linux/net/core/netpoll.c

868 lines
19 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Common framework for low-level network console, dump, and debugger code
*
* Sep 8 2003 Matt Mackall <mpm@selenic.com>
*
* based on the netconsole code from:
*
* Copyright (C) 2001 Ingo Molnar <mingo@redhat.com>
* Copyright (C) 2002 Red Hat, Inc.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/string.h>
#include <linux/if_arp.h>
#include <linux/inetdevice.h>
#include <linux/inet.h>
#include <linux/interrupt.h>
#include <linux/netpoll.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/rcupdate.h>
#include <linux/workqueue.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/if_vlan.h>
#include <net/tcp.h>
#include <net/udp.h>
#include <net/addrconf.h>
#include <net/ndisc.h>
#include <net/ip6_checksum.h>
#include <asm/unaligned.h>
#include <trace/events/napi.h>
#include <linux/kconfig.h>
/*
* We maintain a small pool of fully-sized skbs, to make sure the
* message gets out even in extreme OOM situations.
*/
#define MAX_UDP_CHUNK 1460
#define MAX_SKBS 32
static struct sk_buff_head skb_pool;
DEFINE_STATIC_SRCU(netpoll_srcu);
netpoll: protect napi_poll and poll_controller during dev_[open|close] Ivan Vercera was recently backporting commit 9c13cb8bb477a83b9a3c9e5a5478a4e21294a760 to a RHEL kernel, and I noticed that, while this patch protects the tg3 driver from having its ndo_poll_controller routine called during device initalization, it does nothing for the driver during shutdown. I.e. it would be entirely possible to have the ndo_poll_controller method (or subsequently the ndo_poll) routine called for a driver in the netpoll path on CPU A while in parallel on CPU B, the ndo_close or ndo_open routine could be called. Given that the two latter routines tend to initizlize and free many data structures that the former two rely on, the result can easily be data corruption or various other crashes. Furthermore, it seems that this is potentially a problem with all net drivers that support netpoll, and so this should ideally be fixed in a common path. As Ben H Pointed out to me, we can't preform dev_open/dev_close in atomic context, so I've come up with this solution. We can use a mutex to sleep in open/close paths and just do a mutex_trylock in the napi poll path and abandon the poll attempt if we're locked, as we'll just retry the poll on the next send anyway. I've tested this here by flooding netconsole with messages on a system whos nic driver I modfied to periodically return NETDEV_TX_BUSY, so that the netpoll tx workqueue would be forced to send frames and poll the device. While this was going on I rapidly ifdown/up'ed the interface and watched for any problems. I've not found any. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Ivan Vecera <ivecera@redhat.com> CC: "David S. Miller" <davem@davemloft.net> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Francois Romieu <romieu@fr.zoreil.com> CC: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-05 08:05:43 +00:00
#define USEC_PER_POLL 50
#define MAX_SKB_SIZE \
(sizeof(struct ethhdr) + \
sizeof(struct iphdr) + \
sizeof(struct udphdr) + \
MAX_UDP_CHUNK)
static void zap_completion_queue(void);
static unsigned int carrier_timeout = 4;
module_param(carrier_timeout, uint, 0644);
#define np_info(np, fmt, ...) \
pr_info("%s: " fmt, np->name, ##__VA_ARGS__)
#define np_err(np, fmt, ...) \
pr_err("%s: " fmt, np->name, ##__VA_ARGS__)
#define np_notice(np, fmt, ...) \
pr_notice("%s: " fmt, np->name, ##__VA_ARGS__)
static netdev_tx_t netpoll_start_xmit(struct sk_buff *skb,
struct net_device *dev,
struct netdev_queue *txq)
{
netdev_tx_t status = NETDEV_TX_OK;
netdev_features_t features;
features = netif_skb_features(skb);
if (skb_vlan_tag_present(skb) &&
!vlan_hw_offload_capable(features, skb->vlan_proto)) {
skb = __vlan_hwaccel_push_inside(skb);
if (unlikely(!skb)) {
/* This is actually a packet drop, but we
* don't want the code that calls this
* function to try and operate on a NULL skb.
*/
goto out;
}
}
status = netdev_start_xmit(skb, dev, txq, false);
out:
return status;
}
static void queue_process(struct work_struct *work)
{
struct netpoll_info *npinfo =
container_of(work, struct netpoll_info, tx_work.work);
struct sk_buff *skb;
unsigned long flags;
while ((skb = skb_dequeue(&npinfo->txq))) {
struct net_device *dev = skb->dev;
struct netdev_queue *txq;
netpoll: Check for skb->queue_mapping Reducing real_num_tx_queues needs to be in sync with skb queue_mapping otherwise skbs with queue_mapping greater than real_num_tx_queues can be sent to the underlying driver and can result in kernel panic. One such event is running netconsole and enabling VF on the same device. Or running netconsole and changing number of tx queues via ethtool on same device. e.g. Unable to handle kernel NULL pointer dereference tsk->{mm,active_mm}->context = 0000000000001525 tsk->{mm,active_mm}->pgd = fff800130ff9a000 \|/ ____ \|/ "@'/ .. \`@" /_| \__/ |_\ \__U_/ kworker/48:1(475): Oops [#1] CPU: 48 PID: 475 Comm: kworker/48:1 Tainted: G OE 4.11.0-rc3-davem-net+ #7 Workqueue: events queue_process task: fff80013113299c0 task.stack: fff800131132c000 TSTATE: 0000004480e01600 TPC: 00000000103f9e3c TNPC: 00000000103f9e40 Y: 00000000 Tainted: G OE TPC: <ixgbe_xmit_frame_ring+0x7c/0x6c0 [ixgbe]> g0: 0000000000000000 g1: 0000000000003fff g2: 0000000000000000 g3: 0000000000000001 g4: fff80013113299c0 g5: fff8001fa6808000 g6: fff800131132c000 g7: 00000000000000c0 o0: fff8001fa760c460 o1: fff8001311329a50 o2: fff8001fa7607504 o3: 0000000000000003 o4: fff8001f96e63a40 o5: fff8001311d77ec0 sp: fff800131132f0e1 ret_pc: 000000000049ed94 RPC: <set_next_entity+0x34/0xb80> l0: 0000000000000000 l1: 0000000000000800 l2: 0000000000000000 l3: 0000000000000000 l4: 000b2aa30e34b10d l5: 0000000000000000 l6: 0000000000000000 l7: fff8001fa7605028 i0: fff80013111a8a00 i1: fff80013155a0780 i2: 0000000000000000 i3: 0000000000000000 i4: 0000000000000000 i5: 0000000000100000 i6: fff800131132f1a1 i7: 00000000103fa4b0 I7: <ixgbe_xmit_frame+0x30/0xa0 [ixgbe]> Call Trace: [00000000103fa4b0] ixgbe_xmit_frame+0x30/0xa0 [ixgbe] [0000000000998c74] netpoll_start_xmit+0xf4/0x200 [0000000000998e10] queue_process+0x90/0x160 [0000000000485fa8] process_one_work+0x188/0x480 [0000000000486410] worker_thread+0x170/0x4c0 [000000000048c6b8] kthread+0xd8/0x120 [0000000000406064] ret_from_fork+0x1c/0x2c [0000000000000000] (null) Disabling lock debugging due to kernel taint Caller[00000000103fa4b0]: ixgbe_xmit_frame+0x30/0xa0 [ixgbe] Caller[0000000000998c74]: netpoll_start_xmit+0xf4/0x200 Caller[0000000000998e10]: queue_process+0x90/0x160 Caller[0000000000485fa8]: process_one_work+0x188/0x480 Caller[0000000000486410]: worker_thread+0x170/0x4c0 Caller[000000000048c6b8]: kthread+0xd8/0x120 Caller[0000000000406064]: ret_from_fork+0x1c/0x2c Caller[0000000000000000]: (null) Signed-off-by: Tushar Dave <tushar.n.dave@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-20 22:57:31 +00:00
unsigned int q_index;
if (!netif_device_present(dev) || !netif_running(dev)) {
kfree_skb(skb);
continue;
}
local_irq_save(flags);
netpoll: Check for skb->queue_mapping Reducing real_num_tx_queues needs to be in sync with skb queue_mapping otherwise skbs with queue_mapping greater than real_num_tx_queues can be sent to the underlying driver and can result in kernel panic. One such event is running netconsole and enabling VF on the same device. Or running netconsole and changing number of tx queues via ethtool on same device. e.g. Unable to handle kernel NULL pointer dereference tsk->{mm,active_mm}->context = 0000000000001525 tsk->{mm,active_mm}->pgd = fff800130ff9a000 \|/ ____ \|/ "@'/ .. \`@" /_| \__/ |_\ \__U_/ kworker/48:1(475): Oops [#1] CPU: 48 PID: 475 Comm: kworker/48:1 Tainted: G OE 4.11.0-rc3-davem-net+ #7 Workqueue: events queue_process task: fff80013113299c0 task.stack: fff800131132c000 TSTATE: 0000004480e01600 TPC: 00000000103f9e3c TNPC: 00000000103f9e40 Y: 00000000 Tainted: G OE TPC: <ixgbe_xmit_frame_ring+0x7c/0x6c0 [ixgbe]> g0: 0000000000000000 g1: 0000000000003fff g2: 0000000000000000 g3: 0000000000000001 g4: fff80013113299c0 g5: fff8001fa6808000 g6: fff800131132c000 g7: 00000000000000c0 o0: fff8001fa760c460 o1: fff8001311329a50 o2: fff8001fa7607504 o3: 0000000000000003 o4: fff8001f96e63a40 o5: fff8001311d77ec0 sp: fff800131132f0e1 ret_pc: 000000000049ed94 RPC: <set_next_entity+0x34/0xb80> l0: 0000000000000000 l1: 0000000000000800 l2: 0000000000000000 l3: 0000000000000000 l4: 000b2aa30e34b10d l5: 0000000000000000 l6: 0000000000000000 l7: fff8001fa7605028 i0: fff80013111a8a00 i1: fff80013155a0780 i2: 0000000000000000 i3: 0000000000000000 i4: 0000000000000000 i5: 0000000000100000 i6: fff800131132f1a1 i7: 00000000103fa4b0 I7: <ixgbe_xmit_frame+0x30/0xa0 [ixgbe]> Call Trace: [00000000103fa4b0] ixgbe_xmit_frame+0x30/0xa0 [ixgbe] [0000000000998c74] netpoll_start_xmit+0xf4/0x200 [0000000000998e10] queue_process+0x90/0x160 [0000000000485fa8] process_one_work+0x188/0x480 [0000000000486410] worker_thread+0x170/0x4c0 [000000000048c6b8] kthread+0xd8/0x120 [0000000000406064] ret_from_fork+0x1c/0x2c [0000000000000000] (null) Disabling lock debugging due to kernel taint Caller[00000000103fa4b0]: ixgbe_xmit_frame+0x30/0xa0 [ixgbe] Caller[0000000000998c74]: netpoll_start_xmit+0xf4/0x200 Caller[0000000000998e10]: queue_process+0x90/0x160 Caller[0000000000485fa8]: process_one_work+0x188/0x480 Caller[0000000000486410]: worker_thread+0x170/0x4c0 Caller[000000000048c6b8]: kthread+0xd8/0x120 Caller[0000000000406064]: ret_from_fork+0x1c/0x2c Caller[0000000000000000]: (null) Signed-off-by: Tushar Dave <tushar.n.dave@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-20 22:57:31 +00:00
/* check if skb->queue_mapping is still valid */
q_index = skb_get_queue_mapping(skb);
if (unlikely(q_index >= dev->real_num_tx_queues)) {
q_index = q_index % dev->real_num_tx_queues;
skb_set_queue_mapping(skb, q_index);
}
txq = netdev_get_tx_queue(dev, q_index);
HARD_TX_LOCK(dev, txq, smp_processor_id());
if (netif_xmit_frozen_or_stopped(txq) ||
net: fix skb use after free in netpoll After commit baeababb5b85d5c4e6c917efe2a1504179438d3b ("tun: return NET_XMIT_DROP for dropped packets"), when tun_net_xmit drop packets, it will free skb and return NET_XMIT_DROP, netpoll_send_skb_on_dev will run into following use after free cases: 1. retry netpoll_start_xmit with freed skb; 2. queue freed skb in npinfo->txq. queue_process will also run into use after free case. hit netpoll_send_skb_on_dev first case with following kernel log: [ 117.864773] kernel BUG at mm/slub.c:306! [ 117.864773] invalid opcode: 0000 [#1] SMP PTI [ 117.864774] CPU: 3 PID: 2627 Comm: loop_printmsg Kdump: loaded Tainted: P OE 5.3.0-050300rc5-generic #201908182231 [ 117.864775] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014 [ 117.864775] RIP: 0010:kmem_cache_free+0x28d/0x2b0 [ 117.864781] Call Trace: [ 117.864781] ? tun_net_xmit+0x21c/0x460 [ 117.864781] kfree_skbmem+0x4e/0x60 [ 117.864782] kfree_skb+0x3a/0xa0 [ 117.864782] tun_net_xmit+0x21c/0x460 [ 117.864782] netpoll_start_xmit+0x11d/0x1b0 [ 117.864788] netpoll_send_skb_on_dev+0x1b8/0x200 [ 117.864789] __br_forward+0x1b9/0x1e0 [bridge] [ 117.864789] ? skb_clone+0x53/0xd0 [ 117.864790] ? __skb_clone+0x2e/0x120 [ 117.864790] deliver_clone+0x37/0x50 [bridge] [ 117.864790] maybe_deliver+0x89/0xc0 [bridge] [ 117.864791] br_flood+0x6c/0x130 [bridge] [ 117.864791] br_dev_xmit+0x315/0x3c0 [bridge] [ 117.864792] netpoll_start_xmit+0x11d/0x1b0 [ 117.864792] netpoll_send_skb_on_dev+0x1b8/0x200 [ 117.864792] netpoll_send_udp+0x2c6/0x3e8 [ 117.864793] write_msg+0xd9/0xf0 [netconsole] [ 117.864793] console_unlock+0x386/0x4e0 [ 117.864793] vprintk_emit+0x17e/0x280 [ 117.864794] vprintk_default+0x29/0x50 [ 117.864794] vprintk_func+0x4c/0xbc [ 117.864794] printk+0x58/0x6f [ 117.864795] loop_fun+0x24/0x41 [printmsg_loop] [ 117.864795] kthread+0x104/0x140 [ 117.864795] ? 0xffffffffc05b1000 [ 117.864796] ? kthread_park+0x80/0x80 [ 117.864796] ret_from_fork+0x35/0x40 Signed-off-by: Feng Sun <loyou85@gmail.com> Signed-off-by: Xiaojun Zhao <xiaojunzhao141@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 06:46:04 +00:00
!dev_xmit_complete(netpoll_start_xmit(skb, dev, txq))) {
skb_queue_head(&npinfo->txq, skb);
HARD_TX_UNLOCK(dev, txq);
local_irq_restore(flags);
schedule_delayed_work(&npinfo->tx_work, HZ/10);
return;
}
HARD_TX_UNLOCK(dev, txq);
local_irq_restore(flags);
}
}
static int netif_local_xmit_active(struct net_device *dev)
{
int i;
for (i = 0; i < dev->num_tx_queues; i++) {
struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
if (READ_ONCE(txq->xmit_lock_owner) == smp_processor_id())
return 1;
}
return 0;
}
static void poll_one_napi(struct napi_struct *napi)
{
int work;
netpoll: Close race condition between poll_one_napi and napi_disable Drivers might call napi_disable while not holding the napi instance poll_lock. In those instances, its possible for a race condition to exist between poll_one_napi and napi_disable. That is to say, poll_one_napi only tests the NAPI_STATE_SCHED bit to see if there is work to do during a poll, and as such the following may happen: CPU0 CPU1 ndo_tx_timeout napi_poll_dev napi_disable poll_one_napi test_and_set_bit (ret 0) test_bit (ret 1) reset adapter napi_poll_routine If the adapter gets a tx timeout without a napi instance scheduled, its possible for the adapter to think it has exclusive access to the hardware (as the napi instance is now scheduled via the napi_disable call), while the netpoll code thinks there is simply work to do. The result is parallel hardware access leading to corrupt data structures in the driver, and a crash. Additionaly, there is another, more critical race between netpoll and napi_disable. The disabled napi state is actually identical to the scheduled state for a given napi instance. The implication being that, if a napi instance is disabled, a netconsole instance would see the napi state of the device as having been scheduled, and poll it, likely while the driver was dong something requiring exclusive access. In the case above, its fairly clear that not having the rings in a state ready to be polled will cause any number of crashes. The fix should be pretty easy. netpoll uses its own bit to indicate that that the napi instance is in a state of being serviced by netpoll (NAPI_STATE_NPSVC). We can just gate disabling on that bit as well as the sched bit. That should prevent netpoll from conducting a napi poll if we convert its set bit to a test_and_set_bit operation to provide mutual exclusion Change notes: V2) Remove a trailing whtiespace Resubmit with proper subject prefix V3) Clean up spacing nits Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: "David S. Miller" <davem@davemloft.net> CC: jmaxwell@redhat.com Tested-by: jmaxwell@redhat.com Signed-off-by: David S. Miller <davem@davemloft.net>
2015-09-23 18:57:58 +00:00
/* If we set this bit but see that it has already been set,
* that indicates that napi has been disabled and we need
* to abort this operation
*/
if (test_and_set_bit(NAPI_STATE_NPSVC, &napi->state))
return;
/* We explicilty pass the polling call a budget of 0 to
* indicate that we are clearing the Tx path only.
*/
work = napi->poll(napi, 0);
2019-03-25 19:32:28 +00:00
WARN_ONCE(work, "%pS exceeded budget in poll\n", napi->poll);
trace_napi_poll(napi, work, 0);
netpoll: fix race on poll_list resulting in garbage entry A few months back a race was discused between the netpoll napi service path, and the fast path through net_rx_action: http://kerneltrap.org/mailarchive/linux-netdev/2007/10/16/345470 A patch was submitted for that bug, but I think we missed a case. Consider the following scenario: INITIAL STATE CPU0 has one napi_struct A on its poll_list CPU1 is calling netpoll_send_skb and needs to call poll_napi on the same napi_struct A that CPU0 has on its list CPU0 CPU1 net_rx_action poll_napi !list_empty (returns true) locks poll_lock for A poll_one_napi napi->poll netif_rx_complete __napi_complete (removes A from poll_list) list_entry(list->next) In the above scenario, net_rx_action assumes that the per-cpu poll_list is exclusive to that cpu. netpoll of course violates that, and because the netpoll path can dequeue from the poll list, its possible for CPU0 to detect a non-empty list at the top of the while loop in net_rx_action, but have it become empty by the time it calls list_entry. Since the poll_list isn't surrounded by any other structure, the returned data from that list_entry call in this situation is garbage, and any number of crashes can result based on what exactly that garbage is. Given that its not fasible for performance reasons to place exclusive locks arround each cpus poll list to provide that mutal exclusion, I think the best solution is modify the netpoll path in such a way that we continue to guarantee that the poll_list for a cpu is in fact exclusive to that cpu. To do this I've implemented the patch below. It adds an additional bit to the state field in the napi_struct. When executing napi->poll from the netpoll_path, this bit will be set. When a driver calls netif_rx_complete, if that bit is set, it will not remove the napi_struct from the poll_list. That work will be saved for the next iteration of net_rx_action. I've tested this and it seems to work well. About the biggest drawback I can see to it is the fact that it might result in an extra loop through net_rx_action in the event that the device is actually contended for (i.e. the netpoll path actually preforms all the needed work no the device, and the call to net_rx_action winds up doing nothing, except removing the napi_struct from the poll_list. However I think this is probably a small price to pay, given that the alternative is a crash. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-12-10 07:22:26 +00:00
clear_bit(NAPI_STATE_NPSVC, &napi->state);
}
static void poll_napi(struct net_device *dev)
{
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
struct napi_struct *napi;
int cpu = smp_processor_id();
list_for_each_entry_rcu(napi, &dev->napi_list, dev_list) {
if (cmpxchg(&napi->poll_owner, -1, cpu) == -1) {
poll_one_napi(napi);
smp_store_release(&napi->poll_owner, -1);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
}
}
}
void netpoll_poll_dev(struct net_device *dev)
{
struct netpoll_info *ni = rcu_dereference_bh(dev->npinfo);
const struct net_device_ops *ops;
netpoll: protect napi_poll and poll_controller during dev_[open|close] Ivan Vercera was recently backporting commit 9c13cb8bb477a83b9a3c9e5a5478a4e21294a760 to a RHEL kernel, and I noticed that, while this patch protects the tg3 driver from having its ndo_poll_controller routine called during device initalization, it does nothing for the driver during shutdown. I.e. it would be entirely possible to have the ndo_poll_controller method (or subsequently the ndo_poll) routine called for a driver in the netpoll path on CPU A while in parallel on CPU B, the ndo_close or ndo_open routine could be called. Given that the two latter routines tend to initizlize and free many data structures that the former two rely on, the result can easily be data corruption or various other crashes. Furthermore, it seems that this is potentially a problem with all net drivers that support netpoll, and so this should ideally be fixed in a common path. As Ben H Pointed out to me, we can't preform dev_open/dev_close in atomic context, so I've come up with this solution. We can use a mutex to sleep in open/close paths and just do a mutex_trylock in the napi poll path and abandon the poll attempt if we're locked, as we'll just retry the poll on the next send anyway. I've tested this here by flooding netconsole with messages on a system whos nic driver I modfied to periodically return NETDEV_TX_BUSY, so that the netpoll tx workqueue would be forced to send frames and poll the device. While this was going on I rapidly ifdown/up'ed the interface and watched for any problems. I've not found any. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Ivan Vecera <ivecera@redhat.com> CC: "David S. Miller" <davem@davemloft.net> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Francois Romieu <romieu@fr.zoreil.com> CC: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-05 08:05:43 +00:00
/* Don't do any rx activity if the dev_lock mutex is held
* the dev_open/close paths use this to block netpoll activity
* while changing device state
*/
if (!ni || down_trylock(&ni->dev_lock))
netpoll: protect napi_poll and poll_controller during dev_[open|close] Ivan Vercera was recently backporting commit 9c13cb8bb477a83b9a3c9e5a5478a4e21294a760 to a RHEL kernel, and I noticed that, while this patch protects the tg3 driver from having its ndo_poll_controller routine called during device initalization, it does nothing for the driver during shutdown. I.e. it would be entirely possible to have the ndo_poll_controller method (or subsequently the ndo_poll) routine called for a driver in the netpoll path on CPU A while in parallel on CPU B, the ndo_close or ndo_open routine could be called. Given that the two latter routines tend to initizlize and free many data structures that the former two rely on, the result can easily be data corruption or various other crashes. Furthermore, it seems that this is potentially a problem with all net drivers that support netpoll, and so this should ideally be fixed in a common path. As Ben H Pointed out to me, we can't preform dev_open/dev_close in atomic context, so I've come up with this solution. We can use a mutex to sleep in open/close paths and just do a mutex_trylock in the napi poll path and abandon the poll attempt if we're locked, as we'll just retry the poll on the next send anyway. I've tested this here by flooding netconsole with messages on a system whos nic driver I modfied to periodically return NETDEV_TX_BUSY, so that the netpoll tx workqueue would be forced to send frames and poll the device. While this was going on I rapidly ifdown/up'ed the interface and watched for any problems. I've not found any. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Ivan Vecera <ivecera@redhat.com> CC: "David S. Miller" <davem@davemloft.net> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Francois Romieu <romieu@fr.zoreil.com> CC: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-05 08:05:43 +00:00
return;
/* Some drivers will take the same locks in poll and xmit,
* we can't poll if local CPU is already in xmit.
*/
if (!netif_running(dev) || netif_local_xmit_active(dev)) {
netpoll: convert mutex into a semaphore Bart Van Assche recently reported a warning to me: <IRQ> [<ffffffff8103d79f>] warn_slowpath_common+0x7f/0xc0 [<ffffffff8103d7fa>] warn_slowpath_null+0x1a/0x20 [<ffffffff814761dd>] mutex_trylock+0x16d/0x180 [<ffffffff813968c9>] netpoll_poll_dev+0x49/0xc30 [<ffffffff8136a2d2>] ? __alloc_skb+0x82/0x2a0 [<ffffffff81397715>] netpoll_send_skb_on_dev+0x265/0x410 [<ffffffff81397c5a>] netpoll_send_udp+0x28a/0x3a0 [<ffffffffa0541843>] ? write_msg+0x53/0x110 [netconsole] [<ffffffffa05418bf>] write_msg+0xcf/0x110 [netconsole] [<ffffffff8103eba1>] call_console_drivers.constprop.17+0xa1/0x1c0 [<ffffffff8103fb76>] console_unlock+0x2d6/0x450 [<ffffffff8104011e>] vprintk_emit+0x1ee/0x510 [<ffffffff8146f9f6>] printk+0x4d/0x4f [<ffffffffa0004f1d>] scsi_print_command+0x7d/0xe0 [scsi_mod] This resulted from my commit ca99ca14c which introduced a mutex_trylock operation in a path that could execute in interrupt context. When mutex debugging is enabled, the above warns the user when we are in fact exectuting in interrupt context interrupt context. After some discussion, It seems that a semaphore is the proper mechanism to use here. While mutexes are defined to be unusable in interrupt context, no such condition exists for semaphores (save for the fact that the non blocking api calls, like up and down_trylock must be used when in irq context). Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Reported-by: Bart Van Assche <bvanassche@acm.org> CC: Bart Van Assche <bvanassche@acm.org> CC: David Miller <davem@davemloft.net> CC: netdev@vger.kernel.org Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-30 05:35:05 +00:00
up(&ni->dev_lock);
return;
}
ops = dev->netdev_ops;
if (ops->ndo_poll_controller)
ops->ndo_poll_controller(dev);
poll_napi(dev);
netpoll: convert mutex into a semaphore Bart Van Assche recently reported a warning to me: <IRQ> [<ffffffff8103d79f>] warn_slowpath_common+0x7f/0xc0 [<ffffffff8103d7fa>] warn_slowpath_null+0x1a/0x20 [<ffffffff814761dd>] mutex_trylock+0x16d/0x180 [<ffffffff813968c9>] netpoll_poll_dev+0x49/0xc30 [<ffffffff8136a2d2>] ? __alloc_skb+0x82/0x2a0 [<ffffffff81397715>] netpoll_send_skb_on_dev+0x265/0x410 [<ffffffff81397c5a>] netpoll_send_udp+0x28a/0x3a0 [<ffffffffa0541843>] ? write_msg+0x53/0x110 [netconsole] [<ffffffffa05418bf>] write_msg+0xcf/0x110 [netconsole] [<ffffffff8103eba1>] call_console_drivers.constprop.17+0xa1/0x1c0 [<ffffffff8103fb76>] console_unlock+0x2d6/0x450 [<ffffffff8104011e>] vprintk_emit+0x1ee/0x510 [<ffffffff8146f9f6>] printk+0x4d/0x4f [<ffffffffa0004f1d>] scsi_print_command+0x7d/0xe0 [scsi_mod] This resulted from my commit ca99ca14c which introduced a mutex_trylock operation in a path that could execute in interrupt context. When mutex debugging is enabled, the above warns the user when we are in fact exectuting in interrupt context interrupt context. After some discussion, It seems that a semaphore is the proper mechanism to use here. While mutexes are defined to be unusable in interrupt context, no such condition exists for semaphores (save for the fact that the non blocking api calls, like up and down_trylock must be used when in irq context). Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Reported-by: Bart Van Assche <bvanassche@acm.org> CC: Bart Van Assche <bvanassche@acm.org> CC: David Miller <davem@davemloft.net> CC: netdev@vger.kernel.org Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-30 05:35:05 +00:00
up(&ni->dev_lock);
netpoll: protect napi_poll and poll_controller during dev_[open|close] Ivan Vercera was recently backporting commit 9c13cb8bb477a83b9a3c9e5a5478a4e21294a760 to a RHEL kernel, and I noticed that, while this patch protects the tg3 driver from having its ndo_poll_controller routine called during device initalization, it does nothing for the driver during shutdown. I.e. it would be entirely possible to have the ndo_poll_controller method (or subsequently the ndo_poll) routine called for a driver in the netpoll path on CPU A while in parallel on CPU B, the ndo_close or ndo_open routine could be called. Given that the two latter routines tend to initizlize and free many data structures that the former two rely on, the result can easily be data corruption or various other crashes. Furthermore, it seems that this is potentially a problem with all net drivers that support netpoll, and so this should ideally be fixed in a common path. As Ben H Pointed out to me, we can't preform dev_open/dev_close in atomic context, so I've come up with this solution. We can use a mutex to sleep in open/close paths and just do a mutex_trylock in the napi poll path and abandon the poll attempt if we're locked, as we'll just retry the poll on the next send anyway. I've tested this here by flooding netconsole with messages on a system whos nic driver I modfied to periodically return NETDEV_TX_BUSY, so that the netpoll tx workqueue would be forced to send frames and poll the device. While this was going on I rapidly ifdown/up'ed the interface and watched for any problems. I've not found any. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Ivan Vecera <ivecera@redhat.com> CC: "David S. Miller" <davem@davemloft.net> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Francois Romieu <romieu@fr.zoreil.com> CC: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-05 08:05:43 +00:00
zap_completion_queue();
}
EXPORT_SYMBOL(netpoll_poll_dev);
void netpoll_poll_disable(struct net_device *dev)
netpoll: protect napi_poll and poll_controller during dev_[open|close] Ivan Vercera was recently backporting commit 9c13cb8bb477a83b9a3c9e5a5478a4e21294a760 to a RHEL kernel, and I noticed that, while this patch protects the tg3 driver from having its ndo_poll_controller routine called during device initalization, it does nothing for the driver during shutdown. I.e. it would be entirely possible to have the ndo_poll_controller method (or subsequently the ndo_poll) routine called for a driver in the netpoll path on CPU A while in parallel on CPU B, the ndo_close or ndo_open routine could be called. Given that the two latter routines tend to initizlize and free many data structures that the former two rely on, the result can easily be data corruption or various other crashes. Furthermore, it seems that this is potentially a problem with all net drivers that support netpoll, and so this should ideally be fixed in a common path. As Ben H Pointed out to me, we can't preform dev_open/dev_close in atomic context, so I've come up with this solution. We can use a mutex to sleep in open/close paths and just do a mutex_trylock in the napi poll path and abandon the poll attempt if we're locked, as we'll just retry the poll on the next send anyway. I've tested this here by flooding netconsole with messages on a system whos nic driver I modfied to periodically return NETDEV_TX_BUSY, so that the netpoll tx workqueue would be forced to send frames and poll the device. While this was going on I rapidly ifdown/up'ed the interface and watched for any problems. I've not found any. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Ivan Vecera <ivecera@redhat.com> CC: "David S. Miller" <davem@davemloft.net> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Francois Romieu <romieu@fr.zoreil.com> CC: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-05 08:05:43 +00:00
{
struct netpoll_info *ni;
int idx;
might_sleep();
idx = srcu_read_lock(&netpoll_srcu);
ni = srcu_dereference(dev->npinfo, &netpoll_srcu);
if (ni)
netpoll: convert mutex into a semaphore Bart Van Assche recently reported a warning to me: <IRQ> [<ffffffff8103d79f>] warn_slowpath_common+0x7f/0xc0 [<ffffffff8103d7fa>] warn_slowpath_null+0x1a/0x20 [<ffffffff814761dd>] mutex_trylock+0x16d/0x180 [<ffffffff813968c9>] netpoll_poll_dev+0x49/0xc30 [<ffffffff8136a2d2>] ? __alloc_skb+0x82/0x2a0 [<ffffffff81397715>] netpoll_send_skb_on_dev+0x265/0x410 [<ffffffff81397c5a>] netpoll_send_udp+0x28a/0x3a0 [<ffffffffa0541843>] ? write_msg+0x53/0x110 [netconsole] [<ffffffffa05418bf>] write_msg+0xcf/0x110 [netconsole] [<ffffffff8103eba1>] call_console_drivers.constprop.17+0xa1/0x1c0 [<ffffffff8103fb76>] console_unlock+0x2d6/0x450 [<ffffffff8104011e>] vprintk_emit+0x1ee/0x510 [<ffffffff8146f9f6>] printk+0x4d/0x4f [<ffffffffa0004f1d>] scsi_print_command+0x7d/0xe0 [scsi_mod] This resulted from my commit ca99ca14c which introduced a mutex_trylock operation in a path that could execute in interrupt context. When mutex debugging is enabled, the above warns the user when we are in fact exectuting in interrupt context interrupt context. After some discussion, It seems that a semaphore is the proper mechanism to use here. While mutexes are defined to be unusable in interrupt context, no such condition exists for semaphores (save for the fact that the non blocking api calls, like up and down_trylock must be used when in irq context). Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Reported-by: Bart Van Assche <bvanassche@acm.org> CC: Bart Van Assche <bvanassche@acm.org> CC: David Miller <davem@davemloft.net> CC: netdev@vger.kernel.org Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-30 05:35:05 +00:00
down(&ni->dev_lock);
netpoll: protect napi_poll and poll_controller during dev_[open|close] Ivan Vercera was recently backporting commit 9c13cb8bb477a83b9a3c9e5a5478a4e21294a760 to a RHEL kernel, and I noticed that, while this patch protects the tg3 driver from having its ndo_poll_controller routine called during device initalization, it does nothing for the driver during shutdown. I.e. it would be entirely possible to have the ndo_poll_controller method (or subsequently the ndo_poll) routine called for a driver in the netpoll path on CPU A while in parallel on CPU B, the ndo_close or ndo_open routine could be called. Given that the two latter routines tend to initizlize and free many data structures that the former two rely on, the result can easily be data corruption or various other crashes. Furthermore, it seems that this is potentially a problem with all net drivers that support netpoll, and so this should ideally be fixed in a common path. As Ben H Pointed out to me, we can't preform dev_open/dev_close in atomic context, so I've come up with this solution. We can use a mutex to sleep in open/close paths and just do a mutex_trylock in the napi poll path and abandon the poll attempt if we're locked, as we'll just retry the poll on the next send anyway. I've tested this here by flooding netconsole with messages on a system whos nic driver I modfied to periodically return NETDEV_TX_BUSY, so that the netpoll tx workqueue would be forced to send frames and poll the device. While this was going on I rapidly ifdown/up'ed the interface and watched for any problems. I've not found any. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Ivan Vecera <ivecera@redhat.com> CC: "David S. Miller" <davem@davemloft.net> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Francois Romieu <romieu@fr.zoreil.com> CC: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-05 08:05:43 +00:00
srcu_read_unlock(&netpoll_srcu, idx);
}
EXPORT_SYMBOL(netpoll_poll_disable);
netpoll: protect napi_poll and poll_controller during dev_[open|close] Ivan Vercera was recently backporting commit 9c13cb8bb477a83b9a3c9e5a5478a4e21294a760 to a RHEL kernel, and I noticed that, while this patch protects the tg3 driver from having its ndo_poll_controller routine called during device initalization, it does nothing for the driver during shutdown. I.e. it would be entirely possible to have the ndo_poll_controller method (or subsequently the ndo_poll) routine called for a driver in the netpoll path on CPU A while in parallel on CPU B, the ndo_close or ndo_open routine could be called. Given that the two latter routines tend to initizlize and free many data structures that the former two rely on, the result can easily be data corruption or various other crashes. Furthermore, it seems that this is potentially a problem with all net drivers that support netpoll, and so this should ideally be fixed in a common path. As Ben H Pointed out to me, we can't preform dev_open/dev_close in atomic context, so I've come up with this solution. We can use a mutex to sleep in open/close paths and just do a mutex_trylock in the napi poll path and abandon the poll attempt if we're locked, as we'll just retry the poll on the next send anyway. I've tested this here by flooding netconsole with messages on a system whos nic driver I modfied to periodically return NETDEV_TX_BUSY, so that the netpoll tx workqueue would be forced to send frames and poll the device. While this was going on I rapidly ifdown/up'ed the interface and watched for any problems. I've not found any. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Ivan Vecera <ivecera@redhat.com> CC: "David S. Miller" <davem@davemloft.net> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Francois Romieu <romieu@fr.zoreil.com> CC: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-05 08:05:43 +00:00
void netpoll_poll_enable(struct net_device *dev)
netpoll: protect napi_poll and poll_controller during dev_[open|close] Ivan Vercera was recently backporting commit 9c13cb8bb477a83b9a3c9e5a5478a4e21294a760 to a RHEL kernel, and I noticed that, while this patch protects the tg3 driver from having its ndo_poll_controller routine called during device initalization, it does nothing for the driver during shutdown. I.e. it would be entirely possible to have the ndo_poll_controller method (or subsequently the ndo_poll) routine called for a driver in the netpoll path on CPU A while in parallel on CPU B, the ndo_close or ndo_open routine could be called. Given that the two latter routines tend to initizlize and free many data structures that the former two rely on, the result can easily be data corruption or various other crashes. Furthermore, it seems that this is potentially a problem with all net drivers that support netpoll, and so this should ideally be fixed in a common path. As Ben H Pointed out to me, we can't preform dev_open/dev_close in atomic context, so I've come up with this solution. We can use a mutex to sleep in open/close paths and just do a mutex_trylock in the napi poll path and abandon the poll attempt if we're locked, as we'll just retry the poll on the next send anyway. I've tested this here by flooding netconsole with messages on a system whos nic driver I modfied to periodically return NETDEV_TX_BUSY, so that the netpoll tx workqueue would be forced to send frames and poll the device. While this was going on I rapidly ifdown/up'ed the interface and watched for any problems. I've not found any. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Ivan Vecera <ivecera@redhat.com> CC: "David S. Miller" <davem@davemloft.net> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Francois Romieu <romieu@fr.zoreil.com> CC: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-05 08:05:43 +00:00
{
struct netpoll_info *ni;
rcu_read_lock();
ni = rcu_dereference(dev->npinfo);
if (ni)
netpoll: convert mutex into a semaphore Bart Van Assche recently reported a warning to me: <IRQ> [<ffffffff8103d79f>] warn_slowpath_common+0x7f/0xc0 [<ffffffff8103d7fa>] warn_slowpath_null+0x1a/0x20 [<ffffffff814761dd>] mutex_trylock+0x16d/0x180 [<ffffffff813968c9>] netpoll_poll_dev+0x49/0xc30 [<ffffffff8136a2d2>] ? __alloc_skb+0x82/0x2a0 [<ffffffff81397715>] netpoll_send_skb_on_dev+0x265/0x410 [<ffffffff81397c5a>] netpoll_send_udp+0x28a/0x3a0 [<ffffffffa0541843>] ? write_msg+0x53/0x110 [netconsole] [<ffffffffa05418bf>] write_msg+0xcf/0x110 [netconsole] [<ffffffff8103eba1>] call_console_drivers.constprop.17+0xa1/0x1c0 [<ffffffff8103fb76>] console_unlock+0x2d6/0x450 [<ffffffff8104011e>] vprintk_emit+0x1ee/0x510 [<ffffffff8146f9f6>] printk+0x4d/0x4f [<ffffffffa0004f1d>] scsi_print_command+0x7d/0xe0 [scsi_mod] This resulted from my commit ca99ca14c which introduced a mutex_trylock operation in a path that could execute in interrupt context. When mutex debugging is enabled, the above warns the user when we are in fact exectuting in interrupt context interrupt context. After some discussion, It seems that a semaphore is the proper mechanism to use here. While mutexes are defined to be unusable in interrupt context, no such condition exists for semaphores (save for the fact that the non blocking api calls, like up and down_trylock must be used when in irq context). Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Reported-by: Bart Van Assche <bvanassche@acm.org> CC: Bart Van Assche <bvanassche@acm.org> CC: David Miller <davem@davemloft.net> CC: netdev@vger.kernel.org Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-30 05:35:05 +00:00
up(&ni->dev_lock);
netpoll: protect napi_poll and poll_controller during dev_[open|close] Ivan Vercera was recently backporting commit 9c13cb8bb477a83b9a3c9e5a5478a4e21294a760 to a RHEL kernel, and I noticed that, while this patch protects the tg3 driver from having its ndo_poll_controller routine called during device initalization, it does nothing for the driver during shutdown. I.e. it would be entirely possible to have the ndo_poll_controller method (or subsequently the ndo_poll) routine called for a driver in the netpoll path on CPU A while in parallel on CPU B, the ndo_close or ndo_open routine could be called. Given that the two latter routines tend to initizlize and free many data structures that the former two rely on, the result can easily be data corruption or various other crashes. Furthermore, it seems that this is potentially a problem with all net drivers that support netpoll, and so this should ideally be fixed in a common path. As Ben H Pointed out to me, we can't preform dev_open/dev_close in atomic context, so I've come up with this solution. We can use a mutex to sleep in open/close paths and just do a mutex_trylock in the napi poll path and abandon the poll attempt if we're locked, as we'll just retry the poll on the next send anyway. I've tested this here by flooding netconsole with messages on a system whos nic driver I modfied to periodically return NETDEV_TX_BUSY, so that the netpoll tx workqueue would be forced to send frames and poll the device. While this was going on I rapidly ifdown/up'ed the interface and watched for any problems. I've not found any. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Ivan Vecera <ivecera@redhat.com> CC: "David S. Miller" <davem@davemloft.net> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Francois Romieu <romieu@fr.zoreil.com> CC: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-05 08:05:43 +00:00
rcu_read_unlock();
}
EXPORT_SYMBOL(netpoll_poll_enable);
netpoll: protect napi_poll and poll_controller during dev_[open|close] Ivan Vercera was recently backporting commit 9c13cb8bb477a83b9a3c9e5a5478a4e21294a760 to a RHEL kernel, and I noticed that, while this patch protects the tg3 driver from having its ndo_poll_controller routine called during device initalization, it does nothing for the driver during shutdown. I.e. it would be entirely possible to have the ndo_poll_controller method (or subsequently the ndo_poll) routine called for a driver in the netpoll path on CPU A while in parallel on CPU B, the ndo_close or ndo_open routine could be called. Given that the two latter routines tend to initizlize and free many data structures that the former two rely on, the result can easily be data corruption or various other crashes. Furthermore, it seems that this is potentially a problem with all net drivers that support netpoll, and so this should ideally be fixed in a common path. As Ben H Pointed out to me, we can't preform dev_open/dev_close in atomic context, so I've come up with this solution. We can use a mutex to sleep in open/close paths and just do a mutex_trylock in the napi poll path and abandon the poll attempt if we're locked, as we'll just retry the poll on the next send anyway. I've tested this here by flooding netconsole with messages on a system whos nic driver I modfied to periodically return NETDEV_TX_BUSY, so that the netpoll tx workqueue would be forced to send frames and poll the device. While this was going on I rapidly ifdown/up'ed the interface and watched for any problems. I've not found any. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Ivan Vecera <ivecera@redhat.com> CC: "David S. Miller" <davem@davemloft.net> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Francois Romieu <romieu@fr.zoreil.com> CC: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-05 08:05:43 +00:00
static void refill_skbs(void)
{
struct sk_buff *skb;
unsigned long flags;
spin_lock_irqsave(&skb_pool.lock, flags);
while (skb_pool.qlen < MAX_SKBS) {
skb = alloc_skb(MAX_SKB_SIZE, GFP_ATOMIC);
if (!skb)
break;
__skb_queue_tail(&skb_pool, skb);
}
spin_unlock_irqrestore(&skb_pool.lock, flags);
}
static void zap_completion_queue(void)
{
unsigned long flags;
struct softnet_data *sd = &get_cpu_var(softnet_data);
if (sd->completion_queue) {
struct sk_buff *clist;
local_irq_save(flags);
clist = sd->completion_queue;
sd->completion_queue = NULL;
local_irq_restore(flags);
while (clist != NULL) {
struct sk_buff *skb = clist;
clist = clist->next;
if (!skb_irq_freeable(skb)) {
refcount_set(&skb->users, 1);
dev_kfree_skb_any(skb); /* put this one back */
} else {
__kfree_skb(skb);
}
}
}
put_cpu_var(softnet_data);
}
static struct sk_buff *find_skb(struct netpoll *np, int len, int reserve)
{
int count = 0;
struct sk_buff *skb;
zap_completion_queue();
refill_skbs();
repeat:
skb = alloc_skb(len, GFP_ATOMIC);
if (!skb)
skb = skb_dequeue(&skb_pool);
if (!skb) {
if (++count < 10) {
netpoll_poll_dev(np->dev);
goto repeat;
}
return NULL;
}
refcount_set(&skb->users, 1);
skb_reserve(skb, reserve);
return skb;
}
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
static int netpoll_owner_active(struct net_device *dev)
{
struct napi_struct *napi;
list_for_each_entry_rcu(napi, &dev->napi_list, dev_list) {
if (READ_ONCE(napi->poll_owner) == smp_processor_id())
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
return 1;
}
return 0;
}
/* call with IRQ disabled */
static netdev_tx_t __netpoll_send_skb(struct netpoll *np, struct sk_buff *skb)
{
netdev_tx_t status = NETDEV_TX_BUSY;
struct net_device *dev;
unsigned long tries;
/* It is up to the caller to keep npinfo alive. */
struct netpoll_info *npinfo;
lockdep_assert_irqs_disabled();
dev = np->dev;
npinfo = rcu_dereference_bh(dev->npinfo);
if (!npinfo || !netif_running(dev) || !netif_device_present(dev)) {
dev_kfree_skb_irq(skb);
return NET_XMIT_DROP;
}
/* don't get messages out of order, and no recursion */
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-03 23:41:36 +00:00
if (skb_queue_len(&npinfo->txq) == 0 && !netpoll_owner_active(dev)) {
struct netdev_queue *txq;
txq = netdev_core_pick_tx(dev, skb, NULL);
/* try until next clock tick */
for (tries = jiffies_to_usecs(1)/USEC_PER_POLL;
tries > 0; --tries) {
if (HARD_TX_TRYLOCK(dev, txq)) {
if (!netif_xmit_stopped(txq))
status = netpoll_start_xmit(skb, dev, txq);
HARD_TX_UNLOCK(dev, txq);
net: fix skb use after free in netpoll After commit baeababb5b85d5c4e6c917efe2a1504179438d3b ("tun: return NET_XMIT_DROP for dropped packets"), when tun_net_xmit drop packets, it will free skb and return NET_XMIT_DROP, netpoll_send_skb_on_dev will run into following use after free cases: 1. retry netpoll_start_xmit with freed skb; 2. queue freed skb in npinfo->txq. queue_process will also run into use after free case. hit netpoll_send_skb_on_dev first case with following kernel log: [ 117.864773] kernel BUG at mm/slub.c:306! [ 117.864773] invalid opcode: 0000 [#1] SMP PTI [ 117.864774] CPU: 3 PID: 2627 Comm: loop_printmsg Kdump: loaded Tainted: P OE 5.3.0-050300rc5-generic #201908182231 [ 117.864775] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014 [ 117.864775] RIP: 0010:kmem_cache_free+0x28d/0x2b0 [ 117.864781] Call Trace: [ 117.864781] ? tun_net_xmit+0x21c/0x460 [ 117.864781] kfree_skbmem+0x4e/0x60 [ 117.864782] kfree_skb+0x3a/0xa0 [ 117.864782] tun_net_xmit+0x21c/0x460 [ 117.864782] netpoll_start_xmit+0x11d/0x1b0 [ 117.864788] netpoll_send_skb_on_dev+0x1b8/0x200 [ 117.864789] __br_forward+0x1b9/0x1e0 [bridge] [ 117.864789] ? skb_clone+0x53/0xd0 [ 117.864790] ? __skb_clone+0x2e/0x120 [ 117.864790] deliver_clone+0x37/0x50 [bridge] [ 117.864790] maybe_deliver+0x89/0xc0 [bridge] [ 117.864791] br_flood+0x6c/0x130 [bridge] [ 117.864791] br_dev_xmit+0x315/0x3c0 [bridge] [ 117.864792] netpoll_start_xmit+0x11d/0x1b0 [ 117.864792] netpoll_send_skb_on_dev+0x1b8/0x200 [ 117.864792] netpoll_send_udp+0x2c6/0x3e8 [ 117.864793] write_msg+0xd9/0xf0 [netconsole] [ 117.864793] console_unlock+0x386/0x4e0 [ 117.864793] vprintk_emit+0x17e/0x280 [ 117.864794] vprintk_default+0x29/0x50 [ 117.864794] vprintk_func+0x4c/0xbc [ 117.864794] printk+0x58/0x6f [ 117.864795] loop_fun+0x24/0x41 [printmsg_loop] [ 117.864795] kthread+0x104/0x140 [ 117.864795] ? 0xffffffffc05b1000 [ 117.864796] ? kthread_park+0x80/0x80 [ 117.864796] ret_from_fork+0x35/0x40 Signed-off-by: Feng Sun <loyou85@gmail.com> Signed-off-by: Xiaojun Zhao <xiaojunzhao141@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 06:46:04 +00:00
if (dev_xmit_complete(status))
break;
}
/* tickle device maybe there is some cleanup */
netpoll_poll_dev(np->dev);
udelay(USEC_PER_POLL);
}
WARN_ONCE(!irqs_disabled(),
2019-03-25 19:32:28 +00:00
"netpoll_send_skb_on_dev(): %s enabled interrupts in poll (%pS)\n",
dev->name, dev->netdev_ops->ndo_start_xmit);
}
net: fix skb use after free in netpoll After commit baeababb5b85d5c4e6c917efe2a1504179438d3b ("tun: return NET_XMIT_DROP for dropped packets"), when tun_net_xmit drop packets, it will free skb and return NET_XMIT_DROP, netpoll_send_skb_on_dev will run into following use after free cases: 1. retry netpoll_start_xmit with freed skb; 2. queue freed skb in npinfo->txq. queue_process will also run into use after free case. hit netpoll_send_skb_on_dev first case with following kernel log: [ 117.864773] kernel BUG at mm/slub.c:306! [ 117.864773] invalid opcode: 0000 [#1] SMP PTI [ 117.864774] CPU: 3 PID: 2627 Comm: loop_printmsg Kdump: loaded Tainted: P OE 5.3.0-050300rc5-generic #201908182231 [ 117.864775] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014 [ 117.864775] RIP: 0010:kmem_cache_free+0x28d/0x2b0 [ 117.864781] Call Trace: [ 117.864781] ? tun_net_xmit+0x21c/0x460 [ 117.864781] kfree_skbmem+0x4e/0x60 [ 117.864782] kfree_skb+0x3a/0xa0 [ 117.864782] tun_net_xmit+0x21c/0x460 [ 117.864782] netpoll_start_xmit+0x11d/0x1b0 [ 117.864788] netpoll_send_skb_on_dev+0x1b8/0x200 [ 117.864789] __br_forward+0x1b9/0x1e0 [bridge] [ 117.864789] ? skb_clone+0x53/0xd0 [ 117.864790] ? __skb_clone+0x2e/0x120 [ 117.864790] deliver_clone+0x37/0x50 [bridge] [ 117.864790] maybe_deliver+0x89/0xc0 [bridge] [ 117.864791] br_flood+0x6c/0x130 [bridge] [ 117.864791] br_dev_xmit+0x315/0x3c0 [bridge] [ 117.864792] netpoll_start_xmit+0x11d/0x1b0 [ 117.864792] netpoll_send_skb_on_dev+0x1b8/0x200 [ 117.864792] netpoll_send_udp+0x2c6/0x3e8 [ 117.864793] write_msg+0xd9/0xf0 [netconsole] [ 117.864793] console_unlock+0x386/0x4e0 [ 117.864793] vprintk_emit+0x17e/0x280 [ 117.864794] vprintk_default+0x29/0x50 [ 117.864794] vprintk_func+0x4c/0xbc [ 117.864794] printk+0x58/0x6f [ 117.864795] loop_fun+0x24/0x41 [printmsg_loop] [ 117.864795] kthread+0x104/0x140 [ 117.864795] ? 0xffffffffc05b1000 [ 117.864796] ? kthread_park+0x80/0x80 [ 117.864796] ret_from_fork+0x35/0x40 Signed-off-by: Feng Sun <loyou85@gmail.com> Signed-off-by: Xiaojun Zhao <xiaojunzhao141@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-08-26 06:46:04 +00:00
if (!dev_xmit_complete(status)) {
skb_queue_tail(&npinfo->txq, skb);
schedule_delayed_work(&npinfo->tx_work,0);
}
return NETDEV_TX_OK;
}
netdev_tx_t netpoll_send_skb(struct netpoll *np, struct sk_buff *skb)
{
unsigned long flags;
netdev_tx_t ret;
if (unlikely(!np)) {
dev_kfree_skb_irq(skb);
ret = NET_XMIT_DROP;
} else {
local_irq_save(flags);
ret = __netpoll_send_skb(np, skb);
local_irq_restore(flags);
}
return ret;
}
EXPORT_SYMBOL(netpoll_send_skb);
void netpoll_send_udp(struct netpoll *np, const char *msg, int len)
{
int total_len, ip_len, udp_len;
struct sk_buff *skb;
struct udphdr *udph;
struct iphdr *iph;
struct ethhdr *eth;
static atomic_t ip_ident;
struct ipv6hdr *ip6h;
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
WARN_ON_ONCE(!irqs_disabled());
udp_len = len + sizeof(*udph);
if (np->ipv6)
ip_len = udp_len + sizeof(*ip6h);
else
ip_len = udp_len + sizeof(*iph);
total_len = ip_len + LL_RESERVED_SPACE(np->dev);
skb = find_skb(np, total_len + np->dev->needed_tailroom,
total_len - len);
if (!skb)
return;
skb_copy_to_linear_data(skb, msg, len);
skb_put(skb, len);
skb_push(skb, sizeof(*udph));
skb_reset_transport_header(skb);
udph = udp_hdr(skb);
udph->source = htons(np->local_port);
udph->dest = htons(np->remote_port);
udph->len = htons(udp_len);
if (np->ipv6) {
udph->check = 0;
udph->check = csum_ipv6_magic(&np->local_ip.in6,
&np->remote_ip.in6,
udp_len, IPPROTO_UDP,
csum_partial(udph, udp_len, 0));
if (udph->check == 0)
udph->check = CSUM_MANGLED_0;
skb_push(skb, sizeof(*ip6h));
skb_reset_network_header(skb);
ip6h = ipv6_hdr(skb);
/* ip6h->version = 6; ip6h->priority = 0; */
*(unsigned char *)ip6h = 0x60;
ip6h->flow_lbl[0] = 0;
ip6h->flow_lbl[1] = 0;
ip6h->flow_lbl[2] = 0;
ip6h->payload_len = htons(sizeof(struct udphdr) + len);
ip6h->nexthdr = IPPROTO_UDP;
ip6h->hop_limit = 32;
ip6h->saddr = np->local_ip.in6;
ip6h->daddr = np->remote_ip.in6;
eth = skb_push(skb, ETH_HLEN);
skb_reset_mac_header(skb);
skb->protocol = eth->h_proto = htons(ETH_P_IPV6);
} else {
udph->check = 0;
udph->check = csum_tcpudp_magic(np->local_ip.ip,
np->remote_ip.ip,
udp_len, IPPROTO_UDP,
csum_partial(udph, udp_len, 0));
if (udph->check == 0)
udph->check = CSUM_MANGLED_0;
skb_push(skb, sizeof(*iph));
skb_reset_network_header(skb);
iph = ip_hdr(skb);
/* iph->version = 4; iph->ihl = 5; */
*(unsigned char *)iph = 0x45;
iph->tos = 0;
put_unaligned(htons(ip_len), &(iph->tot_len));
iph->id = htons(atomic_inc_return(&ip_ident));
iph->frag_off = 0;
iph->ttl = 64;
iph->protocol = IPPROTO_UDP;
iph->check = 0;
put_unaligned(np->local_ip.ip, &(iph->saddr));
put_unaligned(np->remote_ip.ip, &(iph->daddr));
iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
eth = skb_push(skb, ETH_HLEN);
skb_reset_mac_header(skb);
skb->protocol = eth->h_proto = htons(ETH_P_IP);
}
ether_addr_copy(eth->h_source, np->dev->dev_addr);
ether_addr_copy(eth->h_dest, np->remote_mac);
skb->dev = np->dev;
netpoll_send_skb(np, skb);
}
EXPORT_SYMBOL(netpoll_send_udp);
[NET] netconsole: Support dynamic reconfiguration using configfs Based upon initial work by Keiichi Kii <k-keiichi@bx.jp.nec.com>. This patch introduces support for dynamic reconfiguration (adding, removing and/or modifying parameters of netconsole targets at runtime) using a userspace interface exported via configfs. Documentation is also updated accordingly. Issues and brief design overview: (1) Kernel-initiated creation / destruction of kernel objects is not possible with configfs -- the lifetimes of the "config items" is managed exclusively from userspace. But netconsole must support boot/module params too, and these are parsed in kernel and hence netpolls must be setup from the kernel. Joel Becker suggested to separately manage the lifetimes of the two kinds of netconsole_target objects -- those created via configfs mkdir(2) from userspace and those specified from the boot/module option string. This adds complexity and some redundancy here and also means that boot/module param-created targets are not exposed through the configfs namespace (and hence cannot be updated / destroyed dynamically). However, this saves us from locking / refcounting complexities that would need to be introduced in configfs to support kernel-initiated item creation / destroy there. (2) In configfs, item creation takes place in the call chain of the mkdir(2) syscall in the driver subsystem. If we used an ioctl(2) to create / destroy objects from userspace, the special userspace program is able to fill out the structure to be passed into the ioctl and hence specify attributes such as local interface that are required at the time we set up the netpoll. For configfs, this information is not available at the time of mkdir(2). So, we keep all newly-created targets (via configfs) disabled by default. The user is expected to set various attributes appropriately (including the local network interface if required) and then write(2) "1" to the "enabled" attribute. Thus, netpoll_setup() is then called on the set parameters in the context of _this_ write(2) on the "enabled" attribute itself. This design enables the user to reconfigure existing netconsole targets at runtime to be attached to newly-come-up interfaces that may not have existed when netconsole was loaded or when the targets were actually created. All this effectively enables us to get rid of custom ioctls. (3) Ultra-paranoid configfs attribute show() and store() operations, with sanity and input range checking, using only safe string primitives, and compliant with the recommendations in Documentation/filesystems/sysfs.txt. (4) A new function netpoll_print_options() is created in the netpoll API, that just prints out the configured parameters for a netpoll structure. netpoll_parse_options() is modified to use that and it is also exported to be used from netconsole. Signed-off-by: Satyam Sharma <satyam@infradead.org> Acked-by: Keiichi Kii <k-keiichi@bx.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-08-10 22:35:05 +00:00
void netpoll_print_options(struct netpoll *np)
{
np_info(np, "local port %d\n", np->local_port);
if (np->ipv6)
np_info(np, "local IPv6 address %pI6c\n", &np->local_ip.in6);
else
np_info(np, "local IPv4 address %pI4\n", &np->local_ip.ip);
np_info(np, "interface '%s'\n", np->dev_name);
np_info(np, "remote port %d\n", np->remote_port);
if (np->ipv6)
np_info(np, "remote IPv6 address %pI6c\n", &np->remote_ip.in6);
else
np_info(np, "remote IPv4 address %pI4\n", &np->remote_ip.ip);
np_info(np, "remote ethernet address %pM\n", np->remote_mac);
[NET] netconsole: Support dynamic reconfiguration using configfs Based upon initial work by Keiichi Kii <k-keiichi@bx.jp.nec.com>. This patch introduces support for dynamic reconfiguration (adding, removing and/or modifying parameters of netconsole targets at runtime) using a userspace interface exported via configfs. Documentation is also updated accordingly. Issues and brief design overview: (1) Kernel-initiated creation / destruction of kernel objects is not possible with configfs -- the lifetimes of the "config items" is managed exclusively from userspace. But netconsole must support boot/module params too, and these are parsed in kernel and hence netpolls must be setup from the kernel. Joel Becker suggested to separately manage the lifetimes of the two kinds of netconsole_target objects -- those created via configfs mkdir(2) from userspace and those specified from the boot/module option string. This adds complexity and some redundancy here and also means that boot/module param-created targets are not exposed through the configfs namespace (and hence cannot be updated / destroyed dynamically). However, this saves us from locking / refcounting complexities that would need to be introduced in configfs to support kernel-initiated item creation / destroy there. (2) In configfs, item creation takes place in the call chain of the mkdir(2) syscall in the driver subsystem. If we used an ioctl(2) to create / destroy objects from userspace, the special userspace program is able to fill out the structure to be passed into the ioctl and hence specify attributes such as local interface that are required at the time we set up the netpoll. For configfs, this information is not available at the time of mkdir(2). So, we keep all newly-created targets (via configfs) disabled by default. The user is expected to set various attributes appropriately (including the local network interface if required) and then write(2) "1" to the "enabled" attribute. Thus, netpoll_setup() is then called on the set parameters in the context of _this_ write(2) on the "enabled" attribute itself. This design enables the user to reconfigure existing netconsole targets at runtime to be attached to newly-come-up interfaces that may not have existed when netconsole was loaded or when the targets were actually created. All this effectively enables us to get rid of custom ioctls. (3) Ultra-paranoid configfs attribute show() and store() operations, with sanity and input range checking, using only safe string primitives, and compliant with the recommendations in Documentation/filesystems/sysfs.txt. (4) A new function netpoll_print_options() is created in the netpoll API, that just prints out the configured parameters for a netpoll structure. netpoll_parse_options() is modified to use that and it is also exported to be used from netconsole. Signed-off-by: Satyam Sharma <satyam@infradead.org> Acked-by: Keiichi Kii <k-keiichi@bx.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-08-10 22:35:05 +00:00
}
EXPORT_SYMBOL(netpoll_print_options);
[NET] netconsole: Support dynamic reconfiguration using configfs Based upon initial work by Keiichi Kii <k-keiichi@bx.jp.nec.com>. This patch introduces support for dynamic reconfiguration (adding, removing and/or modifying parameters of netconsole targets at runtime) using a userspace interface exported via configfs. Documentation is also updated accordingly. Issues and brief design overview: (1) Kernel-initiated creation / destruction of kernel objects is not possible with configfs -- the lifetimes of the "config items" is managed exclusively from userspace. But netconsole must support boot/module params too, and these are parsed in kernel and hence netpolls must be setup from the kernel. Joel Becker suggested to separately manage the lifetimes of the two kinds of netconsole_target objects -- those created via configfs mkdir(2) from userspace and those specified from the boot/module option string. This adds complexity and some redundancy here and also means that boot/module param-created targets are not exposed through the configfs namespace (and hence cannot be updated / destroyed dynamically). However, this saves us from locking / refcounting complexities that would need to be introduced in configfs to support kernel-initiated item creation / destroy there. (2) In configfs, item creation takes place in the call chain of the mkdir(2) syscall in the driver subsystem. If we used an ioctl(2) to create / destroy objects from userspace, the special userspace program is able to fill out the structure to be passed into the ioctl and hence specify attributes such as local interface that are required at the time we set up the netpoll. For configfs, this information is not available at the time of mkdir(2). So, we keep all newly-created targets (via configfs) disabled by default. The user is expected to set various attributes appropriately (including the local network interface if required) and then write(2) "1" to the "enabled" attribute. Thus, netpoll_setup() is then called on the set parameters in the context of _this_ write(2) on the "enabled" attribute itself. This design enables the user to reconfigure existing netconsole targets at runtime to be attached to newly-come-up interfaces that may not have existed when netconsole was loaded or when the targets were actually created. All this effectively enables us to get rid of custom ioctls. (3) Ultra-paranoid configfs attribute show() and store() operations, with sanity and input range checking, using only safe string primitives, and compliant with the recommendations in Documentation/filesystems/sysfs.txt. (4) A new function netpoll_print_options() is created in the netpoll API, that just prints out the configured parameters for a netpoll structure. netpoll_parse_options() is modified to use that and it is also exported to be used from netconsole. Signed-off-by: Satyam Sharma <satyam@infradead.org> Acked-by: Keiichi Kii <k-keiichi@bx.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-08-10 22:35:05 +00:00
static int netpoll_parse_ip_addr(const char *str, union inet_addr *addr)
{
const char *end;
if (!strchr(str, ':') &&
in4_pton(str, -1, (void *)addr, -1, &end) > 0) {
if (!*end)
return 0;
}
if (in6_pton(str, -1, addr->in6.s6_addr, -1, &end) > 0) {
#if IS_ENABLED(CONFIG_IPV6)
if (!*end)
return 1;
#else
return -1;
#endif
}
return -1;
}
int netpoll_parse_options(struct netpoll *np, char *opt)
{
char *cur=opt, *delim;
int ipv6;
bool ipversion_set = false;
if (*cur != '@') {
if ((delim = strchr(cur, '@')) == NULL)
goto parse_failed;
*delim = 0;
if (kstrtou16(cur, 10, &np->local_port))
goto parse_failed;
cur = delim;
}
cur++;
if (*cur != '/') {
ipversion_set = true;
if ((delim = strchr(cur, '/')) == NULL)
goto parse_failed;
*delim = 0;
ipv6 = netpoll_parse_ip_addr(cur, &np->local_ip);
if (ipv6 < 0)
goto parse_failed;
else
np->ipv6 = (bool)ipv6;
cur = delim;
}
cur++;
if (*cur != ',') {
/* parse out dev name */
if ((delim = strchr(cur, ',')) == NULL)
goto parse_failed;
*delim = 0;
strscpy(np->dev_name, cur, sizeof(np->dev_name));
cur = delim;
}
cur++;
if (*cur != '@') {
/* dst port */
if ((delim = strchr(cur, '@')) == NULL)
goto parse_failed;
*delim = 0;
if (*cur == ' ' || *cur == '\t')
np_info(np, "warning: whitespace is not allowed\n");
if (kstrtou16(cur, 10, &np->remote_port))
goto parse_failed;
cur = delim;
}
cur++;
/* dst ip */
if ((delim = strchr(cur, '/')) == NULL)
goto parse_failed;
*delim = 0;
ipv6 = netpoll_parse_ip_addr(cur, &np->remote_ip);
if (ipv6 < 0)
goto parse_failed;
else if (ipversion_set && np->ipv6 != (bool)ipv6)
goto parse_failed;
else
np->ipv6 = (bool)ipv6;
cur = delim + 1;
if (*cur != 0) {
/* MAC address */
if (!mac_pton(cur, np->remote_mac))
goto parse_failed;
}
[NET] netconsole: Support dynamic reconfiguration using configfs Based upon initial work by Keiichi Kii <k-keiichi@bx.jp.nec.com>. This patch introduces support for dynamic reconfiguration (adding, removing and/or modifying parameters of netconsole targets at runtime) using a userspace interface exported via configfs. Documentation is also updated accordingly. Issues and brief design overview: (1) Kernel-initiated creation / destruction of kernel objects is not possible with configfs -- the lifetimes of the "config items" is managed exclusively from userspace. But netconsole must support boot/module params too, and these are parsed in kernel and hence netpolls must be setup from the kernel. Joel Becker suggested to separately manage the lifetimes of the two kinds of netconsole_target objects -- those created via configfs mkdir(2) from userspace and those specified from the boot/module option string. This adds complexity and some redundancy here and also means that boot/module param-created targets are not exposed through the configfs namespace (and hence cannot be updated / destroyed dynamically). However, this saves us from locking / refcounting complexities that would need to be introduced in configfs to support kernel-initiated item creation / destroy there. (2) In configfs, item creation takes place in the call chain of the mkdir(2) syscall in the driver subsystem. If we used an ioctl(2) to create / destroy objects from userspace, the special userspace program is able to fill out the structure to be passed into the ioctl and hence specify attributes such as local interface that are required at the time we set up the netpoll. For configfs, this information is not available at the time of mkdir(2). So, we keep all newly-created targets (via configfs) disabled by default. The user is expected to set various attributes appropriately (including the local network interface if required) and then write(2) "1" to the "enabled" attribute. Thus, netpoll_setup() is then called on the set parameters in the context of _this_ write(2) on the "enabled" attribute itself. This design enables the user to reconfigure existing netconsole targets at runtime to be attached to newly-come-up interfaces that may not have existed when netconsole was loaded or when the targets were actually created. All this effectively enables us to get rid of custom ioctls. (3) Ultra-paranoid configfs attribute show() and store() operations, with sanity and input range checking, using only safe string primitives, and compliant with the recommendations in Documentation/filesystems/sysfs.txt. (4) A new function netpoll_print_options() is created in the netpoll API, that just prints out the configured parameters for a netpoll structure. netpoll_parse_options() is modified to use that and it is also exported to be used from netconsole. Signed-off-by: Satyam Sharma <satyam@infradead.org> Acked-by: Keiichi Kii <k-keiichi@bx.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-08-10 22:35:05 +00:00
netpoll_print_options(np);
return 0;
parse_failed:
np_info(np, "couldn't parse config at '%s'!\n", cur);
return -1;
}
EXPORT_SYMBOL(netpoll_parse_options);
netpoll: Remove gfp parameter from __netpoll_setup The gfp parameter was added in: commit 47be03a28cc6c80e3aa2b3e8ed6d960ff0c5c0af Author: Amerigo Wang <amwang@redhat.com> Date: Fri Aug 10 01:24:37 2012 +0000 netpoll: use GFP_ATOMIC in slave_enable_netpoll() and __netpoll_setup() slave_enable_netpoll() and __netpoll_setup() may be called with read_lock() held, so should use GFP_ATOMIC to allocate memory. Eric suggested to pass gfp flags to __netpoll_setup(). Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: "David S. Miller" <davem@davemloft.net> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Cong Wang <amwang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> The reason for the gfp parameter was removed in: commit c4cdef9b7183159c23c7302aaf270d64c549f557 Author: dingtianhong <dingtianhong@huawei.com> Date: Tue Jul 23 15:25:27 2013 +0800 bonding: don't call slave_xxx_netpoll under spinlocks The slave_xxx_netpoll will call synchronize_rcu_bh(), so the function may schedule and sleep, it should't be called under spinlocks. bond_netpoll_setup() and bond_netpoll_cleanup() are always protected by rtnl lock, it is no need to take the read lock, as the slave list couldn't be changed outside rtnl lock. Signed-off-by: Ding Tianhong <dingtianhong@huawei.com> Cc: Jay Vosburgh <fubar@us.ibm.com> Cc: Andy Gospodarek <andy@greyhouse.net> Signed-off-by: David S. Miller <davem@davemloft.net> Nothing else that calls __netpoll_setup or ndo_netpoll_setup requires a gfp paramter, so remove the gfp parameter from both of these functions making the code clearer. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 22:36:38 +00:00
int __netpoll_setup(struct netpoll *np, struct net_device *ndev)
{
struct netpoll_info *npinfo;
const struct net_device_ops *ops;
int err;
np->dev = ndev;
strscpy(np->dev_name, ndev->name, IFNAMSIZ);
if (ndev->priv_flags & IFF_DISABLE_NETPOLL) {
np_err(np, "%s doesn't support polling, aborting\n",
np->dev_name);
err = -ENOTSUPP;
goto out;
}
if (!ndev->npinfo) {
netpoll: Remove gfp parameter from __netpoll_setup The gfp parameter was added in: commit 47be03a28cc6c80e3aa2b3e8ed6d960ff0c5c0af Author: Amerigo Wang <amwang@redhat.com> Date: Fri Aug 10 01:24:37 2012 +0000 netpoll: use GFP_ATOMIC in slave_enable_netpoll() and __netpoll_setup() slave_enable_netpoll() and __netpoll_setup() may be called with read_lock() held, so should use GFP_ATOMIC to allocate memory. Eric suggested to pass gfp flags to __netpoll_setup(). Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: "David S. Miller" <davem@davemloft.net> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Cong Wang <amwang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> The reason for the gfp parameter was removed in: commit c4cdef9b7183159c23c7302aaf270d64c549f557 Author: dingtianhong <dingtianhong@huawei.com> Date: Tue Jul 23 15:25:27 2013 +0800 bonding: don't call slave_xxx_netpoll under spinlocks The slave_xxx_netpoll will call synchronize_rcu_bh(), so the function may schedule and sleep, it should't be called under spinlocks. bond_netpoll_setup() and bond_netpoll_cleanup() are always protected by rtnl lock, it is no need to take the read lock, as the slave list couldn't be changed outside rtnl lock. Signed-off-by: Ding Tianhong <dingtianhong@huawei.com> Cc: Jay Vosburgh <fubar@us.ibm.com> Cc: Andy Gospodarek <andy@greyhouse.net> Signed-off-by: David S. Miller <davem@davemloft.net> Nothing else that calls __netpoll_setup or ndo_netpoll_setup requires a gfp paramter, so remove the gfp parameter from both of these functions making the code clearer. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 22:36:38 +00:00
npinfo = kmalloc(sizeof(*npinfo), GFP_KERNEL);
if (!npinfo) {
err = -ENOMEM;
goto out;
}
netpoll: convert mutex into a semaphore Bart Van Assche recently reported a warning to me: <IRQ> [<ffffffff8103d79f>] warn_slowpath_common+0x7f/0xc0 [<ffffffff8103d7fa>] warn_slowpath_null+0x1a/0x20 [<ffffffff814761dd>] mutex_trylock+0x16d/0x180 [<ffffffff813968c9>] netpoll_poll_dev+0x49/0xc30 [<ffffffff8136a2d2>] ? __alloc_skb+0x82/0x2a0 [<ffffffff81397715>] netpoll_send_skb_on_dev+0x265/0x410 [<ffffffff81397c5a>] netpoll_send_udp+0x28a/0x3a0 [<ffffffffa0541843>] ? write_msg+0x53/0x110 [netconsole] [<ffffffffa05418bf>] write_msg+0xcf/0x110 [netconsole] [<ffffffff8103eba1>] call_console_drivers.constprop.17+0xa1/0x1c0 [<ffffffff8103fb76>] console_unlock+0x2d6/0x450 [<ffffffff8104011e>] vprintk_emit+0x1ee/0x510 [<ffffffff8146f9f6>] printk+0x4d/0x4f [<ffffffffa0004f1d>] scsi_print_command+0x7d/0xe0 [scsi_mod] This resulted from my commit ca99ca14c which introduced a mutex_trylock operation in a path that could execute in interrupt context. When mutex debugging is enabled, the above warns the user when we are in fact exectuting in interrupt context interrupt context. After some discussion, It seems that a semaphore is the proper mechanism to use here. While mutexes are defined to be unusable in interrupt context, no such condition exists for semaphores (save for the fact that the non blocking api calls, like up and down_trylock must be used when in irq context). Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Reported-by: Bart Van Assche <bvanassche@acm.org> CC: Bart Van Assche <bvanassche@acm.org> CC: David Miller <davem@davemloft.net> CC: netdev@vger.kernel.org Signed-off-by: David S. Miller <davem@davemloft.net>
2013-04-30 05:35:05 +00:00
sema_init(&npinfo->dev_lock, 1);
skb_queue_head_init(&npinfo->txq);
INIT_DELAYED_WORK(&npinfo->tx_work, queue_process);
refcount_set(&npinfo->refcnt, 1);
ops = np->dev->netdev_ops;
if (ops->ndo_netpoll_setup) {
netpoll: Remove gfp parameter from __netpoll_setup The gfp parameter was added in: commit 47be03a28cc6c80e3aa2b3e8ed6d960ff0c5c0af Author: Amerigo Wang <amwang@redhat.com> Date: Fri Aug 10 01:24:37 2012 +0000 netpoll: use GFP_ATOMIC in slave_enable_netpoll() and __netpoll_setup() slave_enable_netpoll() and __netpoll_setup() may be called with read_lock() held, so should use GFP_ATOMIC to allocate memory. Eric suggested to pass gfp flags to __netpoll_setup(). Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: "David S. Miller" <davem@davemloft.net> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Cong Wang <amwang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> The reason for the gfp parameter was removed in: commit c4cdef9b7183159c23c7302aaf270d64c549f557 Author: dingtianhong <dingtianhong@huawei.com> Date: Tue Jul 23 15:25:27 2013 +0800 bonding: don't call slave_xxx_netpoll under spinlocks The slave_xxx_netpoll will call synchronize_rcu_bh(), so the function may schedule and sleep, it should't be called under spinlocks. bond_netpoll_setup() and bond_netpoll_cleanup() are always protected by rtnl lock, it is no need to take the read lock, as the slave list couldn't be changed outside rtnl lock. Signed-off-by: Ding Tianhong <dingtianhong@huawei.com> Cc: Jay Vosburgh <fubar@us.ibm.com> Cc: Andy Gospodarek <andy@greyhouse.net> Signed-off-by: David S. Miller <davem@davemloft.net> Nothing else that calls __netpoll_setup or ndo_netpoll_setup requires a gfp paramter, so remove the gfp parameter from both of these functions making the code clearer. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 22:36:38 +00:00
err = ops->ndo_netpoll_setup(ndev, npinfo);
if (err)
goto free_npinfo;
}
} else {
npinfo = rtnl_dereference(ndev->npinfo);
refcount_inc(&npinfo->refcnt);
}
npinfo->netpoll = np;
/* last thing to do is link it to the net device structure */
rcu_assign_pointer(ndev->npinfo, npinfo);
return 0;
free_npinfo:
kfree(npinfo);
out:
return err;
}
EXPORT_SYMBOL_GPL(__netpoll_setup);
int netpoll_setup(struct netpoll *np)
{
struct net_device *ndev = NULL;
struct in_device *in_dev;
int err;
rtnl_lock();
if (np->dev_name[0]) {
struct net *net = current->nsproxy->net_ns;
ndev = __dev_get_by_name(net, np->dev_name);
}
if (!ndev) {
np_err(np, "%s doesn't exist, aborting\n", np->dev_name);
err = -ENODEV;
goto unlock;
}
netdev_hold(ndev, &np->dev_tracker, GFP_KERNEL);
if (netdev_master_upper_dev_get(ndev)) {
np_err(np, "%s is a slave device, aborting\n", np->dev_name);
err = -EBUSY;
goto put;
}
if (!netif_running(ndev)) {
unsigned long atmost;
np_info(np, "device %s not up yet, forcing it\n", np->dev_name);
err = dev_open(ndev, NULL);
if (err) {
np_err(np, "failed to open %s\n", ndev->name);
goto put;
}
rtnl_unlock();
atmost = jiffies + carrier_timeout * HZ;
while (!netif_carrier_ok(ndev)) {
if (time_after(jiffies, atmost)) {
np_notice(np, "timeout waiting for carrier\n");
break;
}
msleep(1);
}
rtnl_lock();
}
if (!np->local_ip.ip) {
if (!np->ipv6) {
const struct in_ifaddr *ifa;
in_dev = __in_dev_get_rtnl(ndev);
if (!in_dev)
goto put_noaddr;
ifa = rtnl_dereference(in_dev->ifa_list);
if (!ifa) {
put_noaddr:
np_err(np, "no IP address for %s, aborting\n",
np->dev_name);
err = -EDESTADDRREQ;
goto put;
}
np->local_ip.ip = ifa->ifa_local;
np_info(np, "local IP %pI4\n", &np->local_ip.ip);
} else {
#if IS_ENABLED(CONFIG_IPV6)
struct inet6_dev *idev;
err = -EDESTADDRREQ;
idev = __in6_dev_get(ndev);
if (idev) {
struct inet6_ifaddr *ifp;
read_lock_bh(&idev->lock);
list_for_each_entry(ifp, &idev->addr_list, if_list) {
if (!!(ipv6_addr_type(&ifp->addr) & IPV6_ADDR_LINKLOCAL) !=
!!(ipv6_addr_type(&np->remote_ip.in6) & IPV6_ADDR_LINKLOCAL))
continue;
np->local_ip.in6 = ifp->addr;
err = 0;
break;
}
read_unlock_bh(&idev->lock);
}
if (err) {
np_err(np, "no IPv6 address for %s, aborting\n",
np->dev_name);
goto put;
} else
np_info(np, "local IPv6 %pI6c\n", &np->local_ip.in6);
#else
np_err(np, "IPv6 is not supported %s, aborting\n",
np->dev_name);
err = -EINVAL;
goto put;
#endif
}
}
/* fill up the skb queue */
refill_skbs();
netpoll: Remove gfp parameter from __netpoll_setup The gfp parameter was added in: commit 47be03a28cc6c80e3aa2b3e8ed6d960ff0c5c0af Author: Amerigo Wang <amwang@redhat.com> Date: Fri Aug 10 01:24:37 2012 +0000 netpoll: use GFP_ATOMIC in slave_enable_netpoll() and __netpoll_setup() slave_enable_netpoll() and __netpoll_setup() may be called with read_lock() held, so should use GFP_ATOMIC to allocate memory. Eric suggested to pass gfp flags to __netpoll_setup(). Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: "David S. Miller" <davem@davemloft.net> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Cong Wang <amwang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> The reason for the gfp parameter was removed in: commit c4cdef9b7183159c23c7302aaf270d64c549f557 Author: dingtianhong <dingtianhong@huawei.com> Date: Tue Jul 23 15:25:27 2013 +0800 bonding: don't call slave_xxx_netpoll under spinlocks The slave_xxx_netpoll will call synchronize_rcu_bh(), so the function may schedule and sleep, it should't be called under spinlocks. bond_netpoll_setup() and bond_netpoll_cleanup() are always protected by rtnl lock, it is no need to take the read lock, as the slave list couldn't be changed outside rtnl lock. Signed-off-by: Ding Tianhong <dingtianhong@huawei.com> Cc: Jay Vosburgh <fubar@us.ibm.com> Cc: Andy Gospodarek <andy@greyhouse.net> Signed-off-by: David S. Miller <davem@davemloft.net> Nothing else that calls __netpoll_setup or ndo_netpoll_setup requires a gfp paramter, so remove the gfp parameter from both of these functions making the code clearer. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-27 22:36:38 +00:00
err = __netpoll_setup(np, ndev);
if (err)
goto put;
rtnl_unlock();
return 0;
put:
netdev_put(ndev, &np->dev_tracker);
unlock:
rtnl_unlock();
return err;
}
EXPORT_SYMBOL(netpoll_setup);
static int __init netpoll_init(void)
{
skb_queue_head_init(&skb_pool);
return 0;
}
core_initcall(netpoll_init);
static void rcu_cleanup_netpoll_info(struct rcu_head *rcu_head)
{
struct netpoll_info *npinfo =
container_of(rcu_head, struct netpoll_info, rcu);
skb_queue_purge(&npinfo->txq);
/* we can't call cancel_delayed_work_sync here, as we are in softirq */
cancel_delayed_work(&npinfo->tx_work);
/* clean after last, unfinished work */
__skb_queue_purge(&npinfo->txq);
/* now cancel it again */
cancel_delayed_work(&npinfo->tx_work);
kfree(npinfo);
}
void __netpoll_cleanup(struct netpoll *np)
{
struct netpoll_info *npinfo;
npinfo = rtnl_dereference(np->dev->npinfo);
if (!npinfo)
return;
netpoll: protect napi_poll and poll_controller during dev_[open|close] Ivan Vercera was recently backporting commit 9c13cb8bb477a83b9a3c9e5a5478a4e21294a760 to a RHEL kernel, and I noticed that, while this patch protects the tg3 driver from having its ndo_poll_controller routine called during device initalization, it does nothing for the driver during shutdown. I.e. it would be entirely possible to have the ndo_poll_controller method (or subsequently the ndo_poll) routine called for a driver in the netpoll path on CPU A while in parallel on CPU B, the ndo_close or ndo_open routine could be called. Given that the two latter routines tend to initizlize and free many data structures that the former two rely on, the result can easily be data corruption or various other crashes. Furthermore, it seems that this is potentially a problem with all net drivers that support netpoll, and so this should ideally be fixed in a common path. As Ben H Pointed out to me, we can't preform dev_open/dev_close in atomic context, so I've come up with this solution. We can use a mutex to sleep in open/close paths and just do a mutex_trylock in the napi poll path and abandon the poll attempt if we're locked, as we'll just retry the poll on the next send anyway. I've tested this here by flooding netconsole with messages on a system whos nic driver I modfied to periodically return NETDEV_TX_BUSY, so that the netpoll tx workqueue would be forced to send frames and poll the device. While this was going on I rapidly ifdown/up'ed the interface and watched for any problems. I've not found any. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> CC: Ivan Vecera <ivecera@redhat.com> CC: "David S. Miller" <davem@davemloft.net> CC: Ben Hutchings <bhutchings@solarflare.com> CC: Francois Romieu <romieu@fr.zoreil.com> CC: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-05 08:05:43 +00:00
synchronize_srcu(&netpoll_srcu);
if (refcount_dec_and_test(&npinfo->refcnt)) {
const struct net_device_ops *ops;
ops = np->dev->netdev_ops;
if (ops->ndo_netpoll_cleanup)
ops->ndo_netpoll_cleanup(np->dev);
RCU_INIT_POINTER(np->dev->npinfo, NULL);
call_rcu(&npinfo->rcu, rcu_cleanup_netpoll_info);
} else
RCU_INIT_POINTER(np->dev->npinfo, NULL);
}
EXPORT_SYMBOL_GPL(__netpoll_cleanup);
void __netpoll_free(struct netpoll *np)
{
ASSERT_RTNL();
/* Wait for transmitting packets to finish before freeing. */
synchronize_rcu();
__netpoll_cleanup(np);
kfree(np);
}
EXPORT_SYMBOL_GPL(__netpoll_free);
void netpoll_cleanup(struct netpoll *np)
{
rtnl_lock();
if (!np->dev)
goto out;
__netpoll_cleanup(np);
netdev_put(np->dev, &np->dev_tracker);
np->dev = NULL;
out:
rtnl_unlock();
}
EXPORT_SYMBOL(netpoll_cleanup);