const u_char *buf);
static int doc_erase (struct mtd_info *mtd, struct erase_info *instr);
static struct mtd_info *doc2klist = NULL;
/* Perform the required delay cycles by reading from the appropriate register */
static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles)
{
volatile char dummy;
int i;
for (i = 0; i < cycles; i++) {
if (DoC_is_Millennium(doc))
dummy = ReadDOC(doc->virtadr, NOP);
else
dummy = ReadDOC(doc->virtadr, DOCStatus);
}
}
/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
static int _DoC_WaitReady(struct DiskOnChip *doc)
{
void __iomem *docptr = doc->virtadr;
unsigned long timeo = jiffies + (HZ * 10);
DEBUG(MTD_DEBUG_LEVEL3,
"_DoC_WaitReady called for out-of-line wait\n");
/* Out-of-line routine to wait for chip response */
while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
/* issue 2 read from NOP register after reading from CDSNControl register
see Software Requirement 11.4 item 2. */
DoC_Delay(doc, 2);
if (time_after(jiffies, timeo)) {
DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n");
return -EIO;
}
udelay(1);
cond_resched();
}
return 0;
}
static inline int DoC_WaitReady(struct DiskOnChip *doc)
{
void __iomem *docptr = doc->virtadr;
/* This is inline, to optimise the common case, where it's ready instantly */
int ret = 0;
/* 4 read form NOP register should be issued in prior to the read from CDSNControl
see Software Requirement 11.4 item 2. */
DoC_Delay(doc, 4);
if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
/* Call the out-of-line routine to wait */
ret = _DoC_WaitReady(doc);
/* issue 2 read from NOP register after reading from CDSNControl register
see Software Requirement 11.4 item 2. */
DoC_Delay(doc, 2);
return ret;
}
/* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to
bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
static inline int DoC_Command(struct DiskOnChip *doc, unsigned char command,
unsigned char xtraflags)
{
void __iomem *docptr = doc->virtadr;
if (DoC_is_2000(doc))
xtraflags |= CDSN_CTRL_FLASH_IO;
/* Assert the CLE (Command Latch Enable) line to the flash chip */
WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
if (DoC_is_Millennium(doc))
WriteDOC(command, docptr, CDSNSlowIO);
/* Send the command */
WriteDOC_(command, docptr, doc->ioreg);
if (DoC_is_Millennium(doc))
WriteDOC(command, docptr, WritePipeTerm);
/* Lower the CLE line */
WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
/* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */
return DoC_WaitReady(doc);
}
/* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to
bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs,
unsigned char xtraflags1, unsigned char xtraflags2)
{
int i;
void __iomem *docptr = doc->virtadr;
if (DoC_is_2000(doc))
xtraflags1 |= CDSN_CTRL_FLASH_IO;
/* Assert the ALE (Address Latch Enable) line to the flash chip */
WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
/* Send the address */
/* Devices with 256-byte page are addressed as:
Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
* there is no device on the market with page256
and more than 24 bits.
Devices with 512-byte page are addressed as:
Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
* 25-31 is sent only if the chip support it.
* bit 8 changes the read command to be sent
(NAND_CMD_READ0 or NAND_CMD_READ1).
*/
if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) {
if (DoC_is_Millennium(doc))
WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
}
if (doc->page256) {
ofs = ofs >> 8;
} else {
ofs = ofs >> 9;
}
if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) {
if (DoC_is_Millennium(doc))
WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
}
}
if (DoC_is_Millennium(doc))
WriteDOC(ofs & 0xff, docptr, WritePipeTerm);
DoC_Delay(doc, 2); /* Needed for some slow flash chips. mf. */
/* FIXME: The SlowIO's for millennium could be replaced by
a single WritePipeTerm here. mf. */
/* Lower the ALE line */
WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr,
CDSNControl);
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
/* Wait for the chip to respond - Software requirement 11.4.1 */
return DoC_WaitReady(doc);
}
/* Read a buffer from DoC, taking care of Millennium odditys */
static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len)
{
volatile int dummy;
int modulus = 0xffff;
void __iomem *docptr = doc->virtadr;
int i;
if (len <= 0)
return;
if (DoC_is_Millennium(doc)) {
/* Read the data via the internal pipeline through CDSN IO register,
see Pipelined Read Operations 11.3 */
dummy = ReadDOC(docptr, ReadPipeInit);
/* Millennium should use the LastDataRead register - Pipeline Reads */
len--;
/* This is needed for correctly ECC calculation */
modulus = 0xff;
}
for (i = 0; i < len; i++)
buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus));
if (DoC_is_Millennium(doc)) {
buf[i] = ReadDOC(docptr, LastDataRead);
}
}
/* Write a buffer to DoC, taking care of Millennium odditys */
static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len)
{
void __iomem *docptr = doc->virtadr;
int i;
if (len <= 0)
return;
for (i = 0; i < len; i++)
WriteDOC_(buf[i], docptr, doc->ioreg + i);
if (DoC_is_Millennium(doc)) {
WriteDOC(0x00, docptr, WritePipeTerm);
}
}
/* DoC_SelectChip: Select a given flash chip within the current floor */
static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip)
{
void __iomem *docptr = doc->virtadr;
/* Software requirement 11.4.4 before writing DeviceSelect */
/* Deassert the CE line to eliminate glitches on the FCE# outputs */
WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl);
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
/* Select the individual flash chip requested */
WriteDOC(chip, docptr, CDSNDeviceSelect);
DoC_Delay(doc, 4);
/* Reassert the CE line */
WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr,
CDSNControl);
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
/* Wait for it to be ready */
return DoC_WaitReady(doc);
}
/* DoC_SelectFloor: Select a given floor (bank of flash chips) */
static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor)
{
void __iomem *docptr = doc->virtadr;
/* Select the floor (bank) of chips required */
WriteDOC(floor, docptr, FloorSelect);
/* Wait for the chip to be ready */
return DoC_WaitReady(doc);
}
/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
{
int mfr, id, i, j;
volatile char dummy;
/* Page in the required floor/chip */
DoC_SelectFloor(doc, floor);
DoC_SelectChip(doc, chip);
/* Reset the chip */
if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) {
DEBUG(MTD_DEBUG_LEVEL2,
"DoC_Command (reset) for %d,%d returned true\n",
floor, chip);
return 0;
}
/* Read the NAND chip ID: 1. Send ReadID command */
if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) {
DEBUG(MTD_DEBUG_LEVEL2,
"DoC_Command (ReadID) for %d,%d returned true\n",
floor, chip);
return 0;
}
/* Read the NAND chip ID: 2. Send address byte zero */
DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0);
/* Read the manufacturer and device id codes from the device */
if (DoC_is_Millennium(doc)) {
DoC_Delay(doc, 2);
dummy = ReadDOC(doc->virtadr, ReadPipeInit);
mfr = ReadDOC(doc->virtadr, LastDataRead);
DoC_Delay(doc, 2);
dummy = ReadDOC(doc->virtadr, ReadPipeInit);
id = ReadDOC(doc->virtadr, LastDataRead);
} else {
/* CDSN Slow IO register see Software Req 11.4 item 5. */
dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
DoC_Delay(doc, 2);
mfr = ReadDOC_(doc->virtadr, doc->ioreg);
/* CDSN Slow IO register see Software Req 11.4 item 5. */
dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
DoC_Delay(doc, 2);
id = ReadDOC_(doc->virtadr, doc->ioreg);
}
/* No response - return failure */
if (mfr == 0xff || mfr == 0)
return 0;
/* Check it's the same as the first chip we identified.
* M-Systems say that any given DiskOnChip device should only
* contain _one_ type of flash part, although that's not a
* hardware restriction. */
if (doc->mfr) {
if (doc->mfr == mfr && doc->id == id)
return 1; /* This is another the same the first */
else
printk(KERN_WARNING
"Flash chip at floor %d, chip %d is different:\n",
floor, chip);
}
/* Print and store the manufacturer and ID codes. */
for (i = 0; nand_flash_ids[i].name != NULL; i++) {
if (id == nand_flash_ids[i].id) {
/* Try to identify manufacturer */
for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
if (nand_manuf_ids[j].id == mfr)
break;
}
printk(KERN_INFO
"Flash chip found: Manufacturer ID: %2.2X, "
"Chip ID: %2.2X (%s:%s)\n", mfr, id,
nand_manuf_ids[j].name, nand_flash_ids[i].name);
if (!doc->mfr) {
doc->mfr = mfr;
doc->id = id;
doc->chipshift =
ffs((nand_flash_ids[i].chipsize << 20)) - 1;
doc->page256 = (nand_flash_ids[i].pagesize == 256) ? 1 : 0;
doc->pageadrlen = doc->chipshift > 25 ? 3 : 2;
doc->erasesize =
nand_flash_ids[i].erasesize;
return 1;
}
return 0;
}
}
/* We haven't fully identified the chip. Print as much as we know. */
printk(KERN_WARNING "Unknown flash chip found: %2.2X %2.2X\n",
id, mfr);
printk(KERN_WARNING "Please report to dwmw2@infradead.org\n");
return 0;
}
/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
static void DoC_ScanChips(struct DiskOnChip *this, int maxchips)
{
int floor, chip;
int numchips[MAX_FLOORS];
int ret = 1;
this->numchips = 0;
this->mfr = 0;
this->id = 0;
/* For each floor, find the number of valid chips it contains */
for (floor = 0; floor < MAX_FLOORS; floor++) {
ret = 1;
numchips[floor] = 0;
for (chip = 0; chip < maxchips && ret != 0; chip++) {
ret = DoC_IdentChip(this, floor, chip);
if (ret) {
numchips[floor]++;
this->numchips++;
}
}
}
/* If there are none at all that we recognise, bail */
if (!this->numchips) {
printk(KERN_NOTICE "No flash chips recognised.\n");
return;
}
/* Allocate an array to hold the information for each chip */
this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL);
if (!this->chips) {
printk(KERN_NOTICE "No memory for allocating chip info structures\n");
return;
}
ret = 0;
/* Fill out the chip array with {floor, chipno} for each
* detected chip in the device. */
for (floor = 0; floor < MAX_FLOORS; floor++) {
for (chip = 0; chip < numchips[floor]; chip++) {
this->chips[ret].floor = floor;
this->chips[ret].chip = chip;
this->chips[ret].curadr = 0;
this->chips[ret].curmode = 0x50;
ret++;
}
}
/* Calculate and print the total size of the device */
this->totlen = this->numchips * (1 << this->chipshift);
printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n",
this->numchips, this->totlen >> 20);
}
static int DoC2k_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2)
{
int tmp1, tmp2, retval;
if (doc1->physadr == doc2->physadr)
return 1;
/* Use the alias resolution register which was set aside for this
* purpose. If it's value is the same on both chips, they might
* be the same chip, and we write to one and check for a change in
* the other. It's unclear if this register is usuable in the
* DoC 2000 (it's in the Millennium docs), but it seems to work. */
tmp1 = ReadDOC(doc1->virtadr, AliasResolution);
tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
if (tmp1 != tmp2)
return 0;
WriteDOC((tmp1 + 1) % 0xff, doc1->virtadr, AliasResolution);
tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
if (tmp2 == (tmp1 + 1) % 0xff)
retval = 1;
else
retval = 0;
/* Restore register contents. May not be necessary, but do it just to
* be safe. */
WriteDOC(tmp1, doc1->virtadr, AliasResolution);
return retval;
}
static const char im_name[] = "DoC2k_init";
/* This routine is made available to other mtd code via
* inter_module_register. It must only be accessed through
* inter_module_get which will bump the use count of this module. The
* addresses passed back in mtd are valid as long as the use count of
* this module is non-zero, i.e. between inter_module_get and
* inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
*/
static void DoC2k_init(struct mtd_info *mtd)
{
struct DiskOnChip *this = mtd->priv;
struct DiskOnChip *old = NULL;
int maxchips;
/* We must avoid being called twice for the same device. */
if (doc2klist)
old = doc2klist->priv;
while (old) {
if (DoC2k_is_alias(old, this)) {
printk(KERN_NOTICE
"Ignoring DiskOnChip 2000 at 0x%lX - already configured\n",
this->physadr);
iounmap(this->virtadr);
kfree(mtd);
return;
}
if (old->nextdoc)
old = old->nextdoc->priv;
else
old = NULL;
}
switch (this->ChipID) {
case DOC_ChipID_Doc2kTSOP:
mtd->name = "DiskOnChip 2000 TSOP";
this->ioreg = DoC_Mil_CDSN_IO;
/* Pretend it's a Millennium */
this->ChipID = DOC_ChipID_DocMil;
maxchips = MAX_CHIPS;
break;
case DOC_ChipID_Doc2k:
mtd->name = "DiskOnChip 2000";
this->ioreg = DoC_2k_CDSN_IO;
maxchips = MAX_CHIPS;
break;
case DOC_ChipID_DocMil:
mtd->name = "DiskOnChip Millennium";
this->ioreg = DoC_Mil_CDSN_IO;
maxchips = MAX_CHIPS_MIL;
break;
default:
printk("Unknown ChipID 0x%02x\n", this->ChipID);
kfree(mtd);
iounmap(this->virtadr);
return;
}
printk(KERN_NOTICE "%s found at address 0x%lX\n", mtd->name,
this->physadr);
mtd->type = MTD_NANDFLASH;
mtd->flags = MTD_CAP_NANDFLASH;
mtd->ecctype = MTD_ECC_RS_DiskOnChip;
mtd->size = 0;
mtd->erasesize = 0;
mtd->oobblock = 512;
mtd->oobsize = 16;
mtd->owner = THIS_MODULE;
mtd->erase = doc_erase;
mtd->point = NULL;
mtd->unpoint = NULL;
mtd->read = doc_read;
mtd->write = doc_write;
mtd->read_ecc = doc_read_ecc;
mtd->write_ecc = doc_write_ecc;
mtd->writev_ecc = doc_writev_ecc;
mtd->read_oob = doc_read_oob;
mtd->write_oob = doc_write_oob;
mtd->sync = NULL;
this->totlen = 0;
this->numchips = 0;
this->curfloor = -1;
this->curchip = -1;
init_MUTEX(&this->lock);
/* Ident all the chips present. */
DoC_ScanChips(this, maxchips);
if (!this->totlen) {
kfree(mtd);
iounmap(this->virtadr);
} else {
this->nextdoc = doc2klist;
doc2klist = mtd;
mtd->size = this->totlen;
mtd->erasesize = this->erasesize;
add_mtd_device(mtd);
return;
}
}
static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t * retlen, u_char * buf)
{
/* Just a special case of doc_read_ecc */
return doc_read_ecc(mtd, from, len, retlen, buf, NULL, NULL);
}
static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len,
size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
{
struct DiskOnChip *this = mtd->priv;
void __iomem *docptr = this->virtadr;
struct Nand *mychip;
unsigned char syndrome[6];
volatile char dummy;
int i, len256 = 0, ret=0;
size_t left = len;
/* Don't allow read past end of device */
if (from >= this->totlen)
return -EINVAL;
down(&this->lock);
*retlen = 0;
while (left) {
len = left;
/* Don't allow a single read to cross a 512-byte block boundary */
if (from + len > ((from | 0x1ff) + 1))
len = ((from | 0x1ff) + 1) - from;
/* The ECC will not be calculated correctly if less than 512 is read */
if (len != 0x200 && eccbuf)
printk(KERN_WARNING
"ECC needs a full sector read (adr: %lx size %lx)\n",
(long) from, (long) len);
/* printk("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); */
/* Find the chip which is to be used and select it */
mychip = &this->chips[from >> (this->chipshift)];
if (this->curfloor != mychip->floor) {
DoC_SelectFloor(this, mychip->floor);
DoC_SelectChip(this, mychip->chip);
} else if (this->curchip != mychip->chip) {
DoC_SelectChip(this, mychip->chip);
}
this->curfloor = mychip->floor;
this->curchip = mychip->chip;
DoC_Command(this,
(!this->page256
&& (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
CDSN_CTRL_WP);
DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP,
CDSN_CTRL_ECC_IO);
if (eccbuf) {
/* Prime the ECC engine */
WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
WriteDOC(DOC_ECC_EN, docptr, ECCConf);
} else {
/* disable the ECC engine */
WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
}
/* treat crossing 256-byte sector for 2M x 8bits devices */
if (this->page256 && from + len > (from | 0xff) + 1) {
len256 = (from | 0xff) + 1 - from;
DoC_ReadBuf(this, buf, len256);
DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP);
DoC_Address(this, ADDR_COLUMN_PAGE, from + len256,
CDSN_CTRL_WP, CDSN_CTRL_ECC_IO);
}
DoC_ReadBuf(this, &buf[len256], len - len256);
/* Let the caller know we completed it */
*retlen += len;
if (eccbuf) {
/* Read the ECC data through the DiskOnChip ECC logic */
/* Note: this will work even with 2M x 8bit devices as */
/* they have 8 bytes of OOB per 256 page. mf. */
DoC_ReadBuf(this, eccbuf, 6);
/* Flush the pipeline */
if (DoC_is_Millennium(this)) {
dummy = ReadDOC(docptr, ECCConf);
dummy = ReadDOC(docptr, ECCConf);
i = ReadDOC(docptr, ECCConf);
} else {
dummy = ReadDOC(docptr, 2k_ECCStatus);
dummy = ReadDOC(docptr, 2k_ECCStatus);
i = ReadDOC(docptr, 2k_ECCStatus);
}
/* Check the ECC Status */
if (i & 0x80) {
int nb_errors;
/* There was an ECC error */
#ifdef ECC_DEBUG
printk(KERN_ERR "DiskOnChip ECC Error: Read at %lx\n", (long)from);
#endif
/* Read the ECC syndrom through the DiskOnChip ECC logic.
These syndrome will be all ZERO when there is no error */
for (i = 0; i < 6; i++) {
syndrome[i] =
ReadDOC(docptr, ECCSyndrome0 + i);
}
nb_errors = doc_decode_ecc(buf, syndrome);
#ifdef ECC_DEBUG
printk(KERN_ERR "Errors corrected: %x\n", nb_errors);
#endif
if (nb_errors < 0) {
/* We return error, but have actually done the read. Not that
this can be told to user-space, via sys_read(), but at least
MTD-aware stuff can know about it by checking *retlen */
ret = -EIO;
}
}
#ifdef PSYCHO_DEBUG
printk(KERN_DEBUG "ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
(long)from, eccbuf[0], eccbuf[1], eccbuf[2],
eccbuf[3], eccbuf[4], eccbuf[5]);
#endif
/* disable the ECC engine */
WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
}
/* according to 11.4.1, we need to wait for the busy line
* drop if we read to the end of the page. */
if(0 == ((from + len) & 0x1ff))
{
DoC_WaitReady(this);
}
from += len;
left -= len;
buf += len;
}
up(&this->lock);
return ret;
}
static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t * retlen, const u_char * buf)
{
char eccbuf[6];
return doc_write_ecc(mtd, to, len, retlen, buf, eccbuf, NULL);
}
static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len,
size_t * retlen, const u_char * buf,
u_char * eccbuf, struct nand_oobinfo *oobsel)
{
struct DiskOnChip *this = mtd->priv;
int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */
void __iomem *docptr = this->virtadr;
volatile char dummy;
int len256 = 0;
struct Nand *mychip;
size_t left = len;
int status;
/* Don't allow write past end of device */
if (to >= this->totlen)
return -EINVAL;
down(&this->lock);
*retlen = 0;
while (left) {
len = left;
/* Don't allow a single write to cross a 512-byte block boundary */
if (to + len > ((to | 0x1ff) + 1))
len = ((to | 0x1ff) + 1) - to;
/* The ECC will not be calculated correctly if less than 512 is written */
/* DBB-
if (len != 0x200 && eccbuf)
printk(KERN_WARNING
"ECC needs a full sector write (adr: %lx size %lx)\n",
(long) to, (long) len);
-DBB */
/* printk("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */
/* Find the chip which is to be used and select it */
mychip = &this->chips[to >> (this->chipshift)];
if (this->curfloor != mychip->floor) {
DoC_SelectFloor(this, mychip->floor);
DoC_SelectChip(this, mychip->chip);
} else if (this->curchip != mychip->chip) {
DoC_SelectChip(this, mychip->chip);
}
this->curfloor = mychip->floor;
this->curchip = mychip->chip;
/* Set device to main plane of flash */
DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
DoC_Command(this,
(!this->page256
&& (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
CDSN_CTRL_WP);
DoC_Command(this, NAND_CMD_SEQIN, 0);
DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO);
if (eccbuf) {
/* Prime the ECC engine */
WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
} else {
/* disable the ECC engine */
WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
}
/* treat crossing 256-byte sector for 2M x 8bits devices */
if (this->page256 && to + len > (to | 0xff) + 1) {
len256 = (to | 0xff) + 1 - to;
DoC_WriteBuf(this, buf, len256);
DoC_Command(this, NAND_CMD_PAGEPROG, 0);
DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
/* There's an implicit DoC_WaitReady() in DoC_Command */
dummy = ReadDOC(docptr, CDSNSlowIO);
DoC_Delay(this, 2);
if (ReadDOC_(docptr, this->ioreg) & 1) {
printk(KERN_ERR "Error programming flash\n");
/* Error in programming */
*retlen = 0;
up(&this->lock);
return -EIO;
}
DoC_Command(this, NAND_CMD_SEQIN, 0);
DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0,
CDSN_CTRL_ECC_IO);
}
DoC_WriteBuf(this, &buf[len256], len - len256);
if (eccbuf) {
WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr,
CDSNControl);
if (DoC_is_Millennium(this)) {
WriteDOC(0, docptr, NOP);
WriteDOC(0, docptr, NOP);
WriteDOC(0, docptr, NOP);
} else {
WriteDOC_(0, docptr, this->ioreg);
WriteDOC_(0, docptr, this->ioreg);
WriteDOC_(0, docptr, this->ioreg);
}
WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_FLASH_IO | CDSN_CTRL_CE, docptr,
CDSNControl);
/* Read the ECC data through the DiskOnChip ECC logic */
for (di = 0; di < 6; di++) {
eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di);
}
/* Reset the ECC engine */
WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
#ifdef PSYCHO_DEBUG
printk
("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
(long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
eccbuf[4], eccbuf[5]);
#endif
}
DoC_Command(this, NAND_CMD_PAGEPROG, 0);
DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
/* There's an implicit DoC_WaitReady() in DoC_Command */
if (DoC_is_Millennium(this)) {
ReadDOC(docptr, ReadPipeInit);
status = ReadDOC(docptr, LastDataRead);
} else {
dummy = ReadDOC(docptr, CDSNSlowIO);
DoC_Delay(this, 2);
status = ReadDOC_(docptr, this->ioreg);
}
if (status & 1) {
printk(KERN_ERR "Error programming flash\n");
/* Error in programming */
*retlen = 0;
up(&this->lock);
return -EIO;
}
/* Let the caller know we completed it */
*retlen += len;
if (eccbuf) {
unsigned char x[8];
size_t dummy;
int ret;
/* Write the ECC data to flash */
for (di=0; di<6; di++)
x[di] = eccbuf[di];
x[6]=0x55;
x[7]=0x55;
ret = doc_write_oob_nolock(mtd, to, 8, &dummy, x);
if (ret) {
up(&this->lock);
return ret;
}
}
to += len;
left -= len;
buf += len;
}
up(&this->lock);
return 0;
}
static int doc_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs,
unsigned long count, loff_t to, size_t *retlen,
u_char *eccbuf, struct nand_oobinfo *oobsel)
{
static char static_buf[512];
static DECLARE_MUTEX(writev_buf_sem);
size_t totretlen = 0;
size_t thisvecofs = 0;
int ret= 0;
down(&writev_buf_sem);
while(count) {
size_t thislen, thisretlen;
unsigned char *buf;
buf = vecs->iov_base + thisvecofs;
thislen = vecs->iov_len - thisvecofs;
if (thislen >= 512) {
thislen = thislen & ~(512-1);
thisvecofs += thislen;
} else {
/* Not enough to fill a page. Copy into buf */
memcpy(static_buf, buf, thislen);
buf = &static_buf[thislen];
while(count && thislen < 512) {
vecs++;
count--;
thisvecofs = min((512-thislen), vecs->iov_len);
memcpy(buf, vecs->iov_base, thisvecofs);
thislen += thisvecofs;
buf += thisvecofs;
}
buf = static_buf;
}
if (count && thisvecofs == vecs->iov_len) {
thisvecofs = 0;
vecs++;
count--;
}
ret = doc_write_ecc(mtd, to, thislen, &thisretlen, buf, eccbuf, oobsel);
totretlen += thisretlen;
if (ret || thisretlen != thislen)
break;
to += thislen;
}
up(&writev_buf_sem);
*retlen = totretlen;
return ret;
}
static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
size_t * retlen, u_char * buf)
{
struct DiskOnChip *this = mtd->priv;
int len256 = 0, ret;
struct Nand *mychip;
down(&this->lock);
mychip = &this->chips[ofs >> this->chipshift];
if (this->curfloor != mychip->floor) {
DoC_SelectFloor(this, mychip->floor);
DoC_SelectChip(this, mychip->chip);
} else if (this->curchip != mychip->chip) {
DoC_SelectChip(this, mychip->chip);
}
this->curfloor = mychip->floor;
this->curchip = mychip->chip;
/* update address for 2M x 8bit devices. OOB starts on the second */
/* page to maintain compatibility with doc_read_ecc. */
if (this->page256) {
if (!(ofs & 0x8))
ofs += 0x100;
else
ofs -= 0x8;
}
DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0);
/* treat crossing 8-byte OOB data for 2M x 8bit devices */
/* Note: datasheet says it should automaticaly wrap to the */
/* next OOB block, but it didn't work here. mf. */
if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
len256 = (ofs | 0x7) + 1 - ofs;
DoC_ReadBuf(this, buf, len256);
DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff),
CDSN_CTRL_WP, 0);
}
DoC_ReadBuf(this, &buf[len256], len - len256);
*retlen = len;
/* Reading the full OOB data drops us off of the end of the page,
* causing the flash device to go into busy mode, so we need
* to wait until ready 11.4.1 and Toshiba TC58256FT docs */
ret = DoC_WaitReady(this);
up(&this->lock);
return ret;
}
static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
size_t * retlen, const u_char * buf)
{
struct DiskOnChip *this = mtd->priv;
int len256 = 0;
void __iomem *docptr = this->virtadr;
struct Nand *mychip = &this->chips[ofs >> this->chipshift];
volatile int dummy;
int status;
// printk("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",(long)ofs, len,
// buf[0], buf[1], buf[2], buf[3], buf[8], buf[9], buf[14],buf[15]);
/* Find the chip which is to be used and select it */
if (this->curfloor != mychip->floor) {
DoC_SelectFloor(this, mychip->floor);
DoC_SelectChip(this, mychip->chip);
} else if (this->curchip != mychip->chip) {
DoC_SelectChip(this, mychip->chip);
}
this->curfloor = mychip->floor;
this->curchip = mychip->chip;
/* disable the ECC engine */
WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
/* Reset the chip, see Software Requirement 11.4 item 1. */
DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
/* issue the Read2 command to set the pointer to the Spare Data Area. */
DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
/* update address for 2M x 8bit devices. OOB starts on the second */
/* page to maintain compatibility with doc_read_ecc. */
if (this->page256) {
if (!(ofs & 0x8))
ofs += 0x100;
else
ofs -= 0x8;
}
/* issue the Serial Data In command to initial the Page Program process */
DoC_Command(this, NAND_CMD_SEQIN, 0);
DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0);
/* treat crossing 8-byte OOB data for 2M x 8bit devices */
/* Note: datasheet says it should automaticaly wrap to the */
/* next OOB block, but it didn't work here. mf. */
if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
len256 = (ofs | 0x7) + 1 - ofs;
DoC_WriteBuf(this, buf, len256);
DoC_Command(this, NAND_CMD_PAGEPROG, 0);
DoC_Command(this, NAND_CMD_STATUS, 0);
/* DoC_WaitReady() is implicit in DoC_Command */
if (DoC_is_Millennium(this)) {
ReadDOC(docptr, ReadPipeInit);
status = ReadDOC(docptr, LastDataRead);
} else {
dummy = ReadDOC(docptr, CDSNSlowIO);
DoC_Delay(this, 2);
status = ReadDOC_(docptr, this->ioreg);
}
if (status & 1) {
printk(KERN_ERR "Error programming oob data\n");
/* There was an error */
*retlen = 0;
return -EIO;
}
DoC_Command(this, NAND_CMD_SEQIN, 0);
DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0);
}
DoC_WriteBuf(this, &buf[len256], len - len256);
DoC_Command(this, NAND_CMD_PAGEPROG, 0);
DoC_Command(this, NAND_CMD_STATUS, 0);
/* DoC_WaitReady() is implicit in DoC_Command */
if (DoC_is_Millennium(this)) {
ReadDOC(docptr, ReadPipeInit);
status = ReadDOC(docptr, LastDataRead);
} else {
dummy = ReadDOC(docptr, CDSNSlowIO);
DoC_Delay(this, 2);
status = ReadDOC_(docptr, this->ioreg);
}
if (status & 1) {
printk(KERN_ERR "Error programming oob data\n");
/* There was an error */
*retlen = 0;
return -EIO;
}
*retlen = len;
return 0;
}
static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len,
size_t * retlen, const u_char * buf)
{
struct DiskOnChip *this = mtd->priv;
int ret;
down(&this->lock);
ret = doc_write_oob_nolock(mtd, ofs, len, retlen, buf);
up(&this->lock);
return ret;
}
static int doc_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct DiskOnChip *this = mtd->priv;
__u32 ofs = instr->addr;
__u32 len = instr->len;
volatile int dummy;
void __iomem *docptr = this->virtadr;
struct Nand *mychip;
int status;
down(&this->lock);
if (ofs & (mtd->erasesize-1) || len & (mtd->erasesize-1)) {
up(&this->lock);
return -EINVAL;
}
instr->state = MTD_ERASING;
/* FIXME: Do this in the background. Use timers or schedule_task() */
while(len) {
mychip = &this->chips[ofs >> this->chipshift];
if (this->curfloor != mychip->floor) {
DoC_SelectFloor(this, mychip->floor);
DoC_SelectChip(this, mychip->chip);
} else if (this->curchip != mychip->chip) {
DoC_SelectChip(this, mychip->chip);
}
this->curfloor = mychip->floor;
this->curchip = mychip->chip;
DoC_Command(this, NAND_CMD_ERASE1, 0);
DoC_Address(this, ADDR_PAGE, ofs, 0, 0);
DoC_Command(this, NAND_CMD_ERASE2, 0);
DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
if (DoC_is_Millennium(this)) {
ReadDOC(docptr, ReadPipeInit);
status = ReadDOC(docptr, LastDataRead);
} else {
dummy = ReadDOC(docptr, CDSNSlowIO);
DoC_Delay(this, 2);
status = ReadDOC_(docptr, this->ioreg);
}
if (status & 1) {
printk(KERN_ERR "Error erasing at 0x%x\n", ofs);
/* There was an error */
instr->state = MTD_ERASE_FAILED;
goto callback;
}
ofs += mtd->erasesize;
len -= mtd->erasesize;
}
instr->state = MTD_ERASE_DONE;
callback:
mtd_erase_callback(instr);
up(&this->lock);
return 0;
}
/****************************************************************************
*
* Module stuff
*
****************************************************************************/
static int __init init_doc2000(void)
{
inter_module_register(im_name, THIS_MODULE, &DoC2k_init);
return 0;
}
static void __exit cleanup_doc2000(void)
{
struct mtd_info *mtd;
struct DiskOnChip *this;
while ((mtd = doc2klist)) {
this = mtd->priv;
doc2klist = this->nextdoc;
del_mtd_device(mtd);
iounmap(this->virtadr);
kfree(this->chips);
kfree(mtd);
}
inter_module_unregister(im_name);
}
module_exit(cleanup_doc2000);
module_init(init_doc2000);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
MODULE_DESCRIPTION("MTD driver for DiskOnChip 2000 and Millennium");