linux/drivers/Kconfig

239 lines
3.8 KiB
Plaintext
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
# SPDX-License-Identifier: GPL-2.0
menu "Device Drivers"
# Keep I/O buses first
source "drivers/amba/Kconfig"
source "drivers/eisa/Kconfig"
source "drivers/pci/Kconfig"
source "drivers/pcmcia/Kconfig"
source "drivers/rapidio/Kconfig"
source "drivers/base/Kconfig"
source "drivers/bus/Kconfig"
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
source "drivers/connector/Kconfig"
gnss: add GNSS receiver subsystem Add a new subsystem for GNSS (e.g. GPS) receivers. While GNSS receivers are typically accessed using a UART interface they often also support other I/O interfaces such as I2C, SPI and USB, while yet other devices use iomem or even some form of remote-processor messaging (rpmsg). The new GNSS subsystem abstracts the underlying interface and provides a new "gnss" class type, which exposes a character-device interface (e.g. /dev/gnss0) to user space. This allows GNSS receivers to have a representation in the Linux device model, something which is important not least for power management purposes. Note that the character-device interface provides raw access to whatever protocol the receiver is (currently) using, such as NMEA 0183, UBX or SiRF Binary. These protocols are expected to be continued to be handled by user space for the time being, even if some hybrid solutions are also conceivable (e.g. to have kernel drivers issue management commands). This will still allow for better platform integration by allowing GNSS devices and their resources (e.g. regulators and enable-gpios) to be described by firmware and managed by kernel drivers rather than platform-specific scripts and services. While the current interface is kept minimal, it could be extended using IOCTLs, sysfs or uevents as needs and proper abstraction levels are identified and determined (e.g. for device and feature identification). Signed-off-by: Johan Hovold <johan@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-06-01 08:22:52 +00:00
source "drivers/gnss/Kconfig"
source "drivers/mtd/Kconfig"
source "drivers/of/Kconfig"
source "drivers/parport/Kconfig"
source "drivers/pnp/Kconfig"
source "drivers/block/Kconfig"
source "drivers/nvme/Kconfig"
source "drivers/misc/Kconfig"
source "drivers/ide/Kconfig"
source "drivers/scsi/Kconfig"
2006-08-10 11:31:37 +00:00
source "drivers/ata/Kconfig"
source "drivers/md/Kconfig"
source "drivers/target/Kconfig"
source "drivers/message/fusion/Kconfig"
source "drivers/firewire/Kconfig"
source "drivers/macintosh/Kconfig"
source "drivers/net/Kconfig"
source "drivers/isdn/Kconfig"
lightnvm: Support for Open-Channel SSDs Open-channel SSDs are devices that share responsibilities with the host in order to implement and maintain features that typical SSDs keep strictly in firmware. These include (i) the Flash Translation Layer (FTL), (ii) bad block management, and (iii) hardware units such as the flash controller, the interface controller, and large amounts of flash chips. In this way, Open-channels SSDs exposes direct access to their physical flash storage, while keeping a subset of the internal features of SSDs. LightNVM is a specification that gives support to Open-channel SSDs LightNVM allows the host to manage data placement, garbage collection, and parallelism. Device specific responsibilities such as bad block management, FTL extensions to support atomic IOs, or metadata persistence are still handled by the device. The implementation of LightNVM consists of two parts: core and (multiple) targets. The core implements functionality shared across targets. This is initialization, teardown and statistics. The targets implement the interface that exposes physical flash to user-space applications. Examples of such targets include key-value store, object-store, as well as traditional block devices, which can be application-specific. Contributions in this patch from: Javier Gonzalez <jg@lightnvm.io> Dongsheng Yang <yangds.fnst@cn.fujitsu.com> Jesper Madsen <jmad@itu.dk> Signed-off-by: Matias Bjørling <m@bjorling.me> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-10-28 18:54:55 +00:00
source "drivers/lightnvm/Kconfig"
# input before char - char/joystick depends on it. As does USB.
source "drivers/input/Kconfig"
source "drivers/char/Kconfig"
source "drivers/i2c/Kconfig"
i3c: Add core I3C infrastructure Add core infrastructure to support I3C in Linux and document it. This infrastructure adds basic I3C support. Advanced features will be added afterwards. There are a few design choices that are worth mentioning because they impact the way I3C device drivers can interact with their devices: - all functions used to send I3C/I2C frames must be called in non-atomic context. Mainly done this way to ease implementation, but this is not set in stone, and if anyone needs async support, new functions can be added later on. - the bus element is a separate object, but it's tightly coupled with the master object. We thus have a 1:1 relationship between i3c_bus and i3c_master_controller objects, and if 2 master controllers are connected to the same bus and both exposed to the same Linux instance they will appear as two distinct busses, and devices on this bus will be exposed twice. - I2C backward compatibility has been designed to be transparent to I2C drivers and the I2C subsystem. The I3C master just registers an I2C adapter which creates a new I2C bus. I'd say that, from a representation PoV it's not ideal because what should appear as a single I3C bus exposing I3C and I2C devices here appears as 2 different buses connected to each other through the parenting (the I3C master is the parent of the I2C and I3C busses). On the other hand, I don't see a better solution if we want something that is not invasive. Missing features: - I3C HDR modes are not supported - no support for multi-master and the associated concepts (mastership handover, support for secondary masters, ...) - I2C devices can only be described using DT because this is the only use case I have. However, the framework can easily be extended with ACPI and board info support - I3C slave framework. This has been completely omitted, but shouldn't have a huge impact on the I3C framework because I3C slaves don't see the whole bus, it's only about handling master requests and generating IBIs. Some of the struct, constant and enum definitions could be shared, but most of the I3C slave framework logic will be different Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-07-19 09:52:29 +00:00
source "drivers/i3c/Kconfig"
[PATCH] spi: simple SPI framework This is the core of a small SPI framework, implementing the model of a queue of messages which complete asynchronously (with thin synchronous wrappers on top). - It's still less than 2KB of ".text" (ARM). If there's got to be a mid-layer for something so simple, that's the right size budget. :) - The guts use board-specific SPI device tables to build the driver model tree. (Hardware probing is rarely an option.) - This version of Kconfig includes no drivers. At this writing there are two known master controller drivers (PXA/SSP, OMAP MicroWire) and three protocol drivers (CS8415a, ADS7846, DataFlash) with LKML mentions of other drivers in development. - No userspace API. There are several implementations to compare. Implement them like any other driver, and bind them with sysfs. The changes from last version posted to LKML (on 11-Nov-2005) are minor, and include: - One bugfix (removes a FIXME), with the visible effect of making device names be "spiB.C" where B is the bus number and C is the chipselect. - The "caller provides DMA mappings" mechanism now has kerneldoc, for DMA drivers that want to be fancy. - Hey, the framework init can be subsys_init. Even though board init logic fires earlier, at arch_init ... since the framework init is for driver support, and the board init support uses static init. - Various additional spec/doc clarifications based on discussions with other folk. It adds a brief "thank you" at the end, for folk who've helped nudge this framework into existence. As I've said before, I think that "protocol tweaking" is the main support that this driver framework will need to evolve. From: Mark Underwood <basicmark@yahoo.com> Update the SPI framework to remove a potential priority inversion case by reverting to kmalloc if the pre-allocated DMA-safe buffer isn't available. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-01-08 21:34:19 +00:00
source "drivers/spi/Kconfig"
source "drivers/spmi/Kconfig"
source "drivers/hsi/Kconfig"
source "drivers/pps/Kconfig"
source "drivers/ptp/Kconfig"
drivers: create a pin control subsystem This creates a subsystem for handling of pin control devices. These are devices that control different aspects of package pins. Currently it handles pinmuxing, i.e. assigning electronic functions to groups of pins on primarily PGA and BGA type of chip packages which are common in embedded systems. The plan is to also handle other I/O pin control aspects such as biasing, driving, input properties such as schmitt-triggering, load capacitance etc within this subsystem, to remove a lot of ARM arch code as well as feature-creepy GPIO drivers which are implementing the same thing over and over again. This is being done to depopulate the arch/arm/* directory of such custom drivers and try to abstract the infrastructure they all need. See the Documentation/pinctrl.txt file that is part of this patch for more details. ChangeLog v1->v2: - Various minor fixes from Joe's and Stephens review comments - Added a pinmux_config() that can invoke custom configuration with arbitrary data passed in or out to/from the pinmux driver ChangeLog v2->v3: - Renamed subsystem folder to "pinctrl" since we will likely want to keep other pin control such as biasing in this subsystem too, so let us keep to something generic even though we're mainly doing pinmux now. - As a consequence, register pins as an abstract entity separate from the pinmux. The muxing functions will claim pins out of the pin pool and make sure they do not collide. Pins can now be named by the pinctrl core. - Converted the pin lookup from a static array into a radix tree, I agreed with Grant Likely to try to avoid any static allocation (which is crap for device tree stuff) so I just rewrote this to be dynamic, just like irq number descriptors. The platform-wide definition of number of pins goes away - this is now just the sum total of the pins registered to the subsystem. - Make sure mappings with only a function name and no device works properly. ChangeLog v3->v4: - Define a number space per controller instead of globally, Stephen and Grant requested the same thing so now maps need to define target controller, and the radix tree of pin descriptors is a property on each pin controller device. - Add a compulsory pinctrl device entry to the pinctrl mapping table. This must match the pinctrl device, like "pinctrl.0" - Split the file core.c in two: core.c and pinmux.c where the latter carry all pinmux stuff, the core is for generic pin control, and use local headers to access functionality between files. It is now possible to implement a "blank" pin controller without pinmux capabilities. This split will make new additions like pindrive.c, pinbias.c etc possible for combined drivers and chunks of functionality which is a GoodThing(TM). - Rewrite the interaction with the GPIO subsystem - the pin controller descriptor now handles this by defining an offset into the GPIO numberspace for its handled pin range. This is used to look up the apropriate pin controller for a GPIO pin. Then that specific GPIO range is matched 1-1 for the target controller instance. - Fixed a number of review comments from Joe Perches. - Broke out a header file pinctrl.h for the core pin handling stuff that will be reused by other stuff than pinmux. - Fixed some erroneous EXPORT() stuff. - Remove mispatched U300 Kconfig and Makefile entries - Fixed a number of review comments from Stephen Warren, not all of them - still WIP. But I think the new mapping that will specify which function goes to which pin mux controller address 50% of your concerns (else beat me up). ChangeLog v4->v5: - Defined a "position" for each function, so the pin controller now tracks a function in a certain position, and the pinmux maps define what position you want the function in. (Feedback from Stephen Warren and Sascha Hauer). - Since we now need to request a combined function+position from the machine mapping table that connect mux settings to drivers, it was extended with a position field and a name field. The name field is now used if you e.g. need to switch between two mux map settings at runtime. - Switched from a class device to using struct bus_type for this subsystem. Verified sysfs functionality: seems to work fine. (Feedback from Arnd Bergmann and Greg Kroah-Hartman) - Define a per pincontroller list of GPIO ranges from the GPIO pin space that can be handled by the pin controller. These can be added one by one at runtime. (Feedback from Barry Song) - Expanded documentation of regulator_[get|enable|disable|put] semantics. - Fixed a number of review comments from Barry Song. (Thanks!) ChangeLog v5->v6: - Create an abstract pin group concept that can sort pins into named and enumerated groups no matter what the use of these groups may be, one possible usecase is a group of pins being muxed in or so. The intention is however to also use these groups for other pin control activities. - Make it compulsory for pinmux functions to associate with at least one group, so the abstract pin group concept is used to define the groups of pins affected by a pinmux function. The pinmux driver interface has been altered so as to enforce a function to list applicable groups per function. - Provide an optional .group entry in the pinmux machine map so the map can select beteween different available groups to be used with a certain function. - Consequent changes all over the place so that e.g. debugfs present reasonable information about the world. - Drop the per-pin mux (*config) function in the pinmux_ops struct - I was afraid that this would start to be used for things totally unrelated to muxing, we can introduce that to the generic struct pinctrl_ops if needed. I want to keep muxing orthogonal to other pin control subjects and not mix these things up. ChangeLog v6->v7: - Make it possible to have several map entries matching the same device, pin controller and function, but using a different group, and alter the semantics so that pinmux_get() will pick all matching map entries, and store the associated groups in a list. The list will then be iterated over at pinmux_enable()/pinmux_disable() and corresponding driver functions called for each defined group. Notice that you're only allowed to map multiple *groups* to the same { device, pin controller, function } triplet, attempts to map the same device to multiple pin controllers will for example fail. This is hopefully the crucial feature requested by Stephen Warren. - Add a pinmux hogging field to the pinmux mapping entries, and enable the pinmux core to hog pinmux map entries. This currently only works for pinmuxes without assigned devices as it looks now, but with device trees we can look up the corresponding struct device * entries when we register the pinmux driver, and have it hog each pinmux map in turn, for a simple approach to non-dynamic pin muxing. This addresses an issue from Grant Likely that the machine should take care of as much of the pinmux setup as possible, not the devices. By supplying a list of hogs, it can now instruct the core to take care of any static mappings. - Switch pinmux group retrieveal function to grab an array of strings representing the groups rather than an array of unsigned and rewrite accordingly. - Alter debugfs to show the grouplist handled by each pinmux. Also add a list of hogs. - Dynamically allocate a struct pinmux at pinmux_get() and free it at pinmux_put(), then add these to the global list of pinmuxes active as we go along. - Go over the list of pinmux maps at pinmux_get() time and repeatedly apply matches. - Retrieve applicable groups per function from the driver as a string array rather than a unsigned array, then lookup the enumerators. - Make the device to pinmux map a singleton - only allow the mapping table to be registered once and even tag the registration function with __init so it surely won't be abused. - Create a separate debugfs file to view the pinmux map at runtime. - Introduce a spin lock to the pin descriptor struct, lock it when modifying pin status entries. Reported by Stijn Devriendt. - Fix up the documentation after review from Stephen Warren. - Let the GPIO ranges give names as const char * instead of some fixed-length string. - add a function to unregister GPIO ranges to mirror the registration function. - Privatized the struct pinctrl_device and removed it from the <linux/pinctrl/pinctrl.h> API, the drivers do not need to know the members of this struct. It is now in the local header "core.h". - Rename the concept of "anonymous" mux maps to "system" muxes and add convenience macros and documentation. ChangeLog v7->v8: - Delete the leftover pinmux_config() function from the <linux/pinctrl/pinmux.h> header. - Fix a race condition found by Stijn Devriendt in pin_request() ChangeLog v8->v9: - Drop the bus_type and the sysfs attributes and all, we're not on the clear about how this should be used for e.g. userspace interfaces so let us save this for the future. - Use the right name in MAINTAINERS, PIN CONTROL rather than PINMUX - Don't kfree() the device state holder, let the .remove() callback handle this. - Fix up numerous kerneldoc headers to have one line for the function description and more verbose documentation below the parameters ChangeLog v9->v10: - pinctrl: EXPORT_SYMBOL needs export.h, folded in a patch from Steven Rothwell - fix pinctrl_register error handling, folded in a patch from Axel Lin - Various fixes to documentation text so that it's consistent. - Removed pointless comment from drivers/Kconfig - Removed dependency on SYSFS since we removed the bus in v9. - Renamed hopelessly abbreviated pctldev_* functions to the more verbose pinctrl_dev_* - Drop mutex properly when looking up GPIO ranges - Return NULL instead of ERR_PTR() errors on registration of pin controllers, using cast pointers is fragile. We can live without the detailed error codes for sure. Cc: Stijn Devriendt <highguy@gmail.com> Cc: Joe Perches <joe@perches.com> Cc: Russell King <linux@arm.linux.org.uk> Acked-by: Grant Likely <grant.likely@secretlab.ca> Acked-by: Stephen Warren <swarren@nvidia.com> Tested-by: Barry Song <21cnbao@gmail.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
2011-05-02 18:50:54 +00:00
source "drivers/pinctrl/Kconfig"
source "drivers/gpio/Kconfig"
source "drivers/w1/Kconfig"
source "drivers/power/Kconfig"
source "drivers/hwmon/Kconfig"
source "drivers/thermal/Kconfig"
source "drivers/watchdog/Kconfig"
source "drivers/ssb/Kconfig"
bcma: add Broadcom specific AMBA bus driver Broadcom has released cards based on a new AMBA-based bus type. From a programming point of view, this new bus type differs from AMBA and does not use AMBA common registers. It also differs enough from SSB. We decided that a new bus driver is needed to keep the code clean. In its current form, the driver detects devices present on the bus and registers them in the system. It allows registering BCMA drivers for specified bus devices and provides them basic operations. The bus driver itself includes two important bus managing drivers: ChipCommon core driver and PCI(c) core driver. They are early used to allow correct initialization. Currently code is limited to supporting buses on PCI(e) devices, however the driver is designed to be used also on other hosts. The host abstraction layer is implemented and already used for PCI(e). Support for PCI(e) hosts is working and seems to be stable (access to 80211 core was tested successfully on a few devices). We can still optimize it by using some fixed windows, but this can be done later without affecting any external code. Windows are just ranges in MMIO used for accessing cores on the bus. Cc: Greg KH <greg@kroah.com> Cc: Michael Büsch <mb@bu3sch.de> Cc: Larry Finger <Larry.Finger@lwfinger.net> Cc: George Kashperko <george@znau.edu.ua> Cc: Arend van Spriel <arend@broadcom.com> Cc: linux-arm-kernel@lists.infradead.org Cc: Russell King <rmk@arm.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Andy Botting <andy@andybotting.com> Cc: linuxdriverproject <devel@linuxdriverproject.org> Cc: linux-kernel@vger.kernel.org <linux-kernel@vger.kernel.org> Signed-off-by: Rafał Miłecki <zajec5@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-05-09 16:56:46 +00:00
source "drivers/bcma/Kconfig"
source "drivers/mfd/Kconfig"
source "drivers/regulator/Kconfig"
source "drivers/media/Kconfig"
source "drivers/video/Kconfig"
source "sound/Kconfig"
source "drivers/hid/Kconfig"
source "drivers/usb/Kconfig"
source "drivers/mmc/Kconfig"
source "drivers/memstick/Kconfig"
source "drivers/leds/Kconfig"
source "drivers/accessibility/Kconfig"
source "drivers/infiniband/Kconfig"
source "drivers/edac/Kconfig"
source "drivers/rtc/Kconfig"
source "drivers/dma/Kconfig"
source "drivers/dma-buf/Kconfig"
source "drivers/dca/Kconfig"
source "drivers/auxdisplay/Kconfig"
source "drivers/uio/Kconfig"
source "drivers/vfio/Kconfig"
source "drivers/vlynq/Kconfig"
source "drivers/virt/Kconfig"
source "drivers/virtio/Kconfig"
source "drivers/vdpa/Kconfig"
source "drivers/vhost/Kconfig"
source "drivers/hv/Kconfig"
source "drivers/xen/Kconfig"
source "drivers/greybus/Kconfig"
source "drivers/staging/Kconfig"
source "drivers/platform/Kconfig"
source "drivers/clk/Kconfig"
source "drivers/hwspinlock/Kconfig"
source "drivers/clocksource/Kconfig"
source "drivers/mailbox/Kconfig"
source "drivers/iommu/Kconfig"
source "drivers/remoteproc/Kconfig"
source "drivers/rpmsg/Kconfig"
source "drivers/soundwire/Kconfig"
source "drivers/soc/Kconfig"
PM: Introduce devfreq: generic DVFS framework with device-specific OPPs With OPPs, a device may have multiple operable frequency and voltage sets. However, there can be multiple possible operable sets and a system will need to choose one from them. In order to reduce the power consumption (by reducing frequency and voltage) without affecting the performance too much, a Dynamic Voltage and Frequency Scaling (DVFS) scheme may be used. This patch introduces the DVFS capability to non-CPU devices with OPPs. DVFS is a techique whereby the frequency and supplied voltage of a device is adjusted on-the-fly. DVFS usually sets the frequency as low as possible with given conditions (such as QoS assurance) and adjusts voltage according to the chosen frequency in order to reduce power consumption and heat dissipation. The generic DVFS for devices, devfreq, may appear quite similar with /drivers/cpufreq. However, cpufreq does not allow to have multiple devices registered and is not suitable to have multiple heterogenous devices with different (but simple) governors. Normally, DVFS mechanism controls frequency based on the demand for the device, and then, chooses voltage based on the chosen frequency. devfreq also controls the frequency based on the governor's frequency recommendation and let OPP pick up the pair of frequency and voltage based on the recommended frequency. Then, the chosen OPP is passed to device driver's "target" callback. When PM QoS is going to be used with the devfreq device, the device driver should enable OPPs that are appropriate with the current PM QoS requests. In order to do so, the device driver may call opp_enable and opp_disable at the notifier callback of PM QoS so that PM QoS's update_target() call enables the appropriate OPPs. Note that at least one of OPPs should be enabled at any time; be careful when there is a transition. Signed-off-by: MyungJoo Ham <myungjoo.ham@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Reviewed-by: Mike Turquette <mturquette@ti.com> Acked-by: Kevin Hilman <khilman@ti.com> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
2011-10-01 22:19:15 +00:00
source "drivers/devfreq/Kconfig"
Extcon (external connector): import Android's switch class and modify. External connector class (extcon) is based on and an extension of Android kernel's switch class located at linux/drivers/switch/. This patch provides the before-extension switch class moved to the location where the extcon will be located (linux/drivers/extcon/) and updates to handle class properly. The before-extension class, switch class of Android kernel, commits imported are: switch: switch class and GPIO drivers. (splitted) Author: Mike Lockwood <lockwood@android.com> switch: Use device_create instead of device_create_drvdata. Author: Arve Hjønnevåg <arve@android.com> In this patch, upon the commits of Android kernel, we have added: - Relocated and renamed for extcon. - Comments, module name, and author information are updated - Code clean for successing patches - Bugfix: enabling write access without write functions - Class/device/sysfs create/remove handling - Added comments about uevents - Format changes for extcon_dev_register() to have a parent dev. Signed-off-by: MyungJoo Ham <myungjoo.ham@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> -- Changes from v7 - Compiler error fixed when it is compiled as a module. - Removed out-of-date Kconfig entry Changes from v6 - Updated comment/strings - Revised "Android-compatible" mode. * Automatically activated if CONFIG_ANDROID && !CONFIG_ANDROID_SWITCH * Creates /sys/class/switch/*, which is a copy of /sys/class/extcon/* Changes from v5 - Split the patch - Style fixes - "Android-compatible" mode is enabled by Kconfig option. Changes from v2 - Updated name_show - Sysfs entries are handled by class itself. - Updated the method to add/remove devices for the class - Comments on uevent send - Able to become a module - Compatible with Android platform Changes from RFC - Renamed to extcon (external connector) from multistate switch - Added a seperated directory (drivers/extcon) - Added kerneldoc comments - Removed unused variables from extcon_gpio.c - Added ABI Documentation. Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-04-20 05:16:22 +00:00
source "drivers/extcon/Kconfig"
source "drivers/memory/Kconfig"
source "drivers/iio/Kconfig"
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
source "drivers/ntb/Kconfig"
source "drivers/vme/Kconfig"
pwm: Add PWM framework support This patch adds framework support for PWM (pulse width modulation) devices. The is a barebone PWM API already in the kernel under include/linux/pwm.h, but it does not allow for multiple drivers as each of them implements the pwm_*() functions. There are other PWM framework patches around from Bill Gatliff. Unlike his framework this one does not change the existing API for PWMs so that this framework can act as a drop in replacement for the existing API. Why another framework? Several people argue that there should not be another framework for PWMs but they should be integrated into one of the existing frameworks like led or hwmon. Unlike these frameworks the PWM framework is agnostic to the purpose of the PWM. In fact, a PWM can drive a LED, but this makes the LED framework a user of a PWM, like already done in leds-pwm.c. The gpio framework also is not suitable for PWMs. Every gpio could be turned into a PWM using timer based toggling, but on the other hand not every PWM hardware device can be turned into a gpio due to the lack of hardware capabilities. This patch does not try to improve the PWM API yet, this could be done in subsequent patches. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> Acked-by: Kurt Van Dijck <kurt.van.dijck@eia.be> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Matthias Kaehlcke <matthias@kaehlcke.net> Reviewed-by: Mark Brown <broonie@opensource.wolfsonmicro.com> Reviewed-by: Shawn Guo <shawn.guo@linaro.org> [thierry.reding@avionic-design.de: fixup typos, kerneldoc comments] Signed-off-by: Thierry Reding <thierry.reding@avionic-design.de>
2011-01-28 08:40:40 +00:00
source "drivers/pwm/Kconfig"
ARM: bcm2835: add interrupt controller driver The BCM2835 contains a custom interrupt controller, which supports 72 interrupt sources using a 2-level register scheme. The interrupt controller, or the HW block containing it, is referred to occasionally as "armctrl" in the SoC documentation, hence the symbol naming in the code. This patch was extracted from git://github.com/lp0/linux.git branch rpi-split as of 2012/09/08, and modified as follows: * s/bcm2708/bcm2835/. * Modified device tree vendor prefix. * Moved implementation to drivers/irchip/. * Added devicetree documentation, and hence removed list of IRQs from bcm2835.dtsi. * Changed shift in MAKE_HWIRQ() and HWIRQ_BANK() from 8 to 5 to reduce the size of the hwirq space, and pass the total size of the hwirq space to irq_domain_add_linear(), rather than just the number of valid hwirqs; the two are different due to the hwirq space being sparse. * Added the interrupt controller DT node to the top-level of the DT, rather than nesting it inside a /axi node. Hence, changed the reg value since /axi had a ranges property. This seems simpler to me, but I'm not sure if everyone will like this change or not. * Don't set struct irq_domain_ops.map = irq_domain_simple_map, hence removing the need to patch include/linux/irqdomain.h or kernel/irq/irqdomain.c. * Simplified armctrl_of_init() using of_iomap(). * Removed unused IS_VALID_BANK()/IS_VALID_IRQ() macros. * Renamed armctrl_handle_irq() to prevent possible symbol clashes. * Made armctrl_of_init() static. * Removed comment "Each bank is registered as a separate interrupt controller" since this is no longer true. * Removed FSF address from license header. * Added my name to copyright header. Signed-off-by: Chris Boot <bootc@bootc.net> Signed-off-by: Simon Arlott <simon@fire.lp0.eu> Signed-off-by: Dom Cobley <popcornmix@gmail.com> Signed-off-by: Dom Cobley <dc4@broadcom.com> Signed-off-by: Stephen Warren <swarren@wwwdotorg.org> Acked-by: Arnd Bergmann <arnd@arndb.de>
2012-09-13 01:57:26 +00:00
source "drivers/irqchip/Kconfig"
source "drivers/ipack/Kconfig"
source "drivers/reset/Kconfig"
source "drivers/phy/Kconfig"
source "drivers/powercap/Kconfig"
source "drivers/mcb/Kconfig"
source "drivers/perf/Kconfig"
source "drivers/ras/Kconfig"
source "drivers/thunderbolt/Kconfig"
source "drivers/android/Kconfig"
source "drivers/gpu/trace/Kconfig"
source "drivers/nvdimm/Kconfig"
source "drivers/dax/Kconfig"
source "drivers/nvmem/Kconfig"
source "drivers/hwtracing/Kconfig"
source "drivers/fpga/Kconfig"
source "drivers/fsi/Kconfig"
source "drivers/tee/Kconfig"
source "drivers/mux/Kconfig"
source "drivers/opp/Kconfig"
source "drivers/visorbus/Kconfig"
source "drivers/siox/Kconfig"
source "drivers/slimbus/Kconfig"
source "drivers/interconnect/Kconfig"
counter: Introduce the Generic Counter interface This patch introduces the Generic Counter interface for supporting counter devices. In the context of the Generic Counter interface, a counter is defined as a device that reports one or more "counts" based on the state changes of one or more "signals" as evaluated by a defined "count function." Driver callbacks should be provided to communicate with the device: to read and write various Signals and Counts, and to set and get the "action mode" and "count function" for various Synapses and Counts respectively. To support a counter device, a driver must first allocate the available Counter Signals via counter_signal structures. These Signals should be stored as an array and set to the signals array member of an allocated counter_device structure before the Counter is registered to the system. Counter Counts may be allocated via counter_count structures, and respective Counter Signal associations (Synapses) made via counter_synapse structures. Associated counter_synapse structures are stored as an array and set to the the synapses array member of the respective counter_count structure. These counter_count structures are set to the counts array member of an allocated counter_device structure before the Counter is registered to the system. A counter device is registered to the system by passing the respective initialized counter_device structure to the counter_register function; similarly, the counter_unregister function unregisters the respective Counter. The devm_counter_register and devm_counter_unregister functions serve as device memory-managed versions of the counter_register and counter_unregister functions respectively. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-02 06:30:36 +00:00
source "drivers/counter/Kconfig"
source "drivers/most/Kconfig"
endmenu