linux/kernel/signal.c

4860 lines
125 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/kernel/signal.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
*
* 2003-06-02 Jim Houston - Concurrent Computer Corp.
* Changes to use preallocated sigqueue structures
* to allow signals to be sent reliably.
*/
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/sched/mm.h>
#include <linux/sched/user.h>
#include <linux/sched/debug.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/sched/cputime.h>
signal: add pidfd_send_signal() syscall The kill() syscall operates on process identifiers (pid). After a process has exited its pid can be reused by another process. If a caller sends a signal to a reused pid it will end up signaling the wrong process. This issue has often surfaced and there has been a push to address this problem [1]. This patch uses file descriptors (fd) from proc/<pid> as stable handles on struct pid. Even if a pid is recycled the handle will not change. The fd can be used to send signals to the process it refers to. Thus, the new syscall pidfd_send_signal() is introduced to solve this problem. Instead of pids it operates on process fds (pidfd). /* prototype and argument /* long pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags); /* syscall number 424 */ The syscall number was chosen to be 424 to align with Arnd's rework in his y2038 to minimize merge conflicts (cf. [25]). In addition to the pidfd and signal argument it takes an additional siginfo_t and flags argument. If the siginfo_t argument is NULL then pidfd_send_signal() is equivalent to kill(<positive-pid>, <signal>). If it is not NULL pidfd_send_signal() is equivalent to rt_sigqueueinfo(). The flags argument is added to allow for future extensions of this syscall. It currently needs to be passed as 0. Failing to do so will cause EINVAL. /* pidfd_send_signal() replaces multiple pid-based syscalls */ The pidfd_send_signal() syscall currently takes on the job of rt_sigqueueinfo(2) and parts of the functionality of kill(2), Namely, when a positive pid is passed to kill(2). It will however be possible to also replace tgkill(2) and rt_tgsigqueueinfo(2) if this syscall is extended. /* sending signals to threads (tid) and process groups (pgid) */ Specifically, the pidfd_send_signal() syscall does currently not operate on process groups or threads. This is left for future extensions. In order to extend the syscall to allow sending signal to threads and process groups appropriately named flags (e.g. PIDFD_TYPE_PGID, and PIDFD_TYPE_TID) should be added. This implies that the flags argument will determine what is signaled and not the file descriptor itself. Put in other words, grouping in this api is a property of the flags argument not a property of the file descriptor (cf. [13]). Clarification for this has been requested by Eric (cf. [19]). When appropriate extensions through the flags argument are added then pidfd_send_signal() can additionally replace the part of kill(2) which operates on process groups as well as the tgkill(2) and rt_tgsigqueueinfo(2) syscalls. How such an extension could be implemented has been very roughly sketched in [14], [15], and [16]. However, this should not be taken as a commitment to a particular implementation. There might be better ways to do it. Right now this is intentionally left out to keep this patchset as simple as possible (cf. [4]). /* naming */ The syscall had various names throughout iterations of this patchset: - procfd_signal() - procfd_send_signal() - taskfd_send_signal() In the last round of reviews it was pointed out that given that if the flags argument decides the scope of the signal instead of different types of fds it might make sense to either settle for "procfd_" or "pidfd_" as prefix. The community was willing to accept either (cf. [17] and [18]). Given that one developer expressed strong preference for the "pidfd_" prefix (cf. [13]) and with other developers less opinionated about the name we should settle for "pidfd_" to avoid further bikeshedding. The "_send_signal" suffix was chosen to reflect the fact that the syscall takes on the job of multiple syscalls. It is therefore intentional that the name is not reminiscent of neither kill(2) nor rt_sigqueueinfo(2). Not the fomer because it might imply that pidfd_send_signal() is a replacement for kill(2), and not the latter because it is a hassle to remember the correct spelling - especially for non-native speakers - and because it is not descriptive enough of what the syscall actually does. The name "pidfd_send_signal" makes it very clear that its job is to send signals. /* zombies */ Zombies can be signaled just as any other process. No special error will be reported since a zombie state is an unreliable state (cf. [3]). However, this can be added as an extension through the @flags argument if the need ever arises. /* cross-namespace signals */ The patch currently enforces that the signaler and signalee either are in the same pid namespace or that the signaler's pid namespace is an ancestor of the signalee's pid namespace. This is done for the sake of simplicity and because it is unclear to what values certain members of struct siginfo_t would need to be set to (cf. [5], [6]). /* compat syscalls */ It became clear that we would like to avoid adding compat syscalls (cf. [7]). The compat syscall handling is now done in kernel/signal.c itself by adding __copy_siginfo_from_user_generic() which lets us avoid compat syscalls (cf. [8]). It should be noted that the addition of __copy_siginfo_from_user_any() is caused by a bug in the original implementation of rt_sigqueueinfo(2) (cf. 12). With upcoming rework for syscall handling things might improve significantly (cf. [11]) and __copy_siginfo_from_user_any() will not gain any additional callers. /* testing */ This patch was tested on x64 and x86. /* userspace usage */ An asciinema recording for the basic functionality can be found under [9]. With this patch a process can be killed via: #define _GNU_SOURCE #include <errno.h> #include <fcntl.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/syscall.h> #include <sys/types.h> #include <unistd.h> static inline int do_pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags) { #ifdef __NR_pidfd_send_signal return syscall(__NR_pidfd_send_signal, pidfd, sig, info, flags); #else return -ENOSYS; #endif } int main(int argc, char *argv[]) { int fd, ret, saved_errno, sig; if (argc < 3) exit(EXIT_FAILURE); fd = open(argv[1], O_DIRECTORY | O_CLOEXEC); if (fd < 0) { printf("%s - Failed to open \"%s\"\n", strerror(errno), argv[1]); exit(EXIT_FAILURE); } sig = atoi(argv[2]); printf("Sending signal %d to process %s\n", sig, argv[1]); ret = do_pidfd_send_signal(fd, sig, NULL, 0); saved_errno = errno; close(fd); errno = saved_errno; if (ret < 0) { printf("%s - Failed to send signal %d to process %s\n", strerror(errno), sig, argv[1]); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); } /* Q&A * Given that it seems the same questions get asked again by people who are * late to the party it makes sense to add a Q&A section to the commit * message so it's hopefully easier to avoid duplicate threads. * * For the sake of progress please consider these arguments settled unless * there is a new point that desperately needs to be addressed. Please make * sure to check the links to the threads in this commit message whether * this has not already been covered. */ Q-01: (Florian Weimer [20], Andrew Morton [21]) What happens when the target process has exited? A-01: Sending the signal will fail with ESRCH (cf. [22]). Q-02: (Andrew Morton [21]) Is the task_struct pinned by the fd? A-02: No. A reference to struct pid is kept. struct pid - as far as I understand - was created exactly for the reason to not require to pin struct task_struct (cf. [22]). Q-03: (Andrew Morton [21]) Does the entire procfs directory remain visible? Just one entry within it? A-03: The same thing that happens right now when you hold a file descriptor to /proc/<pid> open (cf. [22]). Q-04: (Andrew Morton [21]) Does the pid remain reserved? A-04: No. This patchset guarantees a stable handle not that pids are not recycled (cf. [22]). Q-05: (Andrew Morton [21]) Do attempts to signal that fd return errors? A-05: See {Q,A}-01. Q-06: (Andrew Morton [22]) Is there a cleaner way of obtaining the fd? Another syscall perhaps. A-06: Userspace can already trivially retrieve file descriptors from procfs so this is something that we will need to support anyway. Hence, there's no immediate need to add another syscalls just to make pidfd_send_signal() not dependent on the presence of procfs. However, adding a syscalls to get such file descriptors is planned for a future patchset (cf. [22]). Q-07: (Andrew Morton [21] and others) This fd-for-a-process sounds like a handy thing and people may well think up other uses for it in the future, probably unrelated to signals. Are the code and the interface designed to permit such future applications? A-07: Yes (cf. [22]). Q-08: (Andrew Morton [21] and others) Now I think about it, why a new syscall? This thing is looking rather like an ioctl? A-08: This has been extensively discussed. It was agreed that a syscall is preferred for a variety or reasons. Here are just a few taken from prior threads. Syscalls are safer than ioctl()s especially when signaling to fds. Processes are a core kernel concept so a syscall seems more appropriate. The layout of the syscall with its four arguments would require the addition of a custom struct for the ioctl() thereby causing at least the same amount or even more complexity for userspace than a simple syscall. The new syscall will replace multiple other pid-based syscalls (see description above). The file-descriptors-for-processes concept introduced with this syscall will be extended with other syscalls in the future. See also [22], [23] and various other threads already linked in here. Q-09: (Florian Weimer [24]) What happens if you use the new interface with an O_PATH descriptor? A-09: pidfds opened as O_PATH fds cannot be used to send signals to a process (cf. [2]). Signaling processes through pidfds is the equivalent of writing to a file. Thus, this is not an operation that operates "purely at the file descriptor level" as required by the open(2) manpage. See also [4]. /* References */ [1]: https://lore.kernel.org/lkml/20181029221037.87724-1-dancol@google.com/ [2]: https://lore.kernel.org/lkml/874lbtjvtd.fsf@oldenburg2.str.redhat.com/ [3]: https://lore.kernel.org/lkml/20181204132604.aspfupwjgjx6fhva@brauner.io/ [4]: https://lore.kernel.org/lkml/20181203180224.fkvw4kajtbvru2ku@brauner.io/ [5]: https://lore.kernel.org/lkml/20181121213946.GA10795@mail.hallyn.com/ [6]: https://lore.kernel.org/lkml/20181120103111.etlqp7zop34v6nv4@brauner.io/ [7]: https://lore.kernel.org/lkml/36323361-90BD-41AF-AB5B-EE0D7BA02C21@amacapital.net/ [8]: https://lore.kernel.org/lkml/87tvjxp8pc.fsf@xmission.com/ [9]: https://asciinema.org/a/IQjuCHew6bnq1cr78yuMv16cy [11]: https://lore.kernel.org/lkml/F53D6D38-3521-4C20-9034-5AF447DF62FF@amacapital.net/ [12]: https://lore.kernel.org/lkml/87zhtjn8ck.fsf@xmission.com/ [13]: https://lore.kernel.org/lkml/871s6u9z6u.fsf@xmission.com/ [14]: https://lore.kernel.org/lkml/20181206231742.xxi4ghn24z4h2qki@brauner.io/ [15]: https://lore.kernel.org/lkml/20181207003124.GA11160@mail.hallyn.com/ [16]: https://lore.kernel.org/lkml/20181207015423.4miorx43l3qhppfz@brauner.io/ [17]: https://lore.kernel.org/lkml/CAGXu5jL8PciZAXvOvCeCU3wKUEB_dU-O3q0tDw4uB_ojMvDEew@mail.gmail.com/ [18]: https://lore.kernel.org/lkml/20181206222746.GB9224@mail.hallyn.com/ [19]: https://lore.kernel.org/lkml/20181208054059.19813-1-christian@brauner.io/ [20]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [21]: https://lore.kernel.org/lkml/20181228152012.dbf0508c2508138efc5f2bbe@linux-foundation.org/ [22]: https://lore.kernel.org/lkml/20181228233725.722tdfgijxcssg76@brauner.io/ [23]: https://lwn.net/Articles/773459/ [24]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [25]: https://lore.kernel.org/lkml/CAK8P3a0ej9NcJM8wXNPbcGUyOUZYX+VLoDFdbenW3s3114oQZw@mail.gmail.com/ Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Jann Horn <jannh@google.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Florian Weimer <fweimer@redhat.com> Signed-off-by: Christian Brauner <christian@brauner.io> Reviewed-by: Tycho Andersen <tycho@tycho.ws> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Serge Hallyn <serge@hallyn.com> Acked-by: Aleksa Sarai <cyphar@cyphar.com>
2018-11-18 23:51:56 +00:00
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/mm.h>
signal: add pidfd_send_signal() syscall The kill() syscall operates on process identifiers (pid). After a process has exited its pid can be reused by another process. If a caller sends a signal to a reused pid it will end up signaling the wrong process. This issue has often surfaced and there has been a push to address this problem [1]. This patch uses file descriptors (fd) from proc/<pid> as stable handles on struct pid. Even if a pid is recycled the handle will not change. The fd can be used to send signals to the process it refers to. Thus, the new syscall pidfd_send_signal() is introduced to solve this problem. Instead of pids it operates on process fds (pidfd). /* prototype and argument /* long pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags); /* syscall number 424 */ The syscall number was chosen to be 424 to align with Arnd's rework in his y2038 to minimize merge conflicts (cf. [25]). In addition to the pidfd and signal argument it takes an additional siginfo_t and flags argument. If the siginfo_t argument is NULL then pidfd_send_signal() is equivalent to kill(<positive-pid>, <signal>). If it is not NULL pidfd_send_signal() is equivalent to rt_sigqueueinfo(). The flags argument is added to allow for future extensions of this syscall. It currently needs to be passed as 0. Failing to do so will cause EINVAL. /* pidfd_send_signal() replaces multiple pid-based syscalls */ The pidfd_send_signal() syscall currently takes on the job of rt_sigqueueinfo(2) and parts of the functionality of kill(2), Namely, when a positive pid is passed to kill(2). It will however be possible to also replace tgkill(2) and rt_tgsigqueueinfo(2) if this syscall is extended. /* sending signals to threads (tid) and process groups (pgid) */ Specifically, the pidfd_send_signal() syscall does currently not operate on process groups or threads. This is left for future extensions. In order to extend the syscall to allow sending signal to threads and process groups appropriately named flags (e.g. PIDFD_TYPE_PGID, and PIDFD_TYPE_TID) should be added. This implies that the flags argument will determine what is signaled and not the file descriptor itself. Put in other words, grouping in this api is a property of the flags argument not a property of the file descriptor (cf. [13]). Clarification for this has been requested by Eric (cf. [19]). When appropriate extensions through the flags argument are added then pidfd_send_signal() can additionally replace the part of kill(2) which operates on process groups as well as the tgkill(2) and rt_tgsigqueueinfo(2) syscalls. How such an extension could be implemented has been very roughly sketched in [14], [15], and [16]. However, this should not be taken as a commitment to a particular implementation. There might be better ways to do it. Right now this is intentionally left out to keep this patchset as simple as possible (cf. [4]). /* naming */ The syscall had various names throughout iterations of this patchset: - procfd_signal() - procfd_send_signal() - taskfd_send_signal() In the last round of reviews it was pointed out that given that if the flags argument decides the scope of the signal instead of different types of fds it might make sense to either settle for "procfd_" or "pidfd_" as prefix. The community was willing to accept either (cf. [17] and [18]). Given that one developer expressed strong preference for the "pidfd_" prefix (cf. [13]) and with other developers less opinionated about the name we should settle for "pidfd_" to avoid further bikeshedding. The "_send_signal" suffix was chosen to reflect the fact that the syscall takes on the job of multiple syscalls. It is therefore intentional that the name is not reminiscent of neither kill(2) nor rt_sigqueueinfo(2). Not the fomer because it might imply that pidfd_send_signal() is a replacement for kill(2), and not the latter because it is a hassle to remember the correct spelling - especially for non-native speakers - and because it is not descriptive enough of what the syscall actually does. The name "pidfd_send_signal" makes it very clear that its job is to send signals. /* zombies */ Zombies can be signaled just as any other process. No special error will be reported since a zombie state is an unreliable state (cf. [3]). However, this can be added as an extension through the @flags argument if the need ever arises. /* cross-namespace signals */ The patch currently enforces that the signaler and signalee either are in the same pid namespace or that the signaler's pid namespace is an ancestor of the signalee's pid namespace. This is done for the sake of simplicity and because it is unclear to what values certain members of struct siginfo_t would need to be set to (cf. [5], [6]). /* compat syscalls */ It became clear that we would like to avoid adding compat syscalls (cf. [7]). The compat syscall handling is now done in kernel/signal.c itself by adding __copy_siginfo_from_user_generic() which lets us avoid compat syscalls (cf. [8]). It should be noted that the addition of __copy_siginfo_from_user_any() is caused by a bug in the original implementation of rt_sigqueueinfo(2) (cf. 12). With upcoming rework for syscall handling things might improve significantly (cf. [11]) and __copy_siginfo_from_user_any() will not gain any additional callers. /* testing */ This patch was tested on x64 and x86. /* userspace usage */ An asciinema recording for the basic functionality can be found under [9]. With this patch a process can be killed via: #define _GNU_SOURCE #include <errno.h> #include <fcntl.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/syscall.h> #include <sys/types.h> #include <unistd.h> static inline int do_pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags) { #ifdef __NR_pidfd_send_signal return syscall(__NR_pidfd_send_signal, pidfd, sig, info, flags); #else return -ENOSYS; #endif } int main(int argc, char *argv[]) { int fd, ret, saved_errno, sig; if (argc < 3) exit(EXIT_FAILURE); fd = open(argv[1], O_DIRECTORY | O_CLOEXEC); if (fd < 0) { printf("%s - Failed to open \"%s\"\n", strerror(errno), argv[1]); exit(EXIT_FAILURE); } sig = atoi(argv[2]); printf("Sending signal %d to process %s\n", sig, argv[1]); ret = do_pidfd_send_signal(fd, sig, NULL, 0); saved_errno = errno; close(fd); errno = saved_errno; if (ret < 0) { printf("%s - Failed to send signal %d to process %s\n", strerror(errno), sig, argv[1]); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); } /* Q&A * Given that it seems the same questions get asked again by people who are * late to the party it makes sense to add a Q&A section to the commit * message so it's hopefully easier to avoid duplicate threads. * * For the sake of progress please consider these arguments settled unless * there is a new point that desperately needs to be addressed. Please make * sure to check the links to the threads in this commit message whether * this has not already been covered. */ Q-01: (Florian Weimer [20], Andrew Morton [21]) What happens when the target process has exited? A-01: Sending the signal will fail with ESRCH (cf. [22]). Q-02: (Andrew Morton [21]) Is the task_struct pinned by the fd? A-02: No. A reference to struct pid is kept. struct pid - as far as I understand - was created exactly for the reason to not require to pin struct task_struct (cf. [22]). Q-03: (Andrew Morton [21]) Does the entire procfs directory remain visible? Just one entry within it? A-03: The same thing that happens right now when you hold a file descriptor to /proc/<pid> open (cf. [22]). Q-04: (Andrew Morton [21]) Does the pid remain reserved? A-04: No. This patchset guarantees a stable handle not that pids are not recycled (cf. [22]). Q-05: (Andrew Morton [21]) Do attempts to signal that fd return errors? A-05: See {Q,A}-01. Q-06: (Andrew Morton [22]) Is there a cleaner way of obtaining the fd? Another syscall perhaps. A-06: Userspace can already trivially retrieve file descriptors from procfs so this is something that we will need to support anyway. Hence, there's no immediate need to add another syscalls just to make pidfd_send_signal() not dependent on the presence of procfs. However, adding a syscalls to get such file descriptors is planned for a future patchset (cf. [22]). Q-07: (Andrew Morton [21] and others) This fd-for-a-process sounds like a handy thing and people may well think up other uses for it in the future, probably unrelated to signals. Are the code and the interface designed to permit such future applications? A-07: Yes (cf. [22]). Q-08: (Andrew Morton [21] and others) Now I think about it, why a new syscall? This thing is looking rather like an ioctl? A-08: This has been extensively discussed. It was agreed that a syscall is preferred for a variety or reasons. Here are just a few taken from prior threads. Syscalls are safer than ioctl()s especially when signaling to fds. Processes are a core kernel concept so a syscall seems more appropriate. The layout of the syscall with its four arguments would require the addition of a custom struct for the ioctl() thereby causing at least the same amount or even more complexity for userspace than a simple syscall. The new syscall will replace multiple other pid-based syscalls (see description above). The file-descriptors-for-processes concept introduced with this syscall will be extended with other syscalls in the future. See also [22], [23] and various other threads already linked in here. Q-09: (Florian Weimer [24]) What happens if you use the new interface with an O_PATH descriptor? A-09: pidfds opened as O_PATH fds cannot be used to send signals to a process (cf. [2]). Signaling processes through pidfds is the equivalent of writing to a file. Thus, this is not an operation that operates "purely at the file descriptor level" as required by the open(2) manpage. See also [4]. /* References */ [1]: https://lore.kernel.org/lkml/20181029221037.87724-1-dancol@google.com/ [2]: https://lore.kernel.org/lkml/874lbtjvtd.fsf@oldenburg2.str.redhat.com/ [3]: https://lore.kernel.org/lkml/20181204132604.aspfupwjgjx6fhva@brauner.io/ [4]: https://lore.kernel.org/lkml/20181203180224.fkvw4kajtbvru2ku@brauner.io/ [5]: https://lore.kernel.org/lkml/20181121213946.GA10795@mail.hallyn.com/ [6]: https://lore.kernel.org/lkml/20181120103111.etlqp7zop34v6nv4@brauner.io/ [7]: https://lore.kernel.org/lkml/36323361-90BD-41AF-AB5B-EE0D7BA02C21@amacapital.net/ [8]: https://lore.kernel.org/lkml/87tvjxp8pc.fsf@xmission.com/ [9]: https://asciinema.org/a/IQjuCHew6bnq1cr78yuMv16cy [11]: https://lore.kernel.org/lkml/F53D6D38-3521-4C20-9034-5AF447DF62FF@amacapital.net/ [12]: https://lore.kernel.org/lkml/87zhtjn8ck.fsf@xmission.com/ [13]: https://lore.kernel.org/lkml/871s6u9z6u.fsf@xmission.com/ [14]: https://lore.kernel.org/lkml/20181206231742.xxi4ghn24z4h2qki@brauner.io/ [15]: https://lore.kernel.org/lkml/20181207003124.GA11160@mail.hallyn.com/ [16]: https://lore.kernel.org/lkml/20181207015423.4miorx43l3qhppfz@brauner.io/ [17]: https://lore.kernel.org/lkml/CAGXu5jL8PciZAXvOvCeCU3wKUEB_dU-O3q0tDw4uB_ojMvDEew@mail.gmail.com/ [18]: https://lore.kernel.org/lkml/20181206222746.GB9224@mail.hallyn.com/ [19]: https://lore.kernel.org/lkml/20181208054059.19813-1-christian@brauner.io/ [20]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [21]: https://lore.kernel.org/lkml/20181228152012.dbf0508c2508138efc5f2bbe@linux-foundation.org/ [22]: https://lore.kernel.org/lkml/20181228233725.722tdfgijxcssg76@brauner.io/ [23]: https://lwn.net/Articles/773459/ [24]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [25]: https://lore.kernel.org/lkml/CAK8P3a0ej9NcJM8wXNPbcGUyOUZYX+VLoDFdbenW3s3114oQZw@mail.gmail.com/ Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Jann Horn <jannh@google.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Florian Weimer <fweimer@redhat.com> Signed-off-by: Christian Brauner <christian@brauner.io> Reviewed-by: Tycho Andersen <tycho@tycho.ws> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Serge Hallyn <serge@hallyn.com> Acked-by: Aleksa Sarai <cyphar@cyphar.com>
2018-11-18 23:51:56 +00:00
#include <linux/proc_fs.h>
#include <linux/tty.h>
#include <linux/binfmts.h>
#include <linux/coredump.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/ptrace.h>
#include <linux/signal.h>
signal/timer/event: signalfd core This patch series implements the new signalfd() system call. I took part of the original Linus code (and you know how badly it can be broken :), and I added even more breakage ;) Signals are fetched from the same signal queue used by the process, so signalfd will compete with standard kernel delivery in dequeue_signal(). If you want to reliably fetch signals on the signalfd file, you need to block them with sigprocmask(SIG_BLOCK). This seems to be working fine on my Dual Opteron machine. I made a quick test program for it: http://www.xmailserver.org/signafd-test.c The signalfd() system call implements signal delivery into a file descriptor receiver. The signalfd file descriptor if created with the following API: int signalfd(int ufd, const sigset_t *mask, size_t masksize); The "ufd" parameter allows to change an existing signalfd sigmask, w/out going to close/create cycle (Linus idea). Use "ufd" == -1 if you want a brand new signalfd file. The "mask" allows to specify the signal mask of signals that we are interested in. The "masksize" parameter is the size of "mask". The signalfd fd supports the poll(2) and read(2) system calls. The poll(2) will return POLLIN when signals are available to be dequeued. As a direct consequence of supporting the Linux poll subsystem, the signalfd fd can use used together with epoll(2) too. The read(2) system call will return a "struct signalfd_siginfo" structure in the userspace supplied buffer. The return value is the number of bytes copied in the supplied buffer, or -1 in case of error. The read(2) call can also return 0, in case the sighand structure to which the signalfd was attached, has been orphaned. The O_NONBLOCK flag is also supported, and read(2) will return -EAGAIN in case no signal is available. If the size of the buffer passed to read(2) is lower than sizeof(struct signalfd_siginfo), -EINVAL is returned. A read from the signalfd can also return -ERESTARTSYS in case a signal hits the process. The format of the struct signalfd_siginfo is, and the valid fields depends of the (->code & __SI_MASK) value, in the same way a struct siginfo would: struct signalfd_siginfo { __u32 signo; /* si_signo */ __s32 err; /* si_errno */ __s32 code; /* si_code */ __u32 pid; /* si_pid */ __u32 uid; /* si_uid */ __s32 fd; /* si_fd */ __u32 tid; /* si_fd */ __u32 band; /* si_band */ __u32 overrun; /* si_overrun */ __u32 trapno; /* si_trapno */ __s32 status; /* si_status */ __s32 svint; /* si_int */ __u64 svptr; /* si_ptr */ __u64 utime; /* si_utime */ __u64 stime; /* si_stime */ __u64 addr; /* si_addr */ }; [akpm@linux-foundation.org: fix signalfd_copyinfo() on i386] Signed-off-by: Davide Libenzi <davidel@xmailserver.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-11 05:23:13 +00:00
#include <linux/signalfd.h>
#include <linux/ratelimit.h>
#include <linux/task_work.h>
#include <linux/capability.h>
#include <linux/freezer.h>
#include <linux/pid_namespace.h>
#include <linux/nsproxy.h>
user namespace: make signal.c respect user namespaces ipc/mqueue.c: for __SI_MESQ, convert the uid being sent to recipient's user namespace. (new, thanks Oleg) __send_signal: convert current's uid to the recipient's user namespace for any siginfo which is not SI_FROMKERNEL (patch from Oleg, thanks again :) do_notify_parent and do_notify_parent_cldstop: map task's uid to parent's user namespace ptrace_signal maps parent's uid into current's user namespace before including in signal to current. IIUC Oleg has argued that this shouldn't matter as the debugger will play with it, but it seems like not converting the value currently being set is misleading. Changelog: Sep 20: Inspired by Oleg's suggestion, define map_cred_ns() helper to simplify callers and help make clear what we are translating (which uid into which namespace). Passing the target task would make callers even easier to read, but we pass in user_ns because current_user_ns() != task_cred_xxx(current, user_ns). Sep 20: As recommended by Oleg, also put task_pid_vnr() under rcu_read_lock in ptrace_signal(). Sep 23: In send_signal(), detect when (user) signal is coming from an ancestor or unrelated user namespace. Pass that on to __send_signal, which sets si_uid to 0 or overflowuid if needed. Oct 12: Base on Oleg's fixup_uid() patch. On top of that, handle all SI_FROMKERNEL cases at callers, because we can't assume sender is current in those cases. Nov 10: (mhelsley) rename fixup_uid to more meaningful usern_fixup_signal_uid Nov 10: (akpm) make the !CONFIG_USER_NS case clearer Signed-off-by: Serge Hallyn <serge.hallyn@canonical.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> From: Serge Hallyn <serge.hallyn@canonical.com> Subject: __send_signal: pass q->info, not info, to userns_fixup_signal_uid (v2) Eric Biederman pointed out that passing info is a bug and could lead to a NULL pointer deref to boot. A collection of signal, securebits, filecaps, cap_bounds, and a few other ltp tests passed with this kernel. Changelog: Nov 18: previous patch missed a leading '&' Signed-off-by: Serge Hallyn <serge.hallyn@canonical.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> From: Dan Carpenter <dan.carpenter@oracle.com> Subject: ipc/mqueue: lock() => unlock() typo There was a double lock typo introduced in b085f4bd6b21 "user namespace: make signal.c respect user namespaces" Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 23:11:37 +00:00
#include <linux/user_namespace.h>
uprobes/core: Handle breakpoint and singlestep exceptions Uprobes uses exception notifiers to get to know if a thread hit a breakpoint or a singlestep exception. When a thread hits a uprobe or is singlestepping post a uprobe hit, the uprobe exception notifier sets its TIF_UPROBE bit, which will then be checked on its return to userspace path (do_notify_resume() ->uprobe_notify_resume()), where the consumers handlers are run (in task context) based on the defined filters. Uprobe hits are thread specific and hence we need to maintain information about if a task hit a uprobe, what uprobe was hit, the slot where the original instruction was copied for xol so that it can be singlestepped with appropriate fixups. In some cases, special care is needed for instructions that are executed out of line (xol). These are architecture specific artefacts, such as handling RIP relative instructions on x86_64. Since the instruction at which the uprobe was inserted is executed out of line, architecture specific fixups are added so that the thread continues normal execution in the presence of a uprobe. Postpone the signals until we execute the probed insn. post_xol() path does a recalc_sigpending() before return to user-mode, this ensures the signal can't be lost. Uprobes relies on DIE_DEBUG notification to notify if a singlestep is complete. Adds x86 specific uprobe exception notifiers and appropriate hooks needed to determine a uprobe hit and subsequent post processing. Add requisite x86 fixups for xol for uprobes. Specific cases needing fixups include relative jumps (x86_64), calls, etc. Where possible, we check and skip singlestepping the breakpointed instructions. For now we skip single byte as well as few multibyte nop instructions. However this can be extended to other instructions too. Credits to Oleg Nesterov for suggestions/patches related to signal, breakpoint, singlestep handling code. Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Jim Keniston <jkenisto@linux.vnet.ibm.com> Cc: Linux-mm <linux-mm@kvack.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20120313180011.29771.89027.sendpatchset@srdronam.in.ibm.com [ Performed various cleanliness edits ] Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-03-13 18:00:11 +00:00
#include <linux/uprobes.h>
#include <linux/compat.h>
#include <linux/cn_proc.h>
#include <linux/compiler.h>
#include <linux/posix-timers.h>
cgroup: cgroup v2 freezer Cgroup v1 implements the freezer controller, which provides an ability to stop the workload in a cgroup and temporarily free up some resources (cpu, io, network bandwidth and, potentially, memory) for some other tasks. Cgroup v2 lacks this functionality. This patch implements freezer for cgroup v2. Cgroup v2 freezer tries to put tasks into a state similar to jobctl stop. This means that tasks can be killed, ptraced (using PTRACE_SEIZE*), and interrupted. It is possible to attach to a frozen task, get some information (e.g. read registers) and detach. It's also possible to migrate a frozen tasks to another cgroup. This differs cgroup v2 freezer from cgroup v1 freezer, which mostly tried to imitate the system-wide freezer. However uninterruptible sleep is fine when all tasks are going to be frozen (hibernation case), it's not the acceptable state for some subset of the system. Cgroup v2 freezer is not supporting freezing kthreads. If a non-root cgroup contains kthread, the cgroup still can be frozen, but the kthread will remain running, the cgroup will be shown as non-frozen, and the notification will not be delivered. * PTRACE_ATTACH is not working because non-fatal signal delivery is blocked in frozen state. There are some interface differences between cgroup v1 and cgroup v2 freezer too, which are required to conform the cgroup v2 interface design principles: 1) There is no separate controller, which has to be turned on: the functionality is always available and is represented by cgroup.freeze and cgroup.events cgroup control files. 2) The desired state is defined by the cgroup.freeze control file. Any hierarchical configuration is allowed. 3) The interface is asynchronous. The actual state is available using cgroup.events control file ("frozen" field). There are no dedicated transitional states. 4) It's allowed to make any changes with the cgroup hierarchy (create new cgroups, remove old cgroups, move tasks between cgroups) no matter if some cgroups are frozen. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Tejun Heo <tj@kernel.org> No-objection-from-me-by: Oleg Nesterov <oleg@redhat.com> Cc: kernel-team@fb.com
2019-04-19 17:03:04 +00:00
#include <linux/cgroup.h>
#include <linux/audit.h>
#include <linux/sysctl.h>
#define CREATE_TRACE_POINTS
#include <trace/events/signal.h>
#include <asm/param.h>
#include <linux/uaccess.h>
#include <asm/unistd.h>
#include <asm/siginfo.h>
#include <asm/cacheflush.h>
#include <asm/syscall.h> /* for syscall_get_* */
/*
* SLAB caches for signal bits.
*/
static struct kmem_cache *sigqueue_cachep;
int print_fatal_signals __read_mostly;
static void __user *sig_handler(struct task_struct *t, int sig)
{
return t->sighand->action[sig - 1].sa.sa_handler;
}
static inline bool sig_handler_ignored(void __user *handler, int sig)
{
/* Is it explicitly or implicitly ignored? */
return handler == SIG_IGN ||
(handler == SIG_DFL && sig_kernel_ignore(sig));
}
static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
{
void __user *handler;
handler = sig_handler(t, sig);
/* SIGKILL and SIGSTOP may not be sent to the global init */
if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
return true;
if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
handler == SIG_DFL && !(force && sig_kernel_only(sig)))
return true;
signal: Allow cifs and drbd to receive their terminating signals My recent to change to only use force_sig for a synchronous events wound up breaking signal reception cifs and drbd. I had overlooked the fact that by default kthreads start out with all signals set to SIG_IGN. So a change I thought was safe turned out to have made it impossible for those kernel thread to catch their signals. Reverting the work on force_sig is a bad idea because what the code was doing was very much a misuse of force_sig. As the way force_sig ultimately allowed the signal to happen was to change the signal handler to SIG_DFL. Which after the first signal will allow userspace to send signals to these kernel threads. At least for wake_ack_receiver in drbd that does not appear actively wrong. So correct this problem by adding allow_kernel_signal that will allow signals whose siginfo reports they were sent by the kernel through, but will not allow userspace generated signals, and update cifs and drbd to call allow_kernel_signal in an appropriate place so that their thread can receive this signal. Fixing things this way ensures that userspace won't be able to send signals and cause problems, that it is clear which signals the threads are expecting to receive, and it guarantees that nothing else in the system will be affected. This change was partly inspired by similar cifs and drbd patches that added allow_signal. Reported-by: ronnie sahlberg <ronniesahlberg@gmail.com> Reported-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> Tested-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> Cc: Steve French <smfrench@gmail.com> Cc: Philipp Reisner <philipp.reisner@linbit.com> Cc: David Laight <David.Laight@ACULAB.COM> Fixes: 247bc9470b1e ("cifs: fix rmmod regression in cifs.ko caused by force_sig changes") Fixes: 72abe3bcf091 ("signal/cifs: Fix cifs_put_tcp_session to call send_sig instead of force_sig") Fixes: fee109901f39 ("signal/drbd: Use send_sig not force_sig") Fixes: 3cf5d076fb4d ("signal: Remove task parameter from force_sig") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2019-08-16 17:33:54 +00:00
/* Only allow kernel generated signals to this kthread */
if (unlikely((t->flags & PF_KTHREAD) &&
signal: Allow cifs and drbd to receive their terminating signals My recent to change to only use force_sig for a synchronous events wound up breaking signal reception cifs and drbd. I had overlooked the fact that by default kthreads start out with all signals set to SIG_IGN. So a change I thought was safe turned out to have made it impossible for those kernel thread to catch their signals. Reverting the work on force_sig is a bad idea because what the code was doing was very much a misuse of force_sig. As the way force_sig ultimately allowed the signal to happen was to change the signal handler to SIG_DFL. Which after the first signal will allow userspace to send signals to these kernel threads. At least for wake_ack_receiver in drbd that does not appear actively wrong. So correct this problem by adding allow_kernel_signal that will allow signals whose siginfo reports they were sent by the kernel through, but will not allow userspace generated signals, and update cifs and drbd to call allow_kernel_signal in an appropriate place so that their thread can receive this signal. Fixing things this way ensures that userspace won't be able to send signals and cause problems, that it is clear which signals the threads are expecting to receive, and it guarantees that nothing else in the system will be affected. This change was partly inspired by similar cifs and drbd patches that added allow_signal. Reported-by: ronnie sahlberg <ronniesahlberg@gmail.com> Reported-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> Tested-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> Cc: Steve French <smfrench@gmail.com> Cc: Philipp Reisner <philipp.reisner@linbit.com> Cc: David Laight <David.Laight@ACULAB.COM> Fixes: 247bc9470b1e ("cifs: fix rmmod regression in cifs.ko caused by force_sig changes") Fixes: 72abe3bcf091 ("signal/cifs: Fix cifs_put_tcp_session to call send_sig instead of force_sig") Fixes: fee109901f39 ("signal/drbd: Use send_sig not force_sig") Fixes: 3cf5d076fb4d ("signal: Remove task parameter from force_sig") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2019-08-16 17:33:54 +00:00
(handler == SIG_KTHREAD_KERNEL) && !force))
return true;
return sig_handler_ignored(handler, sig);
}
static bool sig_ignored(struct task_struct *t, int sig, bool force)
{
/*
* Blocked signals are never ignored, since the
* signal handler may change by the time it is
* unblocked.
*/
if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
return false;
/*
* Tracers may want to know about even ignored signal unless it
* is SIGKILL which can't be reported anyway but can be ignored
* by SIGNAL_UNKILLABLE task.
*/
if (t->ptrace && sig != SIGKILL)
return false;
return sig_task_ignored(t, sig, force);
}
/*
* Re-calculate pending state from the set of locally pending
* signals, globally pending signals, and blocked signals.
*/
static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
{
unsigned long ready;
long i;
switch (_NSIG_WORDS) {
default:
for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
ready |= signal->sig[i] &~ blocked->sig[i];
break;
case 4: ready = signal->sig[3] &~ blocked->sig[3];
ready |= signal->sig[2] &~ blocked->sig[2];
ready |= signal->sig[1] &~ blocked->sig[1];
ready |= signal->sig[0] &~ blocked->sig[0];
break;
case 2: ready = signal->sig[1] &~ blocked->sig[1];
ready |= signal->sig[0] &~ blocked->sig[0];
break;
case 1: ready = signal->sig[0] &~ blocked->sig[0];
}
return ready != 0;
}
#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
static bool recalc_sigpending_tsk(struct task_struct *t)
{
cgroup: cgroup v2 freezer Cgroup v1 implements the freezer controller, which provides an ability to stop the workload in a cgroup and temporarily free up some resources (cpu, io, network bandwidth and, potentially, memory) for some other tasks. Cgroup v2 lacks this functionality. This patch implements freezer for cgroup v2. Cgroup v2 freezer tries to put tasks into a state similar to jobctl stop. This means that tasks can be killed, ptraced (using PTRACE_SEIZE*), and interrupted. It is possible to attach to a frozen task, get some information (e.g. read registers) and detach. It's also possible to migrate a frozen tasks to another cgroup. This differs cgroup v2 freezer from cgroup v1 freezer, which mostly tried to imitate the system-wide freezer. However uninterruptible sleep is fine when all tasks are going to be frozen (hibernation case), it's not the acceptable state for some subset of the system. Cgroup v2 freezer is not supporting freezing kthreads. If a non-root cgroup contains kthread, the cgroup still can be frozen, but the kthread will remain running, the cgroup will be shown as non-frozen, and the notification will not be delivered. * PTRACE_ATTACH is not working because non-fatal signal delivery is blocked in frozen state. There are some interface differences between cgroup v1 and cgroup v2 freezer too, which are required to conform the cgroup v2 interface design principles: 1) There is no separate controller, which has to be turned on: the functionality is always available and is represented by cgroup.freeze and cgroup.events cgroup control files. 2) The desired state is defined by the cgroup.freeze control file. Any hierarchical configuration is allowed. 3) The interface is asynchronous. The actual state is available using cgroup.events control file ("frozen" field). There are no dedicated transitional states. 4) It's allowed to make any changes with the cgroup hierarchy (create new cgroups, remove old cgroups, move tasks between cgroups) no matter if some cgroups are frozen. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Tejun Heo <tj@kernel.org> No-objection-from-me-by: Oleg Nesterov <oleg@redhat.com> Cc: kernel-team@fb.com
2019-04-19 17:03:04 +00:00
if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
PENDING(&t->pending, &t->blocked) ||
cgroup: cgroup v2 freezer Cgroup v1 implements the freezer controller, which provides an ability to stop the workload in a cgroup and temporarily free up some resources (cpu, io, network bandwidth and, potentially, memory) for some other tasks. Cgroup v2 lacks this functionality. This patch implements freezer for cgroup v2. Cgroup v2 freezer tries to put tasks into a state similar to jobctl stop. This means that tasks can be killed, ptraced (using PTRACE_SEIZE*), and interrupted. It is possible to attach to a frozen task, get some information (e.g. read registers) and detach. It's also possible to migrate a frozen tasks to another cgroup. This differs cgroup v2 freezer from cgroup v1 freezer, which mostly tried to imitate the system-wide freezer. However uninterruptible sleep is fine when all tasks are going to be frozen (hibernation case), it's not the acceptable state for some subset of the system. Cgroup v2 freezer is not supporting freezing kthreads. If a non-root cgroup contains kthread, the cgroup still can be frozen, but the kthread will remain running, the cgroup will be shown as non-frozen, and the notification will not be delivered. * PTRACE_ATTACH is not working because non-fatal signal delivery is blocked in frozen state. There are some interface differences between cgroup v1 and cgroup v2 freezer too, which are required to conform the cgroup v2 interface design principles: 1) There is no separate controller, which has to be turned on: the functionality is always available and is represented by cgroup.freeze and cgroup.events cgroup control files. 2) The desired state is defined by the cgroup.freeze control file. Any hierarchical configuration is allowed. 3) The interface is asynchronous. The actual state is available using cgroup.events control file ("frozen" field). There are no dedicated transitional states. 4) It's allowed to make any changes with the cgroup hierarchy (create new cgroups, remove old cgroups, move tasks between cgroups) no matter if some cgroups are frozen. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Tejun Heo <tj@kernel.org> No-objection-from-me-by: Oleg Nesterov <oleg@redhat.com> Cc: kernel-team@fb.com
2019-04-19 17:03:04 +00:00
PENDING(&t->signal->shared_pending, &t->blocked) ||
cgroup_task_frozen(t)) {
set_tsk_thread_flag(t, TIF_SIGPENDING);
return true;
}
/*
* We must never clear the flag in another thread, or in current
* when it's possible the current syscall is returning -ERESTART*.
* So we don't clear it here, and only callers who know they should do.
*/
return false;
}
/*
* After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
* This is superfluous when called on current, the wakeup is a harmless no-op.
*/
void recalc_sigpending_and_wake(struct task_struct *t)
{
if (recalc_sigpending_tsk(t))
signal_wake_up(t, 0);
}
void recalc_sigpending(void)
{
if (!recalc_sigpending_tsk(current) && !freezing(current))
clear_thread_flag(TIF_SIGPENDING);
}
EXPORT_SYMBOL(recalc_sigpending);
signal: Add calculate_sigpending() Add a function calculate_sigpending to test to see if any signals are pending for a new task immediately following fork. Signals have to happen either before or after fork. Today our practice is to push all of the signals to before the fork, but that has the downside that frequent or periodic signals can make fork take much much longer than normal or prevent fork from completing entirely. So we need move signals that we can after the fork to prevent that. This updates the code to set TIF_SIGPENDING on a new task if there are signals or other activities that have moved so that they appear to happen after the fork. As the code today restarts if it sees any such activity this won't immediately have an effect, as there will be no reason for it to set TIF_SIGPENDING immediately after the fork. Adding calculate_sigpending means the code in fork can safely be changed to not always restart if a signal is pending. The new calculate_sigpending function sets sigpending if there are pending bits in jobctl, pending signals, the freezer needs to freeze the new task or the live kernel patching framework need the new thread to take the slow path to userspace. I have verified that setting TIF_SIGPENDING does make a new process take the slow path to userspace before it executes it's first userspace instruction. I have looked at the callers of signal_wake_up and the code paths setting TIF_SIGPENDING and I don't see anything else that needs to be handled. The code probably doesn't need to set TIF_SIGPENDING for the kernel live patching as it uses a separate thread flag as well. But at this point it seems safer reuse the recalc_sigpending logic and get the kernel live patching folks to sort out their story later. V2: I have moved the test into schedule_tail where siglock can be grabbed and recalc_sigpending can be reused directly. Further as the last action of setting up a new task this guarantees that TIF_SIGPENDING will be properly set in the new process. The helper calculate_sigpending takes the siglock and uncontitionally sets TIF_SIGPENDING and let's recalc_sigpending clear TIF_SIGPENDING if it is unnecessary. This allows reusing the existing code and keeps maintenance of the conditions simple. Oleg Nesterov <oleg@redhat.com> suggested the movement and pointed out the need to take siglock if this code was going to be called while the new task is discoverable. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-07-23 22:26:49 +00:00
void calculate_sigpending(void)
{
/* Have any signals or users of TIF_SIGPENDING been delayed
* until after fork?
*/
spin_lock_irq(&current->sighand->siglock);
set_tsk_thread_flag(current, TIF_SIGPENDING);
recalc_sigpending();
spin_unlock_irq(&current->sighand->siglock);
}
/* Given the mask, find the first available signal that should be serviced. */
#define SYNCHRONOUS_MASK \
(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
signal, x86: add SIGSYS info and make it synchronous. This change enables SIGSYS, defines _sigfields._sigsys, and adds x86 (compat) arch support. _sigsys defines fields which allow a signal handler to receive the triggering system call number, the relevant AUDIT_ARCH_* value for that number, and the address of the callsite. SIGSYS is added to the SYNCHRONOUS_MASK because it is desirable for it to have setup_frame() called for it. The goal is to ensure that ucontext_t reflects the machine state from the time-of-syscall and not from another signal handler. The first consumer of SIGSYS would be seccomp filter. In particular, a filter program could specify a new return value, SECCOMP_RET_TRAP, which would result in the system call being denied and the calling thread signaled. This also means that implementing arch-specific support can be dependent upon HAVE_ARCH_SECCOMP_FILTER. Suggested-by: H. Peter Anvin <hpa@zytor.com> Signed-off-by: Will Drewry <wad@chromium.org> Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Reviewed-by: H. Peter Anvin <hpa@zytor.com> Acked-by: Eric Paris <eparis@redhat.com> v18: - added acked by, rebase v17: - rebase and reviewed-by addition v14: - rebase/nochanges v13: - rebase on to 88ebdda6159ffc15699f204c33feb3e431bf9bdc v12: - reworded changelog (oleg@redhat.com) v11: - fix dropped words in the change description - added fallback copy_siginfo support. - added __ARCH_SIGSYS define to allow stepped arch support. v10: - first version based on suggestion Signed-off-by: James Morris <james.l.morris@oracle.com>
2012-04-12 21:48:00 +00:00
sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
signal/timer/event: signalfd core This patch series implements the new signalfd() system call. I took part of the original Linus code (and you know how badly it can be broken :), and I added even more breakage ;) Signals are fetched from the same signal queue used by the process, so signalfd will compete with standard kernel delivery in dequeue_signal(). If you want to reliably fetch signals on the signalfd file, you need to block them with sigprocmask(SIG_BLOCK). This seems to be working fine on my Dual Opteron machine. I made a quick test program for it: http://www.xmailserver.org/signafd-test.c The signalfd() system call implements signal delivery into a file descriptor receiver. The signalfd file descriptor if created with the following API: int signalfd(int ufd, const sigset_t *mask, size_t masksize); The "ufd" parameter allows to change an existing signalfd sigmask, w/out going to close/create cycle (Linus idea). Use "ufd" == -1 if you want a brand new signalfd file. The "mask" allows to specify the signal mask of signals that we are interested in. The "masksize" parameter is the size of "mask". The signalfd fd supports the poll(2) and read(2) system calls. The poll(2) will return POLLIN when signals are available to be dequeued. As a direct consequence of supporting the Linux poll subsystem, the signalfd fd can use used together with epoll(2) too. The read(2) system call will return a "struct signalfd_siginfo" structure in the userspace supplied buffer. The return value is the number of bytes copied in the supplied buffer, or -1 in case of error. The read(2) call can also return 0, in case the sighand structure to which the signalfd was attached, has been orphaned. The O_NONBLOCK flag is also supported, and read(2) will return -EAGAIN in case no signal is available. If the size of the buffer passed to read(2) is lower than sizeof(struct signalfd_siginfo), -EINVAL is returned. A read from the signalfd can also return -ERESTARTSYS in case a signal hits the process. The format of the struct signalfd_siginfo is, and the valid fields depends of the (->code & __SI_MASK) value, in the same way a struct siginfo would: struct signalfd_siginfo { __u32 signo; /* si_signo */ __s32 err; /* si_errno */ __s32 code; /* si_code */ __u32 pid; /* si_pid */ __u32 uid; /* si_uid */ __s32 fd; /* si_fd */ __u32 tid; /* si_fd */ __u32 band; /* si_band */ __u32 overrun; /* si_overrun */ __u32 trapno; /* si_trapno */ __s32 status; /* si_status */ __s32 svint; /* si_int */ __u64 svptr; /* si_ptr */ __u64 utime; /* si_utime */ __u64 stime; /* si_stime */ __u64 addr; /* si_addr */ }; [akpm@linux-foundation.org: fix signalfd_copyinfo() on i386] Signed-off-by: Davide Libenzi <davidel@xmailserver.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-11 05:23:13 +00:00
int next_signal(struct sigpending *pending, sigset_t *mask)
{
unsigned long i, *s, *m, x;
int sig = 0;
s = pending->signal.sig;
m = mask->sig;
/*
* Handle the first word specially: it contains the
* synchronous signals that need to be dequeued first.
*/
x = *s &~ *m;
if (x) {
if (x & SYNCHRONOUS_MASK)
x &= SYNCHRONOUS_MASK;
sig = ffz(~x) + 1;
return sig;
}
switch (_NSIG_WORDS) {
default:
for (i = 1; i < _NSIG_WORDS; ++i) {
x = *++s &~ *++m;
if (!x)
continue;
sig = ffz(~x) + i*_NSIG_BPW + 1;
break;
}
break;
case 2:
x = s[1] &~ m[1];
if (!x)
break;
sig = ffz(~x) + _NSIG_BPW + 1;
break;
case 1:
/* Nothing to do */
break;
}
return sig;
}
static inline void print_dropped_signal(int sig)
{
static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
if (!print_fatal_signals)
return;
if (!__ratelimit(&ratelimit_state))
return;
pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
current->comm, current->pid, sig);
}
ptrace: Clean transitions between TASK_STOPPED and TRACED Currently, if the task is STOPPED on ptrace attach, it's left alone and the state is silently changed to TRACED on the next ptrace call. The behavior breaks the assumption that arch_ptrace_stop() is called before any task is poked by ptrace and is ugly in that a task manipulates the state of another task directly. With GROUP_STOP_PENDING, the transitions between TASK_STOPPED and TRACED can be made clean. The tracer can use the flag to tell the tracee to retry stop on attach and detach. On retry, the tracee will enter the desired state in the correct way. The lower 16bits of task->group_stop is used to remember the signal number which caused the last group stop. This is used while retrying for ptrace attach as the original group_exit_code could have been consumed with wait(2) by then. As the real parent may wait(2) and consume the group_exit_code anytime, the group_exit_code needs to be saved separately so that it can be used when switching from regular sleep to ptrace_stop(). This is recorded in the lower 16bits of task->group_stop. If a task is already stopped and there's no intervening SIGCONT, a ptrace request immediately following a successful PTRACE_ATTACH should always succeed even if the tracer doesn't wait(2) for attach completion; however, with this change, the tracee might still be TASK_RUNNING trying to enter TASK_TRACED which would cause the following request to fail with -ESRCH. This intermediate state is hidden from the ptracer by setting GROUP_STOP_TRAPPING on attach and making ptrace_check_attach() wait for it to clear on its signal->wait_chldexit. Completing the transition or getting killed clears TRAPPING and wakes up the tracer. Note that the STOPPED -> RUNNING -> TRACED transition is still visible to other threads which are in the same group as the ptracer and the reverse transition is visible to all. Please read the comments for details. Oleg: * Spotted a race condition where a task may retry group stop without proper bookkeeping. Fixed by redoing bookkeeping on retry. * Spotted that the transition is visible to userland in several different ways. Most are fixed with GROUP_STOP_TRAPPING. Unhandled corner case is documented. * Pointed out not setting GROUP_STOP_SIGMASK on an already stopped task would result in more consistent behavior. * Pointed out that calling ptrace_stop() from do_signal_stop() in TASK_STOPPED can race with group stop start logic and then confuse the TRAPPING wait in ptrace_check_attach(). ptrace_stop() is now called with TASK_RUNNING. * Suggested using signal->wait_chldexit instead of bit wait. * Spotted a race condition between TRACED transition and clearing of TRAPPING. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
2011-03-23 09:37:00 +00:00
/**
* task_set_jobctl_pending - set jobctl pending bits
ptrace: Clean transitions between TASK_STOPPED and TRACED Currently, if the task is STOPPED on ptrace attach, it's left alone and the state is silently changed to TRACED on the next ptrace call. The behavior breaks the assumption that arch_ptrace_stop() is called before any task is poked by ptrace and is ugly in that a task manipulates the state of another task directly. With GROUP_STOP_PENDING, the transitions between TASK_STOPPED and TRACED can be made clean. The tracer can use the flag to tell the tracee to retry stop on attach and detach. On retry, the tracee will enter the desired state in the correct way. The lower 16bits of task->group_stop is used to remember the signal number which caused the last group stop. This is used while retrying for ptrace attach as the original group_exit_code could have been consumed with wait(2) by then. As the real parent may wait(2) and consume the group_exit_code anytime, the group_exit_code needs to be saved separately so that it can be used when switching from regular sleep to ptrace_stop(). This is recorded in the lower 16bits of task->group_stop. If a task is already stopped and there's no intervening SIGCONT, a ptrace request immediately following a successful PTRACE_ATTACH should always succeed even if the tracer doesn't wait(2) for attach completion; however, with this change, the tracee might still be TASK_RUNNING trying to enter TASK_TRACED which would cause the following request to fail with -ESRCH. This intermediate state is hidden from the ptracer by setting GROUP_STOP_TRAPPING on attach and making ptrace_check_attach() wait for it to clear on its signal->wait_chldexit. Completing the transition or getting killed clears TRAPPING and wakes up the tracer. Note that the STOPPED -> RUNNING -> TRACED transition is still visible to other threads which are in the same group as the ptracer and the reverse transition is visible to all. Please read the comments for details. Oleg: * Spotted a race condition where a task may retry group stop without proper bookkeeping. Fixed by redoing bookkeeping on retry. * Spotted that the transition is visible to userland in several different ways. Most are fixed with GROUP_STOP_TRAPPING. Unhandled corner case is documented. * Pointed out not setting GROUP_STOP_SIGMASK on an already stopped task would result in more consistent behavior. * Pointed out that calling ptrace_stop() from do_signal_stop() in TASK_STOPPED can race with group stop start logic and then confuse the TRAPPING wait in ptrace_check_attach(). ptrace_stop() is now called with TASK_RUNNING. * Suggested using signal->wait_chldexit instead of bit wait. * Spotted a race condition between TRACED transition and clearing of TRAPPING. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
2011-03-23 09:37:00 +00:00
* @task: target task
* @mask: pending bits to set
ptrace: Clean transitions between TASK_STOPPED and TRACED Currently, if the task is STOPPED on ptrace attach, it's left alone and the state is silently changed to TRACED on the next ptrace call. The behavior breaks the assumption that arch_ptrace_stop() is called before any task is poked by ptrace and is ugly in that a task manipulates the state of another task directly. With GROUP_STOP_PENDING, the transitions between TASK_STOPPED and TRACED can be made clean. The tracer can use the flag to tell the tracee to retry stop on attach and detach. On retry, the tracee will enter the desired state in the correct way. The lower 16bits of task->group_stop is used to remember the signal number which caused the last group stop. This is used while retrying for ptrace attach as the original group_exit_code could have been consumed with wait(2) by then. As the real parent may wait(2) and consume the group_exit_code anytime, the group_exit_code needs to be saved separately so that it can be used when switching from regular sleep to ptrace_stop(). This is recorded in the lower 16bits of task->group_stop. If a task is already stopped and there's no intervening SIGCONT, a ptrace request immediately following a successful PTRACE_ATTACH should always succeed even if the tracer doesn't wait(2) for attach completion; however, with this change, the tracee might still be TASK_RUNNING trying to enter TASK_TRACED which would cause the following request to fail with -ESRCH. This intermediate state is hidden from the ptracer by setting GROUP_STOP_TRAPPING on attach and making ptrace_check_attach() wait for it to clear on its signal->wait_chldexit. Completing the transition or getting killed clears TRAPPING and wakes up the tracer. Note that the STOPPED -> RUNNING -> TRACED transition is still visible to other threads which are in the same group as the ptracer and the reverse transition is visible to all. Please read the comments for details. Oleg: * Spotted a race condition where a task may retry group stop without proper bookkeeping. Fixed by redoing bookkeeping on retry. * Spotted that the transition is visible to userland in several different ways. Most are fixed with GROUP_STOP_TRAPPING. Unhandled corner case is documented. * Pointed out not setting GROUP_STOP_SIGMASK on an already stopped task would result in more consistent behavior. * Pointed out that calling ptrace_stop() from do_signal_stop() in TASK_STOPPED can race with group stop start logic and then confuse the TRAPPING wait in ptrace_check_attach(). ptrace_stop() is now called with TASK_RUNNING. * Suggested using signal->wait_chldexit instead of bit wait. * Spotted a race condition between TRACED transition and clearing of TRAPPING. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
2011-03-23 09:37:00 +00:00
*
* Clear @mask from @task->jobctl. @mask must be subset of
* %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
* %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
* cleared. If @task is already being killed or exiting, this function
* becomes noop.
*
* CONTEXT:
* Must be called with @task->sighand->siglock held.
*
* RETURNS:
* %true if @mask is set, %false if made noop because @task was dying.
*/
bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
{
BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
return false;
if (mask & JOBCTL_STOP_SIGMASK)
task->jobctl &= ~JOBCTL_STOP_SIGMASK;
task->jobctl |= mask;
return true;
}
ptrace: Clean transitions between TASK_STOPPED and TRACED Currently, if the task is STOPPED on ptrace attach, it's left alone and the state is silently changed to TRACED on the next ptrace call. The behavior breaks the assumption that arch_ptrace_stop() is called before any task is poked by ptrace and is ugly in that a task manipulates the state of another task directly. With GROUP_STOP_PENDING, the transitions between TASK_STOPPED and TRACED can be made clean. The tracer can use the flag to tell the tracee to retry stop on attach and detach. On retry, the tracee will enter the desired state in the correct way. The lower 16bits of task->group_stop is used to remember the signal number which caused the last group stop. This is used while retrying for ptrace attach as the original group_exit_code could have been consumed with wait(2) by then. As the real parent may wait(2) and consume the group_exit_code anytime, the group_exit_code needs to be saved separately so that it can be used when switching from regular sleep to ptrace_stop(). This is recorded in the lower 16bits of task->group_stop. If a task is already stopped and there's no intervening SIGCONT, a ptrace request immediately following a successful PTRACE_ATTACH should always succeed even if the tracer doesn't wait(2) for attach completion; however, with this change, the tracee might still be TASK_RUNNING trying to enter TASK_TRACED which would cause the following request to fail with -ESRCH. This intermediate state is hidden from the ptracer by setting GROUP_STOP_TRAPPING on attach and making ptrace_check_attach() wait for it to clear on its signal->wait_chldexit. Completing the transition or getting killed clears TRAPPING and wakes up the tracer. Note that the STOPPED -> RUNNING -> TRACED transition is still visible to other threads which are in the same group as the ptracer and the reverse transition is visible to all. Please read the comments for details. Oleg: * Spotted a race condition where a task may retry group stop without proper bookkeeping. Fixed by redoing bookkeeping on retry. * Spotted that the transition is visible to userland in several different ways. Most are fixed with GROUP_STOP_TRAPPING. Unhandled corner case is documented. * Pointed out not setting GROUP_STOP_SIGMASK on an already stopped task would result in more consistent behavior. * Pointed out that calling ptrace_stop() from do_signal_stop() in TASK_STOPPED can race with group stop start logic and then confuse the TRAPPING wait in ptrace_check_attach(). ptrace_stop() is now called with TASK_RUNNING. * Suggested using signal->wait_chldexit instead of bit wait. * Spotted a race condition between TRACED transition and clearing of TRAPPING. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
2011-03-23 09:37:00 +00:00
/**
* task_clear_jobctl_trapping - clear jobctl trapping bit
ptrace: Clean transitions between TASK_STOPPED and TRACED Currently, if the task is STOPPED on ptrace attach, it's left alone and the state is silently changed to TRACED on the next ptrace call. The behavior breaks the assumption that arch_ptrace_stop() is called before any task is poked by ptrace and is ugly in that a task manipulates the state of another task directly. With GROUP_STOP_PENDING, the transitions between TASK_STOPPED and TRACED can be made clean. The tracer can use the flag to tell the tracee to retry stop on attach and detach. On retry, the tracee will enter the desired state in the correct way. The lower 16bits of task->group_stop is used to remember the signal number which caused the last group stop. This is used while retrying for ptrace attach as the original group_exit_code could have been consumed with wait(2) by then. As the real parent may wait(2) and consume the group_exit_code anytime, the group_exit_code needs to be saved separately so that it can be used when switching from regular sleep to ptrace_stop(). This is recorded in the lower 16bits of task->group_stop. If a task is already stopped and there's no intervening SIGCONT, a ptrace request immediately following a successful PTRACE_ATTACH should always succeed even if the tracer doesn't wait(2) for attach completion; however, with this change, the tracee might still be TASK_RUNNING trying to enter TASK_TRACED which would cause the following request to fail with -ESRCH. This intermediate state is hidden from the ptracer by setting GROUP_STOP_TRAPPING on attach and making ptrace_check_attach() wait for it to clear on its signal->wait_chldexit. Completing the transition or getting killed clears TRAPPING and wakes up the tracer. Note that the STOPPED -> RUNNING -> TRACED transition is still visible to other threads which are in the same group as the ptracer and the reverse transition is visible to all. Please read the comments for details. Oleg: * Spotted a race condition where a task may retry group stop without proper bookkeeping. Fixed by redoing bookkeeping on retry. * Spotted that the transition is visible to userland in several different ways. Most are fixed with GROUP_STOP_TRAPPING. Unhandled corner case is documented. * Pointed out not setting GROUP_STOP_SIGMASK on an already stopped task would result in more consistent behavior. * Pointed out that calling ptrace_stop() from do_signal_stop() in TASK_STOPPED can race with group stop start logic and then confuse the TRAPPING wait in ptrace_check_attach(). ptrace_stop() is now called with TASK_RUNNING. * Suggested using signal->wait_chldexit instead of bit wait. * Spotted a race condition between TRACED transition and clearing of TRAPPING. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
2011-03-23 09:37:00 +00:00
* @task: target task
*
* If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
* Clear it and wake up the ptracer. Note that we don't need any further
* locking. @task->siglock guarantees that @task->parent points to the
* ptracer.
ptrace: Clean transitions between TASK_STOPPED and TRACED Currently, if the task is STOPPED on ptrace attach, it's left alone and the state is silently changed to TRACED on the next ptrace call. The behavior breaks the assumption that arch_ptrace_stop() is called before any task is poked by ptrace and is ugly in that a task manipulates the state of another task directly. With GROUP_STOP_PENDING, the transitions between TASK_STOPPED and TRACED can be made clean. The tracer can use the flag to tell the tracee to retry stop on attach and detach. On retry, the tracee will enter the desired state in the correct way. The lower 16bits of task->group_stop is used to remember the signal number which caused the last group stop. This is used while retrying for ptrace attach as the original group_exit_code could have been consumed with wait(2) by then. As the real parent may wait(2) and consume the group_exit_code anytime, the group_exit_code needs to be saved separately so that it can be used when switching from regular sleep to ptrace_stop(). This is recorded in the lower 16bits of task->group_stop. If a task is already stopped and there's no intervening SIGCONT, a ptrace request immediately following a successful PTRACE_ATTACH should always succeed even if the tracer doesn't wait(2) for attach completion; however, with this change, the tracee might still be TASK_RUNNING trying to enter TASK_TRACED which would cause the following request to fail with -ESRCH. This intermediate state is hidden from the ptracer by setting GROUP_STOP_TRAPPING on attach and making ptrace_check_attach() wait for it to clear on its signal->wait_chldexit. Completing the transition or getting killed clears TRAPPING and wakes up the tracer. Note that the STOPPED -> RUNNING -> TRACED transition is still visible to other threads which are in the same group as the ptracer and the reverse transition is visible to all. Please read the comments for details. Oleg: * Spotted a race condition where a task may retry group stop without proper bookkeeping. Fixed by redoing bookkeeping on retry. * Spotted that the transition is visible to userland in several different ways. Most are fixed with GROUP_STOP_TRAPPING. Unhandled corner case is documented. * Pointed out not setting GROUP_STOP_SIGMASK on an already stopped task would result in more consistent behavior. * Pointed out that calling ptrace_stop() from do_signal_stop() in TASK_STOPPED can race with group stop start logic and then confuse the TRAPPING wait in ptrace_check_attach(). ptrace_stop() is now called with TASK_RUNNING. * Suggested using signal->wait_chldexit instead of bit wait. * Spotted a race condition between TRACED transition and clearing of TRAPPING. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
2011-03-23 09:37:00 +00:00
*
* CONTEXT:
* Must be called with @task->sighand->siglock held.
*/
job control: introduce JOBCTL_TRAP_STOP and use it for group stop trap do_signal_stop() implemented both normal group stop and trap for group stop while ptraced. This approach has been enough but scheduled changes require trap mechanism which can be used in more generic manner and using group stop trap for generic trap site simplifies both userland visible interface and implementation. This patch adds a new jobctl flag - JOBCTL_TRAP_STOP. When set, it triggers a trap site, which behaves like group stop trap, in get_signal_to_deliver() after checking for pending signals. While ptraced, do_signal_stop() doesn't stop itself. It initiates group stop if requested and schedules JOBCTL_TRAP_STOP and returns. The caller - get_signal_to_deliver() - is responsible for checking whether TRAP_STOP is pending afterwards and handling it. ptrace_attach() is updated to use JOBCTL_TRAP_STOP instead of JOBCTL_STOP_PENDING and __ptrace_unlink() to clear all pending trap bits and TRAPPING so that TRAP_STOP and future trap bits don't linger after detach. While at it, add proper function comment to do_signal_stop() and make it return bool. -v2: __ptrace_unlink() updated to clear JOBCTL_TRAP_MASK and TRAPPING instead of JOBCTL_PENDING_MASK. This avoids accidentally clearing JOBCTL_STOP_CONSUME. Spotted by Oleg. -v3: do_signal_stop() updated to return %false without dropping siglock while ptraced and TRAP_STOP check moved inside for(;;) loop after group stop participation. This avoids unnecessary relocking and also will help avoiding unnecessary traps by consuming group stop before handling pending traps. -v4: Jobctl trap handling moved into a separate function - do_jobctl_trap(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:14 +00:00
void task_clear_jobctl_trapping(struct task_struct *task)
ptrace: Clean transitions between TASK_STOPPED and TRACED Currently, if the task is STOPPED on ptrace attach, it's left alone and the state is silently changed to TRACED on the next ptrace call. The behavior breaks the assumption that arch_ptrace_stop() is called before any task is poked by ptrace and is ugly in that a task manipulates the state of another task directly. With GROUP_STOP_PENDING, the transitions between TASK_STOPPED and TRACED can be made clean. The tracer can use the flag to tell the tracee to retry stop on attach and detach. On retry, the tracee will enter the desired state in the correct way. The lower 16bits of task->group_stop is used to remember the signal number which caused the last group stop. This is used while retrying for ptrace attach as the original group_exit_code could have been consumed with wait(2) by then. As the real parent may wait(2) and consume the group_exit_code anytime, the group_exit_code needs to be saved separately so that it can be used when switching from regular sleep to ptrace_stop(). This is recorded in the lower 16bits of task->group_stop. If a task is already stopped and there's no intervening SIGCONT, a ptrace request immediately following a successful PTRACE_ATTACH should always succeed even if the tracer doesn't wait(2) for attach completion; however, with this change, the tracee might still be TASK_RUNNING trying to enter TASK_TRACED which would cause the following request to fail with -ESRCH. This intermediate state is hidden from the ptracer by setting GROUP_STOP_TRAPPING on attach and making ptrace_check_attach() wait for it to clear on its signal->wait_chldexit. Completing the transition or getting killed clears TRAPPING and wakes up the tracer. Note that the STOPPED -> RUNNING -> TRACED transition is still visible to other threads which are in the same group as the ptracer and the reverse transition is visible to all. Please read the comments for details. Oleg: * Spotted a race condition where a task may retry group stop without proper bookkeeping. Fixed by redoing bookkeeping on retry. * Spotted that the transition is visible to userland in several different ways. Most are fixed with GROUP_STOP_TRAPPING. Unhandled corner case is documented. * Pointed out not setting GROUP_STOP_SIGMASK on an already stopped task would result in more consistent behavior. * Pointed out that calling ptrace_stop() from do_signal_stop() in TASK_STOPPED can race with group stop start logic and then confuse the TRAPPING wait in ptrace_check_attach(). ptrace_stop() is now called with TASK_RUNNING. * Suggested using signal->wait_chldexit instead of bit wait. * Spotted a race condition between TRACED transition and clearing of TRAPPING. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
2011-03-23 09:37:00 +00:00
{
if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
task->jobctl &= ~JOBCTL_TRAPPING;
smp_mb(); /* advised by wake_up_bit() */
wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
ptrace: Clean transitions between TASK_STOPPED and TRACED Currently, if the task is STOPPED on ptrace attach, it's left alone and the state is silently changed to TRACED on the next ptrace call. The behavior breaks the assumption that arch_ptrace_stop() is called before any task is poked by ptrace and is ugly in that a task manipulates the state of another task directly. With GROUP_STOP_PENDING, the transitions between TASK_STOPPED and TRACED can be made clean. The tracer can use the flag to tell the tracee to retry stop on attach and detach. On retry, the tracee will enter the desired state in the correct way. The lower 16bits of task->group_stop is used to remember the signal number which caused the last group stop. This is used while retrying for ptrace attach as the original group_exit_code could have been consumed with wait(2) by then. As the real parent may wait(2) and consume the group_exit_code anytime, the group_exit_code needs to be saved separately so that it can be used when switching from regular sleep to ptrace_stop(). This is recorded in the lower 16bits of task->group_stop. If a task is already stopped and there's no intervening SIGCONT, a ptrace request immediately following a successful PTRACE_ATTACH should always succeed even if the tracer doesn't wait(2) for attach completion; however, with this change, the tracee might still be TASK_RUNNING trying to enter TASK_TRACED which would cause the following request to fail with -ESRCH. This intermediate state is hidden from the ptracer by setting GROUP_STOP_TRAPPING on attach and making ptrace_check_attach() wait for it to clear on its signal->wait_chldexit. Completing the transition or getting killed clears TRAPPING and wakes up the tracer. Note that the STOPPED -> RUNNING -> TRACED transition is still visible to other threads which are in the same group as the ptracer and the reverse transition is visible to all. Please read the comments for details. Oleg: * Spotted a race condition where a task may retry group stop without proper bookkeeping. Fixed by redoing bookkeeping on retry. * Spotted that the transition is visible to userland in several different ways. Most are fixed with GROUP_STOP_TRAPPING. Unhandled corner case is documented. * Pointed out not setting GROUP_STOP_SIGMASK on an already stopped task would result in more consistent behavior. * Pointed out that calling ptrace_stop() from do_signal_stop() in TASK_STOPPED can race with group stop start logic and then confuse the TRAPPING wait in ptrace_check_attach(). ptrace_stop() is now called with TASK_RUNNING. * Suggested using signal->wait_chldexit instead of bit wait. * Spotted a race condition between TRACED transition and clearing of TRAPPING. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
2011-03-23 09:37:00 +00:00
}
}
signal: Fix premature completion of group stop when interfered by ptrace task->signal->group_stop_count is used to track the progress of group stop. It's initialized to the number of tasks which need to stop for group stop to finish and each stopping or trapping task decrements. However, each task doesn't keep track of whether it decremented the counter or not and if woken up before the group stop is complete and stops again, it can decrement the counter multiple times. Please consider the following example code. static void *worker(void *arg) { while (1) ; return NULL; } int main(void) { pthread_t thread; pid_t pid; int i; pid = fork(); if (!pid) { for (i = 0; i < 5; i++) pthread_create(&thread, NULL, worker, NULL); while (1) ; return 0; } ptrace(PTRACE_ATTACH, pid, NULL, NULL); while (1) { waitid(P_PID, pid, NULL, WSTOPPED); ptrace(PTRACE_SINGLESTEP, pid, NULL, (void *)(long)SIGSTOP); } return 0; } The child creates five threads and the parent continuously traps the first thread and whenever the child gets a signal, SIGSTOP is delivered. If an external process sends SIGSTOP to the child, all other threads in the process should reliably stop. However, due to the above bug, the first thread will often end up consuming group_stop_count multiple times and SIGSTOP often ends up stopping none or part of the other four threads. This patch adds a new field task->group_stop which is protected by siglock and uses GROUP_STOP_CONSUME flag to track which task is still to consume group_stop_count to fix this bug. task_clear_group_stop_pending() and task_participate_group_stop() are added to help manipulating group stop states. As ptrace_stop() now also uses task_participate_group_stop(), it will set SIGNAL_STOP_STOPPED if it completes a group stop. There still are many issues regarding the interaction between group stop and ptrace. Patches to address them will follow. - Oleg spotted duplicate GROUP_STOP_CONSUME. Dropped. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com>
2011-03-23 09:37:00 +00:00
/**
* task_clear_jobctl_pending - clear jobctl pending bits
signal: Fix premature completion of group stop when interfered by ptrace task->signal->group_stop_count is used to track the progress of group stop. It's initialized to the number of tasks which need to stop for group stop to finish and each stopping or trapping task decrements. However, each task doesn't keep track of whether it decremented the counter or not and if woken up before the group stop is complete and stops again, it can decrement the counter multiple times. Please consider the following example code. static void *worker(void *arg) { while (1) ; return NULL; } int main(void) { pthread_t thread; pid_t pid; int i; pid = fork(); if (!pid) { for (i = 0; i < 5; i++) pthread_create(&thread, NULL, worker, NULL); while (1) ; return 0; } ptrace(PTRACE_ATTACH, pid, NULL, NULL); while (1) { waitid(P_PID, pid, NULL, WSTOPPED); ptrace(PTRACE_SINGLESTEP, pid, NULL, (void *)(long)SIGSTOP); } return 0; } The child creates five threads and the parent continuously traps the first thread and whenever the child gets a signal, SIGSTOP is delivered. If an external process sends SIGSTOP to the child, all other threads in the process should reliably stop. However, due to the above bug, the first thread will often end up consuming group_stop_count multiple times and SIGSTOP often ends up stopping none or part of the other four threads. This patch adds a new field task->group_stop which is protected by siglock and uses GROUP_STOP_CONSUME flag to track which task is still to consume group_stop_count to fix this bug. task_clear_group_stop_pending() and task_participate_group_stop() are added to help manipulating group stop states. As ptrace_stop() now also uses task_participate_group_stop(), it will set SIGNAL_STOP_STOPPED if it completes a group stop. There still are many issues regarding the interaction between group stop and ptrace. Patches to address them will follow. - Oleg spotted duplicate GROUP_STOP_CONSUME. Dropped. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com>
2011-03-23 09:37:00 +00:00
* @task: target task
* @mask: pending bits to clear
signal: Fix premature completion of group stop when interfered by ptrace task->signal->group_stop_count is used to track the progress of group stop. It's initialized to the number of tasks which need to stop for group stop to finish and each stopping or trapping task decrements. However, each task doesn't keep track of whether it decremented the counter or not and if woken up before the group stop is complete and stops again, it can decrement the counter multiple times. Please consider the following example code. static void *worker(void *arg) { while (1) ; return NULL; } int main(void) { pthread_t thread; pid_t pid; int i; pid = fork(); if (!pid) { for (i = 0; i < 5; i++) pthread_create(&thread, NULL, worker, NULL); while (1) ; return 0; } ptrace(PTRACE_ATTACH, pid, NULL, NULL); while (1) { waitid(P_PID, pid, NULL, WSTOPPED); ptrace(PTRACE_SINGLESTEP, pid, NULL, (void *)(long)SIGSTOP); } return 0; } The child creates five threads and the parent continuously traps the first thread and whenever the child gets a signal, SIGSTOP is delivered. If an external process sends SIGSTOP to the child, all other threads in the process should reliably stop. However, due to the above bug, the first thread will often end up consuming group_stop_count multiple times and SIGSTOP often ends up stopping none or part of the other four threads. This patch adds a new field task->group_stop which is protected by siglock and uses GROUP_STOP_CONSUME flag to track which task is still to consume group_stop_count to fix this bug. task_clear_group_stop_pending() and task_participate_group_stop() are added to help manipulating group stop states. As ptrace_stop() now also uses task_participate_group_stop(), it will set SIGNAL_STOP_STOPPED if it completes a group stop. There still are many issues regarding the interaction between group stop and ptrace. Patches to address them will follow. - Oleg spotted duplicate GROUP_STOP_CONSUME. Dropped. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com>
2011-03-23 09:37:00 +00:00
*
* Clear @mask from @task->jobctl. @mask must be subset of
* %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
* STOP bits are cleared together.
signal: Fix premature completion of group stop when interfered by ptrace task->signal->group_stop_count is used to track the progress of group stop. It's initialized to the number of tasks which need to stop for group stop to finish and each stopping or trapping task decrements. However, each task doesn't keep track of whether it decremented the counter or not and if woken up before the group stop is complete and stops again, it can decrement the counter multiple times. Please consider the following example code. static void *worker(void *arg) { while (1) ; return NULL; } int main(void) { pthread_t thread; pid_t pid; int i; pid = fork(); if (!pid) { for (i = 0; i < 5; i++) pthread_create(&thread, NULL, worker, NULL); while (1) ; return 0; } ptrace(PTRACE_ATTACH, pid, NULL, NULL); while (1) { waitid(P_PID, pid, NULL, WSTOPPED); ptrace(PTRACE_SINGLESTEP, pid, NULL, (void *)(long)SIGSTOP); } return 0; } The child creates five threads and the parent continuously traps the first thread and whenever the child gets a signal, SIGSTOP is delivered. If an external process sends SIGSTOP to the child, all other threads in the process should reliably stop. However, due to the above bug, the first thread will often end up consuming group_stop_count multiple times and SIGSTOP often ends up stopping none or part of the other four threads. This patch adds a new field task->group_stop which is protected by siglock and uses GROUP_STOP_CONSUME flag to track which task is still to consume group_stop_count to fix this bug. task_clear_group_stop_pending() and task_participate_group_stop() are added to help manipulating group stop states. As ptrace_stop() now also uses task_participate_group_stop(), it will set SIGNAL_STOP_STOPPED if it completes a group stop. There still are many issues regarding the interaction between group stop and ptrace. Patches to address them will follow. - Oleg spotted duplicate GROUP_STOP_CONSUME. Dropped. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com>
2011-03-23 09:37:00 +00:00
*
* If clearing of @mask leaves no stop or trap pending, this function calls
* task_clear_jobctl_trapping().
signal: Fix premature completion of group stop when interfered by ptrace task->signal->group_stop_count is used to track the progress of group stop. It's initialized to the number of tasks which need to stop for group stop to finish and each stopping or trapping task decrements. However, each task doesn't keep track of whether it decremented the counter or not and if woken up before the group stop is complete and stops again, it can decrement the counter multiple times. Please consider the following example code. static void *worker(void *arg) { while (1) ; return NULL; } int main(void) { pthread_t thread; pid_t pid; int i; pid = fork(); if (!pid) { for (i = 0; i < 5; i++) pthread_create(&thread, NULL, worker, NULL); while (1) ; return 0; } ptrace(PTRACE_ATTACH, pid, NULL, NULL); while (1) { waitid(P_PID, pid, NULL, WSTOPPED); ptrace(PTRACE_SINGLESTEP, pid, NULL, (void *)(long)SIGSTOP); } return 0; } The child creates five threads and the parent continuously traps the first thread and whenever the child gets a signal, SIGSTOP is delivered. If an external process sends SIGSTOP to the child, all other threads in the process should reliably stop. However, due to the above bug, the first thread will often end up consuming group_stop_count multiple times and SIGSTOP often ends up stopping none or part of the other four threads. This patch adds a new field task->group_stop which is protected by siglock and uses GROUP_STOP_CONSUME flag to track which task is still to consume group_stop_count to fix this bug. task_clear_group_stop_pending() and task_participate_group_stop() are added to help manipulating group stop states. As ptrace_stop() now also uses task_participate_group_stop(), it will set SIGNAL_STOP_STOPPED if it completes a group stop. There still are many issues regarding the interaction between group stop and ptrace. Patches to address them will follow. - Oleg spotted duplicate GROUP_STOP_CONSUME. Dropped. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com>
2011-03-23 09:37:00 +00:00
*
* CONTEXT:
* Must be called with @task->sighand->siglock held.
*/
void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
signal: Fix premature completion of group stop when interfered by ptrace task->signal->group_stop_count is used to track the progress of group stop. It's initialized to the number of tasks which need to stop for group stop to finish and each stopping or trapping task decrements. However, each task doesn't keep track of whether it decremented the counter or not and if woken up before the group stop is complete and stops again, it can decrement the counter multiple times. Please consider the following example code. static void *worker(void *arg) { while (1) ; return NULL; } int main(void) { pthread_t thread; pid_t pid; int i; pid = fork(); if (!pid) { for (i = 0; i < 5; i++) pthread_create(&thread, NULL, worker, NULL); while (1) ; return 0; } ptrace(PTRACE_ATTACH, pid, NULL, NULL); while (1) { waitid(P_PID, pid, NULL, WSTOPPED); ptrace(PTRACE_SINGLESTEP, pid, NULL, (void *)(long)SIGSTOP); } return 0; } The child creates five threads and the parent continuously traps the first thread and whenever the child gets a signal, SIGSTOP is delivered. If an external process sends SIGSTOP to the child, all other threads in the process should reliably stop. However, due to the above bug, the first thread will often end up consuming group_stop_count multiple times and SIGSTOP often ends up stopping none or part of the other four threads. This patch adds a new field task->group_stop which is protected by siglock and uses GROUP_STOP_CONSUME flag to track which task is still to consume group_stop_count to fix this bug. task_clear_group_stop_pending() and task_participate_group_stop() are added to help manipulating group stop states. As ptrace_stop() now also uses task_participate_group_stop(), it will set SIGNAL_STOP_STOPPED if it completes a group stop. There still are many issues regarding the interaction between group stop and ptrace. Patches to address them will follow. - Oleg spotted duplicate GROUP_STOP_CONSUME. Dropped. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com>
2011-03-23 09:37:00 +00:00
{
BUG_ON(mask & ~JOBCTL_PENDING_MASK);
if (mask & JOBCTL_STOP_PENDING)
mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
task->jobctl &= ~mask;
if (!(task->jobctl & JOBCTL_PENDING_MASK))
task_clear_jobctl_trapping(task);
signal: Fix premature completion of group stop when interfered by ptrace task->signal->group_stop_count is used to track the progress of group stop. It's initialized to the number of tasks which need to stop for group stop to finish and each stopping or trapping task decrements. However, each task doesn't keep track of whether it decremented the counter or not and if woken up before the group stop is complete and stops again, it can decrement the counter multiple times. Please consider the following example code. static void *worker(void *arg) { while (1) ; return NULL; } int main(void) { pthread_t thread; pid_t pid; int i; pid = fork(); if (!pid) { for (i = 0; i < 5; i++) pthread_create(&thread, NULL, worker, NULL); while (1) ; return 0; } ptrace(PTRACE_ATTACH, pid, NULL, NULL); while (1) { waitid(P_PID, pid, NULL, WSTOPPED); ptrace(PTRACE_SINGLESTEP, pid, NULL, (void *)(long)SIGSTOP); } return 0; } The child creates five threads and the parent continuously traps the first thread and whenever the child gets a signal, SIGSTOP is delivered. If an external process sends SIGSTOP to the child, all other threads in the process should reliably stop. However, due to the above bug, the first thread will often end up consuming group_stop_count multiple times and SIGSTOP often ends up stopping none or part of the other four threads. This patch adds a new field task->group_stop which is protected by siglock and uses GROUP_STOP_CONSUME flag to track which task is still to consume group_stop_count to fix this bug. task_clear_group_stop_pending() and task_participate_group_stop() are added to help manipulating group stop states. As ptrace_stop() now also uses task_participate_group_stop(), it will set SIGNAL_STOP_STOPPED if it completes a group stop. There still are many issues regarding the interaction between group stop and ptrace. Patches to address them will follow. - Oleg spotted duplicate GROUP_STOP_CONSUME. Dropped. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com>
2011-03-23 09:37:00 +00:00
}
/**
* task_participate_group_stop - participate in a group stop
* @task: task participating in a group stop
*
* @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
signal: Use GROUP_STOP_PENDING to stop once for a single group stop Currently task->signal->group_stop_count is used to decide whether to stop for group stop. However, if there is a task in the group which is taking a long time to stop, other tasks which are continued by ptrace would repeatedly stop for the same group stop until the group stop is complete. Conversely, if a ptraced task is in TASK_TRACED state, the debugger won't get notified of group stops which is inconsistent compared to the ptraced task in any other state. This patch introduces GROUP_STOP_PENDING which tracks whether a task is yet to stop for the group stop in progress. The flag is set when a group stop starts and cleared when the task stops the first time for the group stop, and consulted whenever whether the task should participate in a group stop needs to be determined. Note that now tasks in TASK_TRACED also participate in group stop. This results in the following behavior changes. * For a single group stop, a ptracer would see at most one stop reported. * A ptracee in TASK_TRACED now also participates in group stop and the tracer would get the notification. However, as a ptraced task could be in TASK_STOPPED state or any ptrace trap could consume group stop, the notification may still be missing. These will be addressed with further patches. * A ptracee may start a group stop while one is still in progress if the tracer let it continue with stop signal delivery. Group stop code handles this correctly. Oleg: * Spotted that a task might skip signal check even when its GROUP_STOP_PENDING is set. Fixed by updating recalc_sigpending_tsk() to check GROUP_STOP_PENDING instead of group_stop_count. * Pointed out that task->group_stop should be cleared whenever task->signal->group_stop_count is cleared. Fixed accordingly. * Pointed out the behavior inconsistency between TASK_TRACED and RUNNING and the last behavior change. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com>
2011-03-23 09:37:00 +00:00
* Group stop states are cleared and the group stop count is consumed if
* %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
* stop, the appropriate `SIGNAL_*` flags are set.
signal: Fix premature completion of group stop when interfered by ptrace task->signal->group_stop_count is used to track the progress of group stop. It's initialized to the number of tasks which need to stop for group stop to finish and each stopping or trapping task decrements. However, each task doesn't keep track of whether it decremented the counter or not and if woken up before the group stop is complete and stops again, it can decrement the counter multiple times. Please consider the following example code. static void *worker(void *arg) { while (1) ; return NULL; } int main(void) { pthread_t thread; pid_t pid; int i; pid = fork(); if (!pid) { for (i = 0; i < 5; i++) pthread_create(&thread, NULL, worker, NULL); while (1) ; return 0; } ptrace(PTRACE_ATTACH, pid, NULL, NULL); while (1) { waitid(P_PID, pid, NULL, WSTOPPED); ptrace(PTRACE_SINGLESTEP, pid, NULL, (void *)(long)SIGSTOP); } return 0; } The child creates five threads and the parent continuously traps the first thread and whenever the child gets a signal, SIGSTOP is delivered. If an external process sends SIGSTOP to the child, all other threads in the process should reliably stop. However, due to the above bug, the first thread will often end up consuming group_stop_count multiple times and SIGSTOP often ends up stopping none or part of the other four threads. This patch adds a new field task->group_stop which is protected by siglock and uses GROUP_STOP_CONSUME flag to track which task is still to consume group_stop_count to fix this bug. task_clear_group_stop_pending() and task_participate_group_stop() are added to help manipulating group stop states. As ptrace_stop() now also uses task_participate_group_stop(), it will set SIGNAL_STOP_STOPPED if it completes a group stop. There still are many issues regarding the interaction between group stop and ptrace. Patches to address them will follow. - Oleg spotted duplicate GROUP_STOP_CONSUME. Dropped. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com>
2011-03-23 09:37:00 +00:00
*
* CONTEXT:
* Must be called with @task->sighand->siglock held.
job control: Don't send duplicate job control stop notification while ptraced Just as group_exit_code shouldn't be generated when a PTRACE_CONT'd task re-enters job control stop, notifiction for the event should be suppressed too. The logic is the same as the group_exit_code generation suppression in do_signal_stop(), if SIGNAL_STOP_STOPPED is already set, the task is re-entering job control stop without intervening SIGCONT and the notifications should be suppressed. Test case follows. #include <stdio.h> #include <unistd.h> #include <signal.h> #include <time.h> #include <sys/ptrace.h> #include <sys/wait.h> static const struct timespec ts100ms = { .tv_nsec = 100000000 }; static pid_t tracee, tracer; static const char *pid_who(pid_t pid) { return pid == tracee ? "tracee" : (pid == tracer ? "tracer" : "mommy "); } static void sigchld_sigaction(int signo, siginfo_t *si, void *ucxt) { printf("%s: SIG status=%02d code=%02d (%s)\n", pid_who(getpid()), si->si_status, si->si_code, pid_who(si->si_pid)); } int main(void) { const struct sigaction chld_sa = { .sa_sigaction = sigchld_sigaction, .sa_flags = SA_SIGINFO|SA_RESTART }; siginfo_t si; sigaction(SIGCHLD, &chld_sa, NULL); tracee = fork(); if (!tracee) { tracee = getpid(); while (1) pause(); } kill(tracee, SIGSTOP); waitid(P_PID, tracee, &si, WSTOPPED); tracer = fork(); if (!tracer) { tracer = getpid(); ptrace(PTRACE_ATTACH, tracee, NULL, NULL); waitid(P_PID, tracee, &si, WSTOPPED); ptrace(PTRACE_CONT, tracee, NULL, (void *)(long)si.si_status); waitid(P_PID, tracee, &si, WSTOPPED); ptrace(PTRACE_CONT, tracee, NULL, (void *)(long)si.si_status); waitid(P_PID, tracee, &si, WSTOPPED); printf("tracer: detaching\n"); ptrace(PTRACE_DETACH, tracee, NULL, NULL); return 0; } while (1) pause(); return 0; } Before the patch, the parent gets the second notification for the tracee after the tracer detaches. si_status is zero because group_exit_code is not set by the group stop completion which triggered this notification. mommy : SIG status=19 code=05 (tracee) tracer: SIG status=00 code=05 (tracee) tracer: SIG status=19 code=04 (tracee) tracer: SIG status=00 code=05 (tracee) tracer: detaching mommy : SIG status=00 code=05 (tracee) mommy : SIG status=00 code=01 (tracer) ^C After the patch, the duplicate notification is gone. mommy : SIG status=19 code=05 (tracee) tracer: SIG status=00 code=05 (tracee) tracer: SIG status=19 code=04 (tracee) tracer: SIG status=00 code=05 (tracee) tracer: detaching mommy : SIG status=00 code=01 (tracer) ^C Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com>
2011-03-23 09:37:01 +00:00
*
* RETURNS:
* %true if group stop completion should be notified to the parent, %false
* otherwise.
signal: Fix premature completion of group stop when interfered by ptrace task->signal->group_stop_count is used to track the progress of group stop. It's initialized to the number of tasks which need to stop for group stop to finish and each stopping or trapping task decrements. However, each task doesn't keep track of whether it decremented the counter or not and if woken up before the group stop is complete and stops again, it can decrement the counter multiple times. Please consider the following example code. static void *worker(void *arg) { while (1) ; return NULL; } int main(void) { pthread_t thread; pid_t pid; int i; pid = fork(); if (!pid) { for (i = 0; i < 5; i++) pthread_create(&thread, NULL, worker, NULL); while (1) ; return 0; } ptrace(PTRACE_ATTACH, pid, NULL, NULL); while (1) { waitid(P_PID, pid, NULL, WSTOPPED); ptrace(PTRACE_SINGLESTEP, pid, NULL, (void *)(long)SIGSTOP); } return 0; } The child creates five threads and the parent continuously traps the first thread and whenever the child gets a signal, SIGSTOP is delivered. If an external process sends SIGSTOP to the child, all other threads in the process should reliably stop. However, due to the above bug, the first thread will often end up consuming group_stop_count multiple times and SIGSTOP often ends up stopping none or part of the other four threads. This patch adds a new field task->group_stop which is protected by siglock and uses GROUP_STOP_CONSUME flag to track which task is still to consume group_stop_count to fix this bug. task_clear_group_stop_pending() and task_participate_group_stop() are added to help manipulating group stop states. As ptrace_stop() now also uses task_participate_group_stop(), it will set SIGNAL_STOP_STOPPED if it completes a group stop. There still are many issues regarding the interaction between group stop and ptrace. Patches to address them will follow. - Oleg spotted duplicate GROUP_STOP_CONSUME. Dropped. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com>
2011-03-23 09:37:00 +00:00
*/
static bool task_participate_group_stop(struct task_struct *task)
{
struct signal_struct *sig = task->signal;
bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
signal: Fix premature completion of group stop when interfered by ptrace task->signal->group_stop_count is used to track the progress of group stop. It's initialized to the number of tasks which need to stop for group stop to finish and each stopping or trapping task decrements. However, each task doesn't keep track of whether it decremented the counter or not and if woken up before the group stop is complete and stops again, it can decrement the counter multiple times. Please consider the following example code. static void *worker(void *arg) { while (1) ; return NULL; } int main(void) { pthread_t thread; pid_t pid; int i; pid = fork(); if (!pid) { for (i = 0; i < 5; i++) pthread_create(&thread, NULL, worker, NULL); while (1) ; return 0; } ptrace(PTRACE_ATTACH, pid, NULL, NULL); while (1) { waitid(P_PID, pid, NULL, WSTOPPED); ptrace(PTRACE_SINGLESTEP, pid, NULL, (void *)(long)SIGSTOP); } return 0; } The child creates five threads and the parent continuously traps the first thread and whenever the child gets a signal, SIGSTOP is delivered. If an external process sends SIGSTOP to the child, all other threads in the process should reliably stop. However, due to the above bug, the first thread will often end up consuming group_stop_count multiple times and SIGSTOP often ends up stopping none or part of the other four threads. This patch adds a new field task->group_stop which is protected by siglock and uses GROUP_STOP_CONSUME flag to track which task is still to consume group_stop_count to fix this bug. task_clear_group_stop_pending() and task_participate_group_stop() are added to help manipulating group stop states. As ptrace_stop() now also uses task_participate_group_stop(), it will set SIGNAL_STOP_STOPPED if it completes a group stop. There still are many issues regarding the interaction between group stop and ptrace. Patches to address them will follow. - Oleg spotted duplicate GROUP_STOP_CONSUME. Dropped. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com>
2011-03-23 09:37:00 +00:00
WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
signal: Use GROUP_STOP_PENDING to stop once for a single group stop Currently task->signal->group_stop_count is used to decide whether to stop for group stop. However, if there is a task in the group which is taking a long time to stop, other tasks which are continued by ptrace would repeatedly stop for the same group stop until the group stop is complete. Conversely, if a ptraced task is in TASK_TRACED state, the debugger won't get notified of group stops which is inconsistent compared to the ptraced task in any other state. This patch introduces GROUP_STOP_PENDING which tracks whether a task is yet to stop for the group stop in progress. The flag is set when a group stop starts and cleared when the task stops the first time for the group stop, and consulted whenever whether the task should participate in a group stop needs to be determined. Note that now tasks in TASK_TRACED also participate in group stop. This results in the following behavior changes. * For a single group stop, a ptracer would see at most one stop reported. * A ptracee in TASK_TRACED now also participates in group stop and the tracer would get the notification. However, as a ptraced task could be in TASK_STOPPED state or any ptrace trap could consume group stop, the notification may still be missing. These will be addressed with further patches. * A ptracee may start a group stop while one is still in progress if the tracer let it continue with stop signal delivery. Group stop code handles this correctly. Oleg: * Spotted that a task might skip signal check even when its GROUP_STOP_PENDING is set. Fixed by updating recalc_sigpending_tsk() to check GROUP_STOP_PENDING instead of group_stop_count. * Pointed out that task->group_stop should be cleared whenever task->signal->group_stop_count is cleared. Fixed accordingly. * Pointed out the behavior inconsistency between TASK_TRACED and RUNNING and the last behavior change. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com>
2011-03-23 09:37:00 +00:00
task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
signal: Fix premature completion of group stop when interfered by ptrace task->signal->group_stop_count is used to track the progress of group stop. It's initialized to the number of tasks which need to stop for group stop to finish and each stopping or trapping task decrements. However, each task doesn't keep track of whether it decremented the counter or not and if woken up before the group stop is complete and stops again, it can decrement the counter multiple times. Please consider the following example code. static void *worker(void *arg) { while (1) ; return NULL; } int main(void) { pthread_t thread; pid_t pid; int i; pid = fork(); if (!pid) { for (i = 0; i < 5; i++) pthread_create(&thread, NULL, worker, NULL); while (1) ; return 0; } ptrace(PTRACE_ATTACH, pid, NULL, NULL); while (1) { waitid(P_PID, pid, NULL, WSTOPPED); ptrace(PTRACE_SINGLESTEP, pid, NULL, (void *)(long)SIGSTOP); } return 0; } The child creates five threads and the parent continuously traps the first thread and whenever the child gets a signal, SIGSTOP is delivered. If an external process sends SIGSTOP to the child, all other threads in the process should reliably stop. However, due to the above bug, the first thread will often end up consuming group_stop_count multiple times and SIGSTOP often ends up stopping none or part of the other four threads. This patch adds a new field task->group_stop which is protected by siglock and uses GROUP_STOP_CONSUME flag to track which task is still to consume group_stop_count to fix this bug. task_clear_group_stop_pending() and task_participate_group_stop() are added to help manipulating group stop states. As ptrace_stop() now also uses task_participate_group_stop(), it will set SIGNAL_STOP_STOPPED if it completes a group stop. There still are many issues regarding the interaction between group stop and ptrace. Patches to address them will follow. - Oleg spotted duplicate GROUP_STOP_CONSUME. Dropped. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com>
2011-03-23 09:37:00 +00:00
if (!consume)
return false;
if (!WARN_ON_ONCE(sig->group_stop_count == 0))
sig->group_stop_count--;
job control: Don't send duplicate job control stop notification while ptraced Just as group_exit_code shouldn't be generated when a PTRACE_CONT'd task re-enters job control stop, notifiction for the event should be suppressed too. The logic is the same as the group_exit_code generation suppression in do_signal_stop(), if SIGNAL_STOP_STOPPED is already set, the task is re-entering job control stop without intervening SIGCONT and the notifications should be suppressed. Test case follows. #include <stdio.h> #include <unistd.h> #include <signal.h> #include <time.h> #include <sys/ptrace.h> #include <sys/wait.h> static const struct timespec ts100ms = { .tv_nsec = 100000000 }; static pid_t tracee, tracer; static const char *pid_who(pid_t pid) { return pid == tracee ? "tracee" : (pid == tracer ? "tracer" : "mommy "); } static void sigchld_sigaction(int signo, siginfo_t *si, void *ucxt) { printf("%s: SIG status=%02d code=%02d (%s)\n", pid_who(getpid()), si->si_status, si->si_code, pid_who(si->si_pid)); } int main(void) { const struct sigaction chld_sa = { .sa_sigaction = sigchld_sigaction, .sa_flags = SA_SIGINFO|SA_RESTART }; siginfo_t si; sigaction(SIGCHLD, &chld_sa, NULL); tracee = fork(); if (!tracee) { tracee = getpid(); while (1) pause(); } kill(tracee, SIGSTOP); waitid(P_PID, tracee, &si, WSTOPPED); tracer = fork(); if (!tracer) { tracer = getpid(); ptrace(PTRACE_ATTACH, tracee, NULL, NULL); waitid(P_PID, tracee, &si, WSTOPPED); ptrace(PTRACE_CONT, tracee, NULL, (void *)(long)si.si_status); waitid(P_PID, tracee, &si, WSTOPPED); ptrace(PTRACE_CONT, tracee, NULL, (void *)(long)si.si_status); waitid(P_PID, tracee, &si, WSTOPPED); printf("tracer: detaching\n"); ptrace(PTRACE_DETACH, tracee, NULL, NULL); return 0; } while (1) pause(); return 0; } Before the patch, the parent gets the second notification for the tracee after the tracer detaches. si_status is zero because group_exit_code is not set by the group stop completion which triggered this notification. mommy : SIG status=19 code=05 (tracee) tracer: SIG status=00 code=05 (tracee) tracer: SIG status=19 code=04 (tracee) tracer: SIG status=00 code=05 (tracee) tracer: detaching mommy : SIG status=00 code=05 (tracee) mommy : SIG status=00 code=01 (tracer) ^C After the patch, the duplicate notification is gone. mommy : SIG status=19 code=05 (tracee) tracer: SIG status=00 code=05 (tracee) tracer: SIG status=19 code=04 (tracee) tracer: SIG status=00 code=05 (tracee) tracer: detaching mommy : SIG status=00 code=01 (tracer) ^C Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com>
2011-03-23 09:37:01 +00:00
/*
* Tell the caller to notify completion iff we are entering into a
* fresh group stop. Read comment in do_signal_stop() for details.
*/
if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
signal: Fix premature completion of group stop when interfered by ptrace task->signal->group_stop_count is used to track the progress of group stop. It's initialized to the number of tasks which need to stop for group stop to finish and each stopping or trapping task decrements. However, each task doesn't keep track of whether it decremented the counter or not and if woken up before the group stop is complete and stops again, it can decrement the counter multiple times. Please consider the following example code. static void *worker(void *arg) { while (1) ; return NULL; } int main(void) { pthread_t thread; pid_t pid; int i; pid = fork(); if (!pid) { for (i = 0; i < 5; i++) pthread_create(&thread, NULL, worker, NULL); while (1) ; return 0; } ptrace(PTRACE_ATTACH, pid, NULL, NULL); while (1) { waitid(P_PID, pid, NULL, WSTOPPED); ptrace(PTRACE_SINGLESTEP, pid, NULL, (void *)(long)SIGSTOP); } return 0; } The child creates five threads and the parent continuously traps the first thread and whenever the child gets a signal, SIGSTOP is delivered. If an external process sends SIGSTOP to the child, all other threads in the process should reliably stop. However, due to the above bug, the first thread will often end up consuming group_stop_count multiple times and SIGSTOP often ends up stopping none or part of the other four threads. This patch adds a new field task->group_stop which is protected by siglock and uses GROUP_STOP_CONSUME flag to track which task is still to consume group_stop_count to fix this bug. task_clear_group_stop_pending() and task_participate_group_stop() are added to help manipulating group stop states. As ptrace_stop() now also uses task_participate_group_stop(), it will set SIGNAL_STOP_STOPPED if it completes a group stop. There still are many issues regarding the interaction between group stop and ptrace. Patches to address them will follow. - Oleg spotted duplicate GROUP_STOP_CONSUME. Dropped. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com>
2011-03-23 09:37:00 +00:00
return true;
}
return false;
}
void task_join_group_stop(struct task_struct *task)
{
ptrace: fix task_join_group_stop() for the case when current is traced This testcase #include <stdio.h> #include <unistd.h> #include <signal.h> #include <sys/ptrace.h> #include <sys/wait.h> #include <pthread.h> #include <assert.h> void *tf(void *arg) { return NULL; } int main(void) { int pid = fork(); if (!pid) { kill(getpid(), SIGSTOP); pthread_t th; pthread_create(&th, NULL, tf, NULL); return 0; } waitpid(pid, NULL, WSTOPPED); ptrace(PTRACE_SEIZE, pid, 0, PTRACE_O_TRACECLONE); waitpid(pid, NULL, 0); ptrace(PTRACE_CONT, pid, 0,0); waitpid(pid, NULL, 0); int status; int thread = waitpid(-1, &status, 0); assert(thread > 0 && thread != pid); assert(status == 0x80137f); return 0; } fails and triggers WARN_ON_ONCE(!signr) in do_jobctl_trap(). This is because task_join_group_stop() has 2 problems when current is traced: 1. We can't rely on the "JOBCTL_STOP_PENDING" check, a stopped tracee can be woken up by debugger and it can clone another thread which should join the group-stop. We need to check group_stop_count || SIGNAL_STOP_STOPPED. 2. If SIGNAL_STOP_STOPPED is already set, we should not increment sig->group_stop_count and add JOBCTL_STOP_CONSUME. The new thread should stop without another do_notify_parent_cldstop() report. To clarify, the problem is very old and we should blame ptrace_init_task(). But now that we have task_join_group_stop() it makes more sense to fix this helper to avoid the code duplication. Reported-by: syzbot+3485e3773f7da290eecc@syzkaller.appspotmail.com Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Christian Brauner <christian@brauner.io> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: Zhiqiang Liu <liuzhiqiang26@huawei.com> Cc: Tejun Heo <tj@kernel.org> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20201019134237.GA18810@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-02 01:07:44 +00:00
unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
struct signal_struct *sig = current->signal;
if (sig->group_stop_count) {
sig->group_stop_count++;
mask |= JOBCTL_STOP_CONSUME;
} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
return;
/* Have the new thread join an on-going signal group stop */
ptrace: fix task_join_group_stop() for the case when current is traced This testcase #include <stdio.h> #include <unistd.h> #include <signal.h> #include <sys/ptrace.h> #include <sys/wait.h> #include <pthread.h> #include <assert.h> void *tf(void *arg) { return NULL; } int main(void) { int pid = fork(); if (!pid) { kill(getpid(), SIGSTOP); pthread_t th; pthread_create(&th, NULL, tf, NULL); return 0; } waitpid(pid, NULL, WSTOPPED); ptrace(PTRACE_SEIZE, pid, 0, PTRACE_O_TRACECLONE); waitpid(pid, NULL, 0); ptrace(PTRACE_CONT, pid, 0,0); waitpid(pid, NULL, 0); int status; int thread = waitpid(-1, &status, 0); assert(thread > 0 && thread != pid); assert(status == 0x80137f); return 0; } fails and triggers WARN_ON_ONCE(!signr) in do_jobctl_trap(). This is because task_join_group_stop() has 2 problems when current is traced: 1. We can't rely on the "JOBCTL_STOP_PENDING" check, a stopped tracee can be woken up by debugger and it can clone another thread which should join the group-stop. We need to check group_stop_count || SIGNAL_STOP_STOPPED. 2. If SIGNAL_STOP_STOPPED is already set, we should not increment sig->group_stop_count and add JOBCTL_STOP_CONSUME. The new thread should stop without another do_notify_parent_cldstop() report. To clarify, the problem is very old and we should blame ptrace_init_task(). But now that we have task_join_group_stop() it makes more sense to fix this helper to avoid the code duplication. Reported-by: syzbot+3485e3773f7da290eecc@syzkaller.appspotmail.com Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Christian Brauner <christian@brauner.io> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: Zhiqiang Liu <liuzhiqiang26@huawei.com> Cc: Tejun Heo <tj@kernel.org> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20201019134237.GA18810@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-02 01:07:44 +00:00
task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
}
/*
* allocate a new signal queue record
* - this may be called without locks if and only if t == current, otherwise an
* appropriate lock must be held to stop the target task from exiting
*/
static struct sigqueue *
__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
int override_rlimit, const unsigned int sigqueue_flags)
{
struct sigqueue *q = NULL;
struct ucounts *ucounts = NULL;
long sigpending;
/*
* Protect access to @t credentials. This can go away when all
* callers hold rcu read lock.
signal: avoid double atomic counter increments for user accounting When queueing a signal, we increment both the users count of pending signals (for RLIMIT_SIGPENDING tracking) and we increment the refcount of the user struct itself (because we keep a reference to the user in the signal structure in order to correctly account for it when freeing). That turns out to be fairly expensive, because both of them are atomic updates, and particularly under extreme signal handling pressure on big machines, you can get a lot of cache contention on the user struct. That can then cause horrid cacheline ping-pong when you do these multiple accesses. So change the reference counting to only pin the user for the _first_ pending signal, and to unpin it when the last pending signal is dequeued. That means that when a user sees a lot of concurrent signal queuing - which is the only situation when this matters - the only atomic access needed is generally the 'sigpending' count update. This was noticed because of a particularly odd timing artifact on a dual-socket 96C/192T Cascade Lake platform: when you get into bad contention, on that machine for some reason seems to be much worse when the contention happens in the upper 32-byte half of the cacheline. As a result, the kernel test robot will-it-scale 'signal1' benchmark had an odd performance regression simply due to random alignment of the 'struct user_struct' (and pointed to a completely unrelated and apparently nonsensical commit for the regression). Avoiding the double increments (and decrements on the dequeueing side, of course) makes for much less contention and hugely improved performance on that will-it-scale microbenchmark. Quoting Feng Tang: "It makes a big difference, that the performance score is tripled! bump from original 17000 to 54000. Also the gap between 5.0-rc6 and 5.0-rc6+Jiri's patch is reduced to around 2%" [ The "2% gap" is the odd cacheline placement difference on that platform: under the extreme contention case, the effect of which half of the cacheline was hot was 5%, so with the reduced contention the odd timing artifact is reduced too ] It does help in the non-contended case too, but is not nearly as noticeable. Reported-and-tested-by: Feng Tang <feng.tang@intel.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Philip Li <philip.li@intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-02-24 20:47:14 +00:00
*
* NOTE! A pending signal will hold on to the user refcount,
* and we get/put the refcount only when the sigpending count
* changes from/to zero.
*/
rcu_read_lock();
ucounts = task_ucounts(t);
ucounts: Fix signal ucount refcounting In commit fda31c50292a ("signal: avoid double atomic counter increments for user accounting") Linus made a clever optimization to how rlimits and the struct user_struct. Unfortunately that optimization does not work in the obvious way when moved to nested rlimits. The problem is that the last decrement of the per user namespace per user sigpending counter might also be the last decrement of the sigpending counter in the parent user namespace as well. Which means that simply freeing the leaf ucount in __free_sigqueue is not enough. Maintain the optimization and handle the tricky cases by introducing inc_rlimit_get_ucounts and dec_rlimit_put_ucounts. By moving the entire optimization into functions that perform all of the work it becomes possible to ensure that every level is handled properly. The new function inc_rlimit_get_ucounts returns 0 on failure to increment the ucount. This is different than inc_rlimit_ucounts which increments the ucounts and returns LONG_MAX if the ucount counter has exceeded it's maximum or it wrapped (to indicate the counter needs to decremented). I wish we had a single user to account all pending signals to across all of the threads of a process so this complexity was not necessary Cc: stable@vger.kernel.org Fixes: d64696905554 ("Reimplement RLIMIT_SIGPENDING on top of ucounts") v1: https://lkml.kernel.org/r/87mtnavszx.fsf_-_@disp2133 Link: https://lkml.kernel.org/r/87fssytizw.fsf_-_@disp2133 Reviewed-by: Alexey Gladkov <legion@kernel.org> Tested-by: Rune Kleveland <rune.kleveland@infomedia.dk> Tested-by: Yu Zhao <yuzhao@google.com> Tested-by: Jordan Glover <Golden_Miller83@protonmail.ch> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-10-16 20:59:49 +00:00
sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
rcu_read_unlock();
ucounts: Fix signal ucount refcounting In commit fda31c50292a ("signal: avoid double atomic counter increments for user accounting") Linus made a clever optimization to how rlimits and the struct user_struct. Unfortunately that optimization does not work in the obvious way when moved to nested rlimits. The problem is that the last decrement of the per user namespace per user sigpending counter might also be the last decrement of the sigpending counter in the parent user namespace as well. Which means that simply freeing the leaf ucount in __free_sigqueue is not enough. Maintain the optimization and handle the tricky cases by introducing inc_rlimit_get_ucounts and dec_rlimit_put_ucounts. By moving the entire optimization into functions that perform all of the work it becomes possible to ensure that every level is handled properly. The new function inc_rlimit_get_ucounts returns 0 on failure to increment the ucount. This is different than inc_rlimit_ucounts which increments the ucounts and returns LONG_MAX if the ucount counter has exceeded it's maximum or it wrapped (to indicate the counter needs to decremented). I wish we had a single user to account all pending signals to across all of the threads of a process so this complexity was not necessary Cc: stable@vger.kernel.org Fixes: d64696905554 ("Reimplement RLIMIT_SIGPENDING on top of ucounts") v1: https://lkml.kernel.org/r/87mtnavszx.fsf_-_@disp2133 Link: https://lkml.kernel.org/r/87fssytizw.fsf_-_@disp2133 Reviewed-by: Alexey Gladkov <legion@kernel.org> Tested-by: Rune Kleveland <rune.kleveland@infomedia.dk> Tested-by: Yu Zhao <yuzhao@google.com> Tested-by: Jordan Glover <Golden_Miller83@protonmail.ch> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-10-16 20:59:49 +00:00
if (!sigpending)
return NULL;
Fix UCOUNT_RLIMIT_SIGPENDING counter leak We must properly handle an errors when we increase the rlimit counter and the ucounts reference counter. We have to this with RCU protection to prevent possible use-after-free that could occur due to concurrent put_cred_rcu(). The following reproducer triggers the problem: $ cat testcase.sh case "${STEP:-0}" in 0) ulimit -Si 1 ulimit -Hi 1 STEP=1 unshare -rU "$0" killall sleep ;; 1) for i in 1 2 3 4 5; do unshare -rU sleep 5 & done ;; esac with the KASAN report being along the lines of BUG: KASAN: use-after-free in put_ucounts+0x17/0xa0 Write of size 4 at addr ffff8880045f031c by task swapper/2/0 CPU: 2 PID: 0 Comm: swapper/2 Not tainted 5.13.0+ #19 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-alt4 04/01/2014 Call Trace: <IRQ> put_ucounts+0x17/0xa0 put_cred_rcu+0xd5/0x190 rcu_core+0x3bf/0xcb0 __do_softirq+0xe3/0x341 irq_exit_rcu+0xbe/0xe0 sysvec_apic_timer_interrupt+0x6a/0x90 </IRQ> asm_sysvec_apic_timer_interrupt+0x12/0x20 default_idle_call+0x53/0x130 do_idle+0x311/0x3c0 cpu_startup_entry+0x14/0x20 secondary_startup_64_no_verify+0xc2/0xcb Allocated by task 127: kasan_save_stack+0x1b/0x40 __kasan_kmalloc+0x7c/0x90 alloc_ucounts+0x169/0x2b0 set_cred_ucounts+0xbb/0x170 ksys_unshare+0x24c/0x4e0 __x64_sys_unshare+0x16/0x20 do_syscall_64+0x37/0x70 entry_SYSCALL_64_after_hwframe+0x44/0xae Freed by task 0: kasan_save_stack+0x1b/0x40 kasan_set_track+0x1c/0x30 kasan_set_free_info+0x20/0x30 __kasan_slab_free+0xeb/0x120 kfree+0xaa/0x460 put_cred_rcu+0xd5/0x190 rcu_core+0x3bf/0xcb0 __do_softirq+0xe3/0x341 The buggy address belongs to the object at ffff8880045f0300 which belongs to the cache kmalloc-192 of size 192 The buggy address is located 28 bytes inside of 192-byte region [ffff8880045f0300, ffff8880045f03c0) The buggy address belongs to the page: page:000000008de0a388 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff8880045f0000 pfn:0x45f0 flags: 0x100000000000200(slab|node=0|zone=1) raw: 0100000000000200 ffffea00000f4640 0000000a0000000a ffff888001042a00 raw: ffff8880045f0000 000000008010000d 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880045f0200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880045f0280: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc >ffff8880045f0300: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8880045f0380: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc ffff8880045f0400: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== Disabling lock debugging due to kernel taint Fixes: d64696905554 ("Reimplement RLIMIT_SIGPENDING on top of ucounts") Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Alexey Gladkov <legion@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-08 10:33:01 +00:00
if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
Revert "signal: Allow tasks to cache one sigqueue struct" This reverts commits 4bad58ebc8bc4f20d89cff95417c9b4674769709 (and 399f8dd9a866e107639eabd3c1979cd526ca3a98, which tried to fix it). I do not believe these are correct, and I'm about to release 5.13, so am reverting them out of an abundance of caution. The locking is odd, and appears broken. On the allocation side (in __sigqueue_alloc()), the locking is somewhat straightforward: it depends on sighand->siglock. Since one caller doesn't hold that lock, it further then tests 'sigqueue_flags' to avoid the case with no locks held. On the freeing side (in sigqueue_cache_or_free()), there is no locking at all, and the logic instead depends on 'current' being a single thread, and not able to race with itself. To make things more exciting, there's also the data race between freeing a signal and allocating one, which is handled by using WRITE_ONCE() and READ_ONCE(), and being mutually exclusive wrt the initial state (ie freeing will only free if the old state was NULL, while allocating will obviously only use the value if it was non-NULL, so only one or the other will actually act on the value). However, while the free->alloc paths do seem mutually exclusive thanks to just the data value dependency, it's not clear what the memory ordering constraints are on it. Could writes from the previous allocation possibly be delayed and seen by the new allocation later, causing logical inconsistencies? So it's all very exciting and unusual. And in particular, it seems that the freeing side is incorrect in depending on "current" being single-threaded. Yes, 'current' is a single thread, but in the presense of asynchronous events even a single thread can have data races. And such asynchronous events can and do happen, with interrupts causing signals to be flushed and thus free'd (for example - sending a SIGCONT/SIGSTOP can happen from interrupt context, and can flush previously queued process control signals). So regardless of all the other questions about the memory ordering and locking for this new cached allocation, the sigqueue_cache_or_free() assumptions seem to be fundamentally incorrect. It may be that people will show me the errors of my ways, and tell me why this is all safe after all. We can reinstate it if so. But my current belief is that the WRITE_ONCE() that sets the cached entry needs to be a smp_store_release(), and the READ_ONCE() that finds a cached entry needs to be a smp_load_acquire() to handle memory ordering correctly. And the sequence in sigqueue_cache_or_free() would need to either use a lock or at least be interrupt-safe some way (perhaps by using something like the percpu 'cmpxchg': it doesn't need to be SMP-safe, but like the percpu operations it needs to be interrupt-safe). Fixes: 399f8dd9a866 ("signal: Prevent sigqueue caching after task got released") Fixes: 4bad58ebc8bc ("signal: Allow tasks to cache one sigqueue struct") Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-27 20:32:54 +00:00
q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
} else {
print_dropped_signal(sig);
}
if (unlikely(q == NULL)) {
ucounts: Fix signal ucount refcounting In commit fda31c50292a ("signal: avoid double atomic counter increments for user accounting") Linus made a clever optimization to how rlimits and the struct user_struct. Unfortunately that optimization does not work in the obvious way when moved to nested rlimits. The problem is that the last decrement of the per user namespace per user sigpending counter might also be the last decrement of the sigpending counter in the parent user namespace as well. Which means that simply freeing the leaf ucount in __free_sigqueue is not enough. Maintain the optimization and handle the tricky cases by introducing inc_rlimit_get_ucounts and dec_rlimit_put_ucounts. By moving the entire optimization into functions that perform all of the work it becomes possible to ensure that every level is handled properly. The new function inc_rlimit_get_ucounts returns 0 on failure to increment the ucount. This is different than inc_rlimit_ucounts which increments the ucounts and returns LONG_MAX if the ucount counter has exceeded it's maximum or it wrapped (to indicate the counter needs to decremented). I wish we had a single user to account all pending signals to across all of the threads of a process so this complexity was not necessary Cc: stable@vger.kernel.org Fixes: d64696905554 ("Reimplement RLIMIT_SIGPENDING on top of ucounts") v1: https://lkml.kernel.org/r/87mtnavszx.fsf_-_@disp2133 Link: https://lkml.kernel.org/r/87fssytizw.fsf_-_@disp2133 Reviewed-by: Alexey Gladkov <legion@kernel.org> Tested-by: Rune Kleveland <rune.kleveland@infomedia.dk> Tested-by: Yu Zhao <yuzhao@google.com> Tested-by: Jordan Glover <Golden_Miller83@protonmail.ch> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-10-16 20:59:49 +00:00
dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
} else {
INIT_LIST_HEAD(&q->list);
q->flags = sigqueue_flags;
q->ucounts = ucounts;
}
CRED: Inaugurate COW credentials Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
2008-11-13 23:39:23 +00:00
return q;
}
static void __sigqueue_free(struct sigqueue *q)
{
if (q->flags & SIGQUEUE_PREALLOC)
return;
ucounts: Fix signal ucount refcounting In commit fda31c50292a ("signal: avoid double atomic counter increments for user accounting") Linus made a clever optimization to how rlimits and the struct user_struct. Unfortunately that optimization does not work in the obvious way when moved to nested rlimits. The problem is that the last decrement of the per user namespace per user sigpending counter might also be the last decrement of the sigpending counter in the parent user namespace as well. Which means that simply freeing the leaf ucount in __free_sigqueue is not enough. Maintain the optimization and handle the tricky cases by introducing inc_rlimit_get_ucounts and dec_rlimit_put_ucounts. By moving the entire optimization into functions that perform all of the work it becomes possible to ensure that every level is handled properly. The new function inc_rlimit_get_ucounts returns 0 on failure to increment the ucount. This is different than inc_rlimit_ucounts which increments the ucounts and returns LONG_MAX if the ucount counter has exceeded it's maximum or it wrapped (to indicate the counter needs to decremented). I wish we had a single user to account all pending signals to across all of the threads of a process so this complexity was not necessary Cc: stable@vger.kernel.org Fixes: d64696905554 ("Reimplement RLIMIT_SIGPENDING on top of ucounts") v1: https://lkml.kernel.org/r/87mtnavszx.fsf_-_@disp2133 Link: https://lkml.kernel.org/r/87fssytizw.fsf_-_@disp2133 Reviewed-by: Alexey Gladkov <legion@kernel.org> Tested-by: Rune Kleveland <rune.kleveland@infomedia.dk> Tested-by: Yu Zhao <yuzhao@google.com> Tested-by: Jordan Glover <Golden_Miller83@protonmail.ch> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-10-16 20:59:49 +00:00
if (q->ucounts) {
dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
q->ucounts = NULL;
}
Revert "signal: Allow tasks to cache one sigqueue struct" This reverts commits 4bad58ebc8bc4f20d89cff95417c9b4674769709 (and 399f8dd9a866e107639eabd3c1979cd526ca3a98, which tried to fix it). I do not believe these are correct, and I'm about to release 5.13, so am reverting them out of an abundance of caution. The locking is odd, and appears broken. On the allocation side (in __sigqueue_alloc()), the locking is somewhat straightforward: it depends on sighand->siglock. Since one caller doesn't hold that lock, it further then tests 'sigqueue_flags' to avoid the case with no locks held. On the freeing side (in sigqueue_cache_or_free()), there is no locking at all, and the logic instead depends on 'current' being a single thread, and not able to race with itself. To make things more exciting, there's also the data race between freeing a signal and allocating one, which is handled by using WRITE_ONCE() and READ_ONCE(), and being mutually exclusive wrt the initial state (ie freeing will only free if the old state was NULL, while allocating will obviously only use the value if it was non-NULL, so only one or the other will actually act on the value). However, while the free->alloc paths do seem mutually exclusive thanks to just the data value dependency, it's not clear what the memory ordering constraints are on it. Could writes from the previous allocation possibly be delayed and seen by the new allocation later, causing logical inconsistencies? So it's all very exciting and unusual. And in particular, it seems that the freeing side is incorrect in depending on "current" being single-threaded. Yes, 'current' is a single thread, but in the presense of asynchronous events even a single thread can have data races. And such asynchronous events can and do happen, with interrupts causing signals to be flushed and thus free'd (for example - sending a SIGCONT/SIGSTOP can happen from interrupt context, and can flush previously queued process control signals). So regardless of all the other questions about the memory ordering and locking for this new cached allocation, the sigqueue_cache_or_free() assumptions seem to be fundamentally incorrect. It may be that people will show me the errors of my ways, and tell me why this is all safe after all. We can reinstate it if so. But my current belief is that the WRITE_ONCE() that sets the cached entry needs to be a smp_store_release(), and the READ_ONCE() that finds a cached entry needs to be a smp_load_acquire() to handle memory ordering correctly. And the sequence in sigqueue_cache_or_free() would need to either use a lock or at least be interrupt-safe some way (perhaps by using something like the percpu 'cmpxchg': it doesn't need to be SMP-safe, but like the percpu operations it needs to be interrupt-safe). Fixes: 399f8dd9a866 ("signal: Prevent sigqueue caching after task got released") Fixes: 4bad58ebc8bc ("signal: Allow tasks to cache one sigqueue struct") Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-27 20:32:54 +00:00
kmem_cache_free(sigqueue_cachep, q);
}
void flush_sigqueue(struct sigpending *queue)
{
struct sigqueue *q;
sigemptyset(&queue->signal);
while (!list_empty(&queue->list)) {
q = list_entry(queue->list.next, struct sigqueue , list);
list_del_init(&q->list);
__sigqueue_free(q);
}
}
/*
* Flush all pending signals for this kthread.
*/
void flush_signals(struct task_struct *t)
{
unsigned long flags;
spin_lock_irqsave(&t->sighand->siglock, flags);
clear_tsk_thread_flag(t, TIF_SIGPENDING);
flush_sigqueue(&t->pending);
flush_sigqueue(&t->signal->shared_pending);
spin_unlock_irqrestore(&t->sighand->siglock, flags);
}
EXPORT_SYMBOL(flush_signals);
#ifdef CONFIG_POSIX_TIMERS
static void __flush_itimer_signals(struct sigpending *pending)
{
sigset_t signal, retain;
struct sigqueue *q, *n;
signal = pending->signal;
sigemptyset(&retain);
list_for_each_entry_safe(q, n, &pending->list, list) {
int sig = q->info.si_signo;
if (likely(q->info.si_code != SI_TIMER)) {
sigaddset(&retain, sig);
} else {
sigdelset(&signal, sig);
list_del_init(&q->list);
__sigqueue_free(q);
}
}
sigorsets(&pending->signal, &signal, &retain);
}
void flush_itimer_signals(void)
{
struct task_struct *tsk = current;
unsigned long flags;
spin_lock_irqsave(&tsk->sighand->siglock, flags);
__flush_itimer_signals(&tsk->pending);
__flush_itimer_signals(&tsk->signal->shared_pending);
spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
}
#endif
void ignore_signals(struct task_struct *t)
{
int i;
for (i = 0; i < _NSIG; ++i)
t->sighand->action[i].sa.sa_handler = SIG_IGN;
flush_signals(t);
}
/*
* Flush all handlers for a task.
*/
void
flush_signal_handlers(struct task_struct *t, int force_default)
{
int i;
struct k_sigaction *ka = &t->sighand->action[0];
for (i = _NSIG ; i != 0 ; i--) {
if (force_default || ka->sa.sa_handler != SIG_IGN)
ka->sa.sa_handler = SIG_DFL;
ka->sa.sa_flags = 0;
#ifdef __ARCH_HAS_SA_RESTORER
signal: always clear sa_restorer on execve When the new signal handlers are set up, the location of sa_restorer is not cleared, leaking a parent process's address space location to children. This allows for a potential bypass of the parent's ASLR by examining the sa_restorer value returned when calling sigaction(). Based on what should be considered "secret" about addresses, it only matters across the exec not the fork (since the VMAs haven't changed until the exec). But since exec sets SIG_DFL and keeps sa_restorer, this is where it should be fixed. Given the few uses of sa_restorer, a "set" function was not written since this would be the only use. Instead, we use __ARCH_HAS_SA_RESTORER, as already done in other places. Example of the leak before applying this patch: $ cat /proc/$$/maps ... 7fb9f3083000-7fb9f3238000 r-xp 00000000 fd:01 404469 .../libc-2.15.so ... $ ./leak ... 7f278bc74000-7f278be29000 r-xp 00000000 fd:01 404469 .../libc-2.15.so ... 1 0 (nil) 0x7fb9f30b94a0 2 4000000 (nil) 0x7f278bcaa4a0 3 4000000 (nil) 0x7f278bcaa4a0 4 0 (nil) 0x7fb9f30b94a0 ... [akpm@linux-foundation.org: use SA_RESTORER for backportability] Signed-off-by: Kees Cook <keescook@chromium.org> Reported-by: Emese Revfy <re.emese@gmail.com> Cc: Emese Revfy <re.emese@gmail.com> Cc: PaX Team <pageexec@freemail.hu> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Oleg Nesterov <oleg@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Serge Hallyn <serge.hallyn@canonical.com> Cc: Julien Tinnes <jln@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-03-13 21:59:33 +00:00
ka->sa.sa_restorer = NULL;
#endif
sigemptyset(&ka->sa.sa_mask);
ka++;
}
}
bool unhandled_signal(struct task_struct *tsk, int sig)
{
void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
pid namespaces: define is_global_init() and is_container_init() is_init() is an ambiguous name for the pid==1 check. Split it into is_global_init() and is_container_init(). A cgroup init has it's tsk->pid == 1. A global init also has it's tsk->pid == 1 and it's active pid namespace is the init_pid_ns. But rather than check the active pid namespace, compare the task structure with 'init_pid_ns.child_reaper', which is initialized during boot to the /sbin/init process and never changes. Changelog: 2.6.22-rc4-mm2-pidns1: - Use 'init_pid_ns.child_reaper' to determine if a given task is the global init (/sbin/init) process. This would improve performance and remove dependence on the task_pid(). 2.6.21-mm2-pidns2: - [Sukadev Bhattiprolu] Changed is_container_init() calls in {powerpc, ppc,avr32}/traps.c for the _exception() call to is_global_init(). This way, we kill only the cgroup if the cgroup's init has a bug rather than force a kernel panic. [akpm@linux-foundation.org: fix comment] [sukadev@us.ibm.com: Use is_global_init() in arch/m32r/mm/fault.c] [bunk@stusta.de: kernel/pid.c: remove unused exports] [sukadev@us.ibm.com: Fix capability.c to work with threaded init] Signed-off-by: Serge E. Hallyn <serue@us.ibm.com> Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com> Acked-by: Pavel Emelianov <xemul@openvz.org> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Cedric Le Goater <clg@fr.ibm.com> Cc: Dave Hansen <haveblue@us.ibm.com> Cc: Herbert Poetzel <herbert@13thfloor.at> Cc: Kirill Korotaev <dev@sw.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-19 06:39:52 +00:00
if (is_global_init(tsk))
return true;
if (handler != SIG_IGN && handler != SIG_DFL)
return false;
mm: suppress mm fault logging if fatal signal already pending Commit eda0047296a1 ("mm: make the page fault mmap locking killable") intentionally made it much easier to trigger the "page fault fails because a fatal signal is pending" situation, by having the mmap locking fail early in that case. We have long aborted page faults in other fatal cases when the actual IO for a page is interrupted by SIGKILL - which is particularly useful for the traditional case of NFS hanging due to network issues, but local filesystems could cause it too if you happened to get the SIGKILL while waiting for a page to be faulted in (eg lock_folio_maybe_drop_mmap()). So aborting the page fault wasn't a new condition - but it now triggers earlier, before we even get to 'handle_mm_fault()'. And as a result the error doesn't go through our 'fault_signal_pending()' logic, and doesn't get filtered away there. Normally you'd never even notice, because if a fatal signal is pending, the new SIGSEGV we send ends up being ignored anyway. But it turns out that there is one very noticeable exception: if you enable 'show_unhandled_signals', the aborted page fault will be logged in the kernel messages, and you'll get a scary line looking something like this in your logs: pverados[2183248]: segfault at 55e5a00f9ae0 ip 000055e5a00f9ae0 sp 00007ffc0720bea8 error 14 in perl[55e5a00d4000+195000] likely on CPU 10 (core 4, socket 0) which is rather misleading. It's not really a segfault at all, it's just "the thread was killed before the page fault completed, so we aborted the page fault". Fix this by just making it clear that a pending fatal signal means that any new signal coming in after that is implicitly handled. This will avoid the misleading logging, since now the signal isn't 'unhandled' any more. Reported-and-tested-by: Fiona Ebner <f.ebner@proxmox.com> Tested-by: Thomas Lamprecht <t.lamprecht@proxmox.com> Link: https://lore.kernel.org/lkml/8d063a26-43f5-0bb7-3203-c6a04dc159f8@proxmox.com/ Acked-by: Oleg Nesterov <oleg@redhat.com> Fixes: eda0047296a1 ("mm: make the page fault mmap locking killable") Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-07-25 16:38:32 +00:00
/* If dying, we handle all new signals by ignoring them */
if (fatal_signal_pending(tsk))
return false;
/* if ptraced, let the tracer determine */
return !tsk->ptrace;
}
static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
signal: Only reschedule timers on signals timers have sent Thomas Gleixner wrote: > The CRIU support added a 'feature' which allows a user space task to send > arbitrary (kernel) signals to itself. The changelog says: > > The kernel prevents sending of siginfo with positive si_code, because > these codes are reserved for kernel. I think we can allow a task to > send such a siginfo to itself. This operation should not be dangerous. > > Quite contrary to that claim, it turns out that it is outright dangerous > for signals with info->si_code == SI_TIMER. The following code sequence in > a user space task allows to crash the kernel: > > id = timer_create(CLOCK_XXX, ..... signo = SIGX); > timer_set(id, ....); > info->si_signo = SIGX; > info->si_code = SI_TIMER: > info->_sifields._timer._tid = id; > info->_sifields._timer._sys_private = 2; > rt_[tg]sigqueueinfo(..., SIGX, info); > sigemptyset(&sigset); > sigaddset(&sigset, SIGX); > rt_sigtimedwait(sigset, info); > > For timers based on CLOCK_PROCESS_CPUTIME_ID, CLOCK_THREAD_CPUTIME_ID this > results in a kernel crash because sigwait() dequeues the signal and the > dequeue code observes: > > info->si_code == SI_TIMER && info->_sifields._timer._sys_private != 0 > > which triggers the following callchain: > > do_schedule_next_timer() -> posix_cpu_timer_schedule() -> arm_timer() > > arm_timer() executes a list_add() on the timer, which is already armed via > the timer_set() syscall. That's a double list add which corrupts the posix > cpu timer list. As a consequence the kernel crashes on the next operation > touching the posix cpu timer list. > > Posix clocks which are internally implemented based on hrtimers are not > affected by this because hrtimer_start() can handle already armed timers > nicely, but it's a reliable way to trigger the WARN_ON() in > hrtimer_forward(), which complains about calling that function on an > already armed timer. This problem has existed since the posix timer code was merged into 2.5.63. A few releases earlier in 2.5.60 ptrace gained the ability to inject not just a signal (which linux has supported since 1.0) but the full siginfo of a signal. The core problem is that the code will reschedule in response to signals getting dequeued not just for signals the timers sent but for other signals that happen to a si_code of SI_TIMER. Avoid this confusion by testing to see if the queued signal was preallocated as all timer signals are preallocated, and so far only the timer code preallocates signals. Move the check for if a timer needs to be rescheduled up into collect_signal where the preallocation check must be performed, and pass the result back to dequeue_signal where the code reschedules timers. This makes it clear why the code cares about preallocated timers. Cc: stable@vger.kernel.org Reported-by: Thomas Gleixner <tglx@linutronix.de> History Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git Reference: 66dd34ad31e5 ("signal: allow to send any siginfo to itself") Reference: 1669ce53e2ff ("Add PTRACE_GETSIGINFO and PTRACE_SETSIGINFO") Fixes: db8b50ba75f2 ("[PATCH] POSIX clocks & timers") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-06-13 09:31:16 +00:00
bool *resched_timer)
{
struct sigqueue *q, *first = NULL;
/*
* Collect the siginfo appropriate to this signal. Check if
* there is another siginfo for the same signal.
*/
list_for_each_entry(q, &list->list, list) {
if (q->info.si_signo == sig) {
if (first)
goto still_pending;
first = q;
}
}
sigdelset(&list->signal, sig);
if (first) {
still_pending:
list_del_init(&first->list);
copy_siginfo(info, &first->info);
signal: Only reschedule timers on signals timers have sent Thomas Gleixner wrote: > The CRIU support added a 'feature' which allows a user space task to send > arbitrary (kernel) signals to itself. The changelog says: > > The kernel prevents sending of siginfo with positive si_code, because > these codes are reserved for kernel. I think we can allow a task to > send such a siginfo to itself. This operation should not be dangerous. > > Quite contrary to that claim, it turns out that it is outright dangerous > for signals with info->si_code == SI_TIMER. The following code sequence in > a user space task allows to crash the kernel: > > id = timer_create(CLOCK_XXX, ..... signo = SIGX); > timer_set(id, ....); > info->si_signo = SIGX; > info->si_code = SI_TIMER: > info->_sifields._timer._tid = id; > info->_sifields._timer._sys_private = 2; > rt_[tg]sigqueueinfo(..., SIGX, info); > sigemptyset(&sigset); > sigaddset(&sigset, SIGX); > rt_sigtimedwait(sigset, info); > > For timers based on CLOCK_PROCESS_CPUTIME_ID, CLOCK_THREAD_CPUTIME_ID this > results in a kernel crash because sigwait() dequeues the signal and the > dequeue code observes: > > info->si_code == SI_TIMER && info->_sifields._timer._sys_private != 0 > > which triggers the following callchain: > > do_schedule_next_timer() -> posix_cpu_timer_schedule() -> arm_timer() > > arm_timer() executes a list_add() on the timer, which is already armed via > the timer_set() syscall. That's a double list add which corrupts the posix > cpu timer list. As a consequence the kernel crashes on the next operation > touching the posix cpu timer list. > > Posix clocks which are internally implemented based on hrtimers are not > affected by this because hrtimer_start() can handle already armed timers > nicely, but it's a reliable way to trigger the WARN_ON() in > hrtimer_forward(), which complains about calling that function on an > already armed timer. This problem has existed since the posix timer code was merged into 2.5.63. A few releases earlier in 2.5.60 ptrace gained the ability to inject not just a signal (which linux has supported since 1.0) but the full siginfo of a signal. The core problem is that the code will reschedule in response to signals getting dequeued not just for signals the timers sent but for other signals that happen to a si_code of SI_TIMER. Avoid this confusion by testing to see if the queued signal was preallocated as all timer signals are preallocated, and so far only the timer code preallocates signals. Move the check for if a timer needs to be rescheduled up into collect_signal where the preallocation check must be performed, and pass the result back to dequeue_signal where the code reschedules timers. This makes it clear why the code cares about preallocated timers. Cc: stable@vger.kernel.org Reported-by: Thomas Gleixner <tglx@linutronix.de> History Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git Reference: 66dd34ad31e5 ("signal: allow to send any siginfo to itself") Reference: 1669ce53e2ff ("Add PTRACE_GETSIGINFO and PTRACE_SETSIGINFO") Fixes: db8b50ba75f2 ("[PATCH] POSIX clocks & timers") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-06-13 09:31:16 +00:00
*resched_timer =
(first->flags & SIGQUEUE_PREALLOC) &&
(info->si_code == SI_TIMER) &&
(info->si_sys_private);
__sigqueue_free(first);
} else {
/*
* Ok, it wasn't in the queue. This must be
* a fast-pathed signal or we must have been
* out of queue space. So zero out the info.
*/
clear_siginfo(info);
info->si_signo = sig;
info->si_errno = 0;
info->si_code = SI_USER;
info->si_pid = 0;
info->si_uid = 0;
}
}
static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
kernel_siginfo_t *info, bool *resched_timer)
{
int sig = next_signal(pending, mask);
if (sig)
signal: Only reschedule timers on signals timers have sent Thomas Gleixner wrote: > The CRIU support added a 'feature' which allows a user space task to send > arbitrary (kernel) signals to itself. The changelog says: > > The kernel prevents sending of siginfo with positive si_code, because > these codes are reserved for kernel. I think we can allow a task to > send such a siginfo to itself. This operation should not be dangerous. > > Quite contrary to that claim, it turns out that it is outright dangerous > for signals with info->si_code == SI_TIMER. The following code sequence in > a user space task allows to crash the kernel: > > id = timer_create(CLOCK_XXX, ..... signo = SIGX); > timer_set(id, ....); > info->si_signo = SIGX; > info->si_code = SI_TIMER: > info->_sifields._timer._tid = id; > info->_sifields._timer._sys_private = 2; > rt_[tg]sigqueueinfo(..., SIGX, info); > sigemptyset(&sigset); > sigaddset(&sigset, SIGX); > rt_sigtimedwait(sigset, info); > > For timers based on CLOCK_PROCESS_CPUTIME_ID, CLOCK_THREAD_CPUTIME_ID this > results in a kernel crash because sigwait() dequeues the signal and the > dequeue code observes: > > info->si_code == SI_TIMER && info->_sifields._timer._sys_private != 0 > > which triggers the following callchain: > > do_schedule_next_timer() -> posix_cpu_timer_schedule() -> arm_timer() > > arm_timer() executes a list_add() on the timer, which is already armed via > the timer_set() syscall. That's a double list add which corrupts the posix > cpu timer list. As a consequence the kernel crashes on the next operation > touching the posix cpu timer list. > > Posix clocks which are internally implemented based on hrtimers are not > affected by this because hrtimer_start() can handle already armed timers > nicely, but it's a reliable way to trigger the WARN_ON() in > hrtimer_forward(), which complains about calling that function on an > already armed timer. This problem has existed since the posix timer code was merged into 2.5.63. A few releases earlier in 2.5.60 ptrace gained the ability to inject not just a signal (which linux has supported since 1.0) but the full siginfo of a signal. The core problem is that the code will reschedule in response to signals getting dequeued not just for signals the timers sent but for other signals that happen to a si_code of SI_TIMER. Avoid this confusion by testing to see if the queued signal was preallocated as all timer signals are preallocated, and so far only the timer code preallocates signals. Move the check for if a timer needs to be rescheduled up into collect_signal where the preallocation check must be performed, and pass the result back to dequeue_signal where the code reschedules timers. This makes it clear why the code cares about preallocated timers. Cc: stable@vger.kernel.org Reported-by: Thomas Gleixner <tglx@linutronix.de> History Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git Reference: 66dd34ad31e5 ("signal: allow to send any siginfo to itself") Reference: 1669ce53e2ff ("Add PTRACE_GETSIGINFO and PTRACE_SETSIGINFO") Fixes: db8b50ba75f2 ("[PATCH] POSIX clocks & timers") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-06-13 09:31:16 +00:00
collect_signal(sig, pending, info, resched_timer);
return sig;
}
/*
* Dequeue a signal and return the element to the caller, which is
* expected to free it.
*
* All callers have to hold the siglock.
*/
int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
kernel_siginfo_t *info, enum pid_type *type)
{
signal: Only reschedule timers on signals timers have sent Thomas Gleixner wrote: > The CRIU support added a 'feature' which allows a user space task to send > arbitrary (kernel) signals to itself. The changelog says: > > The kernel prevents sending of siginfo with positive si_code, because > these codes are reserved for kernel. I think we can allow a task to > send such a siginfo to itself. This operation should not be dangerous. > > Quite contrary to that claim, it turns out that it is outright dangerous > for signals with info->si_code == SI_TIMER. The following code sequence in > a user space task allows to crash the kernel: > > id = timer_create(CLOCK_XXX, ..... signo = SIGX); > timer_set(id, ....); > info->si_signo = SIGX; > info->si_code = SI_TIMER: > info->_sifields._timer._tid = id; > info->_sifields._timer._sys_private = 2; > rt_[tg]sigqueueinfo(..., SIGX, info); > sigemptyset(&sigset); > sigaddset(&sigset, SIGX); > rt_sigtimedwait(sigset, info); > > For timers based on CLOCK_PROCESS_CPUTIME_ID, CLOCK_THREAD_CPUTIME_ID this > results in a kernel crash because sigwait() dequeues the signal and the > dequeue code observes: > > info->si_code == SI_TIMER && info->_sifields._timer._sys_private != 0 > > which triggers the following callchain: > > do_schedule_next_timer() -> posix_cpu_timer_schedule() -> arm_timer() > > arm_timer() executes a list_add() on the timer, which is already armed via > the timer_set() syscall. That's a double list add which corrupts the posix > cpu timer list. As a consequence the kernel crashes on the next operation > touching the posix cpu timer list. > > Posix clocks which are internally implemented based on hrtimers are not > affected by this because hrtimer_start() can handle already armed timers > nicely, but it's a reliable way to trigger the WARN_ON() in > hrtimer_forward(), which complains about calling that function on an > already armed timer. This problem has existed since the posix timer code was merged into 2.5.63. A few releases earlier in 2.5.60 ptrace gained the ability to inject not just a signal (which linux has supported since 1.0) but the full siginfo of a signal. The core problem is that the code will reschedule in response to signals getting dequeued not just for signals the timers sent but for other signals that happen to a si_code of SI_TIMER. Avoid this confusion by testing to see if the queued signal was preallocated as all timer signals are preallocated, and so far only the timer code preallocates signals. Move the check for if a timer needs to be rescheduled up into collect_signal where the preallocation check must be performed, and pass the result back to dequeue_signal where the code reschedules timers. This makes it clear why the code cares about preallocated timers. Cc: stable@vger.kernel.org Reported-by: Thomas Gleixner <tglx@linutronix.de> History Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git Reference: 66dd34ad31e5 ("signal: allow to send any siginfo to itself") Reference: 1669ce53e2ff ("Add PTRACE_GETSIGINFO and PTRACE_SETSIGINFO") Fixes: db8b50ba75f2 ("[PATCH] POSIX clocks & timers") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-06-13 09:31:16 +00:00
bool resched_timer = false;
int signr;
/* We only dequeue private signals from ourselves, we don't let
* signalfd steal them
*/
*type = PIDTYPE_PID;
signal: Only reschedule timers on signals timers have sent Thomas Gleixner wrote: > The CRIU support added a 'feature' which allows a user space task to send > arbitrary (kernel) signals to itself. The changelog says: > > The kernel prevents sending of siginfo with positive si_code, because > these codes are reserved for kernel. I think we can allow a task to > send such a siginfo to itself. This operation should not be dangerous. > > Quite contrary to that claim, it turns out that it is outright dangerous > for signals with info->si_code == SI_TIMER. The following code sequence in > a user space task allows to crash the kernel: > > id = timer_create(CLOCK_XXX, ..... signo = SIGX); > timer_set(id, ....); > info->si_signo = SIGX; > info->si_code = SI_TIMER: > info->_sifields._timer._tid = id; > info->_sifields._timer._sys_private = 2; > rt_[tg]sigqueueinfo(..., SIGX, info); > sigemptyset(&sigset); > sigaddset(&sigset, SIGX); > rt_sigtimedwait(sigset, info); > > For timers based on CLOCK_PROCESS_CPUTIME_ID, CLOCK_THREAD_CPUTIME_ID this > results in a kernel crash because sigwait() dequeues the signal and the > dequeue code observes: > > info->si_code == SI_TIMER && info->_sifields._timer._sys_private != 0 > > which triggers the following callchain: > > do_schedule_next_timer() -> posix_cpu_timer_schedule() -> arm_timer() > > arm_timer() executes a list_add() on the timer, which is already armed via > the timer_set() syscall. That's a double list add which corrupts the posix > cpu timer list. As a consequence the kernel crashes on the next operation > touching the posix cpu timer list. > > Posix clocks which are internally implemented based on hrtimers are not > affected by this because hrtimer_start() can handle already armed timers > nicely, but it's a reliable way to trigger the WARN_ON() in > hrtimer_forward(), which complains about calling that function on an > already armed timer. This problem has existed since the posix timer code was merged into 2.5.63. A few releases earlier in 2.5.60 ptrace gained the ability to inject not just a signal (which linux has supported since 1.0) but the full siginfo of a signal. The core problem is that the code will reschedule in response to signals getting dequeued not just for signals the timers sent but for other signals that happen to a si_code of SI_TIMER. Avoid this confusion by testing to see if the queued signal was preallocated as all timer signals are preallocated, and so far only the timer code preallocates signals. Move the check for if a timer needs to be rescheduled up into collect_signal where the preallocation check must be performed, and pass the result back to dequeue_signal where the code reschedules timers. This makes it clear why the code cares about preallocated timers. Cc: stable@vger.kernel.org Reported-by: Thomas Gleixner <tglx@linutronix.de> History Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git Reference: 66dd34ad31e5 ("signal: allow to send any siginfo to itself") Reference: 1669ce53e2ff ("Add PTRACE_GETSIGINFO and PTRACE_SETSIGINFO") Fixes: db8b50ba75f2 ("[PATCH] POSIX clocks & timers") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-06-13 09:31:16 +00:00
signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
if (!signr) {
*type = PIDTYPE_TGID;
signr = __dequeue_signal(&tsk->signal->shared_pending,
signal: Only reschedule timers on signals timers have sent Thomas Gleixner wrote: > The CRIU support added a 'feature' which allows a user space task to send > arbitrary (kernel) signals to itself. The changelog says: > > The kernel prevents sending of siginfo with positive si_code, because > these codes are reserved for kernel. I think we can allow a task to > send such a siginfo to itself. This operation should not be dangerous. > > Quite contrary to that claim, it turns out that it is outright dangerous > for signals with info->si_code == SI_TIMER. The following code sequence in > a user space task allows to crash the kernel: > > id = timer_create(CLOCK_XXX, ..... signo = SIGX); > timer_set(id, ....); > info->si_signo = SIGX; > info->si_code = SI_TIMER: > info->_sifields._timer._tid = id; > info->_sifields._timer._sys_private = 2; > rt_[tg]sigqueueinfo(..., SIGX, info); > sigemptyset(&sigset); > sigaddset(&sigset, SIGX); > rt_sigtimedwait(sigset, info); > > For timers based on CLOCK_PROCESS_CPUTIME_ID, CLOCK_THREAD_CPUTIME_ID this > results in a kernel crash because sigwait() dequeues the signal and the > dequeue code observes: > > info->si_code == SI_TIMER && info->_sifields._timer._sys_private != 0 > > which triggers the following callchain: > > do_schedule_next_timer() -> posix_cpu_timer_schedule() -> arm_timer() > > arm_timer() executes a list_add() on the timer, which is already armed via > the timer_set() syscall. That's a double list add which corrupts the posix > cpu timer list. As a consequence the kernel crashes on the next operation > touching the posix cpu timer list. > > Posix clocks which are internally implemented based on hrtimers are not > affected by this because hrtimer_start() can handle already armed timers > nicely, but it's a reliable way to trigger the WARN_ON() in > hrtimer_forward(), which complains about calling that function on an > already armed timer. This problem has existed since the posix timer code was merged into 2.5.63. A few releases earlier in 2.5.60 ptrace gained the ability to inject not just a signal (which linux has supported since 1.0) but the full siginfo of a signal. The core problem is that the code will reschedule in response to signals getting dequeued not just for signals the timers sent but for other signals that happen to a si_code of SI_TIMER. Avoid this confusion by testing to see if the queued signal was preallocated as all timer signals are preallocated, and so far only the timer code preallocates signals. Move the check for if a timer needs to be rescheduled up into collect_signal where the preallocation check must be performed, and pass the result back to dequeue_signal where the code reschedules timers. This makes it clear why the code cares about preallocated timers. Cc: stable@vger.kernel.org Reported-by: Thomas Gleixner <tglx@linutronix.de> History Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git Reference: 66dd34ad31e5 ("signal: allow to send any siginfo to itself") Reference: 1669ce53e2ff ("Add PTRACE_GETSIGINFO and PTRACE_SETSIGINFO") Fixes: db8b50ba75f2 ("[PATCH] POSIX clocks & timers") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-06-13 09:31:16 +00:00
mask, info, &resched_timer);
#ifdef CONFIG_POSIX_TIMERS
/*
* itimer signal ?
*
* itimers are process shared and we restart periodic
* itimers in the signal delivery path to prevent DoS
* attacks in the high resolution timer case. This is
* compliant with the old way of self-restarting
* itimers, as the SIGALRM is a legacy signal and only
* queued once. Changing the restart behaviour to
* restart the timer in the signal dequeue path is
* reducing the timer noise on heavy loaded !highres
* systems too.
*/
if (unlikely(signr == SIGALRM)) {
struct hrtimer *tmr = &tsk->signal->real_timer;
if (!hrtimer_is_queued(tmr) &&
tsk->signal->it_real_incr != 0) {
hrtimer_forward(tmr, tmr->base->get_time(),
tsk->signal->it_real_incr);
hrtimer_restart(tmr);
}
}
#endif
}
recalc_sigpending();
if (!signr)
return 0;
if (unlikely(sig_kernel_stop(signr))) {
/*
* Set a marker that we have dequeued a stop signal. Our
* caller might release the siglock and then the pending
* stop signal it is about to process is no longer in the
* pending bitmasks, but must still be cleared by a SIGCONT
* (and overruled by a SIGKILL). So those cases clear this
* shared flag after we've set it. Note that this flag may
* remain set after the signal we return is ignored or
* handled. That doesn't matter because its only purpose
* is to alert stop-signal processing code when another
* processor has come along and cleared the flag.
*/
current->jobctl |= JOBCTL_STOP_DEQUEUED;
}
#ifdef CONFIG_POSIX_TIMERS
signal: Only reschedule timers on signals timers have sent Thomas Gleixner wrote: > The CRIU support added a 'feature' which allows a user space task to send > arbitrary (kernel) signals to itself. The changelog says: > > The kernel prevents sending of siginfo with positive si_code, because > these codes are reserved for kernel. I think we can allow a task to > send such a siginfo to itself. This operation should not be dangerous. > > Quite contrary to that claim, it turns out that it is outright dangerous > for signals with info->si_code == SI_TIMER. The following code sequence in > a user space task allows to crash the kernel: > > id = timer_create(CLOCK_XXX, ..... signo = SIGX); > timer_set(id, ....); > info->si_signo = SIGX; > info->si_code = SI_TIMER: > info->_sifields._timer._tid = id; > info->_sifields._timer._sys_private = 2; > rt_[tg]sigqueueinfo(..., SIGX, info); > sigemptyset(&sigset); > sigaddset(&sigset, SIGX); > rt_sigtimedwait(sigset, info); > > For timers based on CLOCK_PROCESS_CPUTIME_ID, CLOCK_THREAD_CPUTIME_ID this > results in a kernel crash because sigwait() dequeues the signal and the > dequeue code observes: > > info->si_code == SI_TIMER && info->_sifields._timer._sys_private != 0 > > which triggers the following callchain: > > do_schedule_next_timer() -> posix_cpu_timer_schedule() -> arm_timer() > > arm_timer() executes a list_add() on the timer, which is already armed via > the timer_set() syscall. That's a double list add which corrupts the posix > cpu timer list. As a consequence the kernel crashes on the next operation > touching the posix cpu timer list. > > Posix clocks which are internally implemented based on hrtimers are not > affected by this because hrtimer_start() can handle already armed timers > nicely, but it's a reliable way to trigger the WARN_ON() in > hrtimer_forward(), which complains about calling that function on an > already armed timer. This problem has existed since the posix timer code was merged into 2.5.63. A few releases earlier in 2.5.60 ptrace gained the ability to inject not just a signal (which linux has supported since 1.0) but the full siginfo of a signal. The core problem is that the code will reschedule in response to signals getting dequeued not just for signals the timers sent but for other signals that happen to a si_code of SI_TIMER. Avoid this confusion by testing to see if the queued signal was preallocated as all timer signals are preallocated, and so far only the timer code preallocates signals. Move the check for if a timer needs to be rescheduled up into collect_signal where the preallocation check must be performed, and pass the result back to dequeue_signal where the code reschedules timers. This makes it clear why the code cares about preallocated timers. Cc: stable@vger.kernel.org Reported-by: Thomas Gleixner <tglx@linutronix.de> History Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git Reference: 66dd34ad31e5 ("signal: allow to send any siginfo to itself") Reference: 1669ce53e2ff ("Add PTRACE_GETSIGINFO and PTRACE_SETSIGINFO") Fixes: db8b50ba75f2 ("[PATCH] POSIX clocks & timers") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-06-13 09:31:16 +00:00
if (resched_timer) {
/*
* Release the siglock to ensure proper locking order
* of timer locks outside of siglocks. Note, we leave
* irqs disabled here, since the posix-timers code is
* about to disable them again anyway.
*/
spin_unlock(&tsk->sighand->siglock);
posixtimer_rearm(info);
spin_lock(&tsk->sighand->siglock);
/* Don't expose the si_sys_private value to userspace */
info->si_sys_private = 0;
}
#endif
return signr;
}
EXPORT_SYMBOL_GPL(dequeue_signal);
signal: Better detection of synchronous signals Recently syzkaller was able to create unkillablle processes by creating a timer that is delivered as a thread local signal on SIGHUP, and receiving SIGHUP SA_NODEFERER. Ultimately causing a loop failing to deliver SIGHUP but always trying. When the stack overflows delivery of SIGHUP fails and force_sigsegv is called. Unfortunately because SIGSEGV is numerically higher than SIGHUP next_signal tries again to deliver a SIGHUP. From a quality of implementation standpoint attempting to deliver the timer SIGHUP signal is wrong. We should attempt to deliver the synchronous SIGSEGV signal we just forced. We can make that happening in a fairly straight forward manner by instead of just looking at the signal number we also look at the si_code. In particular for exceptions (aka synchronous signals) the si_code is always greater than 0. That still has the potential to pick up a number of asynchronous signals as in a few cases the same si_codes that are used for synchronous signals are also used for asynchronous signals, and SI_KERNEL is also included in the list of possible si_codes. Still the heuristic is much better and timer signals are definitely excluded. Which is enough to prevent all known ways for someone sending a process signals fast enough to cause unexpected and arguably incorrect behavior. Cc: stable@vger.kernel.org Fixes: a27341cd5fcb ("Prioritize synchronous signals over 'normal' signals") Tested-by: Dmitry Vyukov <dvyukov@google.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2019-02-06 23:51:47 +00:00
static int dequeue_synchronous_signal(kernel_siginfo_t *info)
{
struct task_struct *tsk = current;
struct sigpending *pending = &tsk->pending;
struct sigqueue *q, *sync = NULL;
/*
* Might a synchronous signal be in the queue?
*/
if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
return 0;
/*
* Return the first synchronous signal in the queue.
*/
list_for_each_entry(q, &pending->list, list) {
/* Synchronous signals have a positive si_code */
signal: Better detection of synchronous signals Recently syzkaller was able to create unkillablle processes by creating a timer that is delivered as a thread local signal on SIGHUP, and receiving SIGHUP SA_NODEFERER. Ultimately causing a loop failing to deliver SIGHUP but always trying. When the stack overflows delivery of SIGHUP fails and force_sigsegv is called. Unfortunately because SIGSEGV is numerically higher than SIGHUP next_signal tries again to deliver a SIGHUP. From a quality of implementation standpoint attempting to deliver the timer SIGHUP signal is wrong. We should attempt to deliver the synchronous SIGSEGV signal we just forced. We can make that happening in a fairly straight forward manner by instead of just looking at the signal number we also look at the si_code. In particular for exceptions (aka synchronous signals) the si_code is always greater than 0. That still has the potential to pick up a number of asynchronous signals as in a few cases the same si_codes that are used for synchronous signals are also used for asynchronous signals, and SI_KERNEL is also included in the list of possible si_codes. Still the heuristic is much better and timer signals are definitely excluded. Which is enough to prevent all known ways for someone sending a process signals fast enough to cause unexpected and arguably incorrect behavior. Cc: stable@vger.kernel.org Fixes: a27341cd5fcb ("Prioritize synchronous signals over 'normal' signals") Tested-by: Dmitry Vyukov <dvyukov@google.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2019-02-06 23:51:47 +00:00
if ((q->info.si_code > SI_USER) &&
(sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
sync = q;
goto next;
}
}
return 0;
next:
/*
* Check if there is another siginfo for the same signal.
*/
list_for_each_entry_continue(q, &pending->list, list) {
if (q->info.si_signo == sync->info.si_signo)
goto still_pending;
}
sigdelset(&pending->signal, sync->info.si_signo);
recalc_sigpending();
still_pending:
list_del_init(&sync->list);
copy_siginfo(info, &sync->info);
__sigqueue_free(sync);
return info->si_signo;
}
/*
* Tell a process that it has a new active signal..
*
* NOTE! we rely on the previous spin_lock to
* lock interrupts for us! We can only be called with
* "siglock" held, and the local interrupt must
* have been disabled when that got acquired!
*
* No need to set need_resched since signal event passing
* goes through ->blocked
*/
void signal_wake_up_state(struct task_struct *t, unsigned int state)
{
lockdep_assert_held(&t->sighand->siglock);
set_tsk_thread_flag(t, TIF_SIGPENDING);
/*
* TASK_WAKEKILL also means wake it up in the stopped/traced/killable
* case. We don't check t->state here because there is a race with it
* executing another processor and just now entering stopped state.
* By using wake_up_state, we ensure the process will wake up and
* handle its death signal.
*/
if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
kick_process(t);
}
/*
* Remove signals in mask from the pending set and queue.
* Returns 1 if any signals were found.
*
* All callers must be holding the siglock.
*/
static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
{
struct sigqueue *q, *n;
sigset_t m;
sigandsets(&m, mask, &s->signal);
if (sigisemptyset(&m))
return;
sigandnsets(&s->signal, &s->signal, mask);
list_for_each_entry_safe(q, n, &s->list, list) {
if (sigismember(mask, q->info.si_signo)) {
list_del_init(&q->list);
__sigqueue_free(q);
}
}
}
static inline int is_si_special(const struct kernel_siginfo *info)
{
return info <= SEND_SIG_PRIV;
}
static inline bool si_fromuser(const struct kernel_siginfo *info)
{
return info == SEND_SIG_NOINFO ||
(!is_si_special(info) && SI_FROMUSER(info));
}
/*
* called with RCU read lock from check_kill_permission()
*/
static bool kill_ok_by_cred(struct task_struct *t)
{
const struct cred *cred = current_cred();
const struct cred *tcred = __task_cred(t);
return uid_eq(cred->euid, tcred->suid) ||
uid_eq(cred->euid, tcred->uid) ||
uid_eq(cred->uid, tcred->suid) ||
uid_eq(cred->uid, tcred->uid) ||
ns_capable(tcred->user_ns, CAP_KILL);
}
/*
* Bad permissions for sending the signal
* - the caller must hold the RCU read lock
*/
static int check_kill_permission(int sig, struct kernel_siginfo *info,
struct task_struct *t)
{
struct pid *sid;
int error;
if (!valid_signal(sig))
return -EINVAL;
if (!si_fromuser(info))
return 0;
error = audit_signal_info(sig, t); /* Let audit system see the signal */
if (error)
return error;
signals: check_kill_permission(): don't check creds if same_thread_group() Andrew Tridgell reports that aio_read(SIGEV_SIGNAL) can fail if the notification from the helper thread races with setresuid(), see http://samba.org/~tridge/junkcode/aio_uid.c This happens because check_kill_permission() doesn't permit sending a signal to the task with the different cred->xids. But there is not any security reason to check ->cred's when the task sends a signal (private or group-wide) to its sub-thread. Whatever we do, any thread can bypass all security checks and send SIGKILL to all threads, or it can block a signal SIG and do kill(gettid(), SIG) to deliver this signal to another sub-thread. Not to mention that CLONE_THREAD implies CLONE_VM. Change check_kill_permission() to avoid the credentials check when the sender and the target are from the same thread group. Also, move "cred = current_cred()" down to avoid calling get_current() twice. Note: David Howells pointed out we could relax this even more, the CLONE_SIGHAND (without CLONE_THREAD) case probably does not need these checks too. Roland said: : The glibc (libpthread) that does set*id across threads has : been in use for a while (2.3.4?), probably in distro's using kernels as old : or older than any active -stable streams. In the race in question, this : kernel bug is breaking valid POSIX application expectations. Reported-by: Andrew Tridgell <tridge@samba.org> Signed-off-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Roland McGrath <roland@redhat.com> Acked-by: David Howells <dhowells@redhat.com> Cc: Eric Paris <eparis@parisplace.org> Cc: Jakub Jelinek <jakub@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: Roland McGrath <roland@redhat.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: <stable@kernel.org> [all kernel versions] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-26 21:42:54 +00:00
if (!same_thread_group(current, t) &&
!kill_ok_by_cred(t)) {
switch (sig) {
case SIGCONT:
sid = task_session(t);
/*
* We don't return the error if sid == NULL. The
* task was unhashed, the caller must notice this.
*/
if (!sid || sid == task_session(current))
break;
fallthrough;
default:
return -EPERM;
}
}
return security_task_kill(t, info, sig, NULL);
}
ptrace: implement TRAP_NOTIFY and use it for group stop events Currently there's no way for ptracer to find out whether group stop finished other than polling with INTERRUPT - GETSIGINFO - CONT sequence. This patch implements group stop notification for ptracer using STOP traps. When group stop state of a seized tracee changes, JOBCTL_TRAP_NOTIFY is set, which schedules a STOP trap which is sticky - it isn't cleared by other traps and at least one STOP trap will happen eventually. STOP trap is synchronization point for event notification and the tracer can determine the current group stop state by looking at the signal number portion of exit code (si_status from waitid(2) or si_code from PTRACE_GETSIGINFO). Notifications are generated both on start and end of group stops but, because group stop participation always happens before STOP trap, this doesn't cause an extra trap while tracee is participating in group stop. The symmetry will be useful later. Note that this notification works iff tracee is not trapped. Currently there is no way to be notified of group stop state changes while tracee is trapped. This will be addressed by a later patch. An example program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_INTERRUPT 0x4207 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts1s = { .tv_sec = 1 }; int main(int argc, char **argv) { pid_t tracee, tracer; int i; tracee = fork(); if (!tracee) while (1) pause(); tracer = fork(); if (!tracer) { siginfo_t si; ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL); repeat: waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_GETSIGINFO, tracee, NULL, &si); if (!si.si_code) { printf("tracer: SIG %d\n", si.si_signo); ptrace(PTRACE_CONT, tracee, NULL, (void *)(unsigned long)si.si_signo); goto repeat; } printf("tracer: stopped=%d signo=%d\n", si.si_signo != SIGTRAP, si.si_signo); ptrace(PTRACE_CONT, tracee, NULL, NULL); goto repeat; } for (i = 0; i < 3; i++) { nanosleep(&ts1s, NULL); printf("mother: SIGSTOP\n"); kill(tracee, SIGSTOP); nanosleep(&ts1s, NULL); printf("mother: SIGCONT\n"); kill(tracee, SIGCONT); } nanosleep(&ts1s, NULL); kill(tracer, SIGKILL); kill(tracee, SIGKILL); return 0; } In the above program, tracer keeps tracee running and gets notification of each group stop state changes. # ./test-notify tracer: stopped=0 signo=5 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:17 +00:00
/**
* ptrace_trap_notify - schedule trap to notify ptracer
* @t: tracee wanting to notify tracer
*
* This function schedules sticky ptrace trap which is cleared on the next
* TRAP_STOP to notify ptracer of an event. @t must have been seized by
* ptracer.
*
ptrace: implement PTRACE_LISTEN The previous patch implemented async notification for ptrace but it only worked while trace is running. This patch introduces PTRACE_LISTEN which is suggested by Oleg Nestrov. It's allowed iff tracee is in STOP trap and puts tracee into quasi-running state - tracee never really runs but wait(2) and ptrace(2) consider it to be running. While ptracer is listening, tracee is allowed to re-enter STOP to notify an async event. Listening state is cleared on the first notification. Ptracer can also clear it by issuing INTERRUPT - tracee will re-trap into STOP with listening state cleared. This allows ptracer to monitor group stop state without running tracee - use INTERRUPT to put tracee into STOP trap, issue LISTEN and then wait(2) to wait for the next group stop event. When it happens, PTRACE_GETSIGINFO provides information to determine the current state. Test program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_INTERRUPT 0x4207 #define PTRACE_LISTEN 0x4208 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts1s = { .tv_sec = 1 }; int main(int argc, char **argv) { pid_t tracee, tracer; int i; tracee = fork(); if (!tracee) while (1) pause(); tracer = fork(); if (!tracer) { siginfo_t si; ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL); repeat: waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_GETSIGINFO, tracee, NULL, &si); if (!si.si_code) { printf("tracer: SIG %d\n", si.si_signo); ptrace(PTRACE_CONT, tracee, NULL, (void *)(unsigned long)si.si_signo); goto repeat; } printf("tracer: stopped=%d signo=%d\n", si.si_signo != SIGTRAP, si.si_signo); if (si.si_signo != SIGTRAP) ptrace(PTRACE_LISTEN, tracee, NULL, NULL); else ptrace(PTRACE_CONT, tracee, NULL, NULL); goto repeat; } for (i = 0; i < 3; i++) { nanosleep(&ts1s, NULL); printf("mother: SIGSTOP\n"); kill(tracee, SIGSTOP); nanosleep(&ts1s, NULL); printf("mother: SIGCONT\n"); kill(tracee, SIGCONT); } nanosleep(&ts1s, NULL); kill(tracer, SIGKILL); kill(tracee, SIGKILL); return 0; } This is identical to the program to test TRAP_NOTIFY except that tracee is PTRACE_LISTEN'd instead of PTRACE_CONT'd when group stopped. This allows ptracer to monitor when group stop ends without running tracee. # ./test-listen tracer: stopped=0 signo=5 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 -v2: Moved JOBCTL_LISTENING check in wait_task_stopped() into task_stopped_code() as suggested by Oleg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:18 +00:00
* If @t is running, STOP trap will be taken. If trapped for STOP and
* ptracer is listening for events, tracee is woken up so that it can
* re-trap for the new event. If trapped otherwise, STOP trap will be
* eventually taken without returning to userland after the existing traps
* are finished by PTRACE_CONT.
ptrace: implement TRAP_NOTIFY and use it for group stop events Currently there's no way for ptracer to find out whether group stop finished other than polling with INTERRUPT - GETSIGINFO - CONT sequence. This patch implements group stop notification for ptracer using STOP traps. When group stop state of a seized tracee changes, JOBCTL_TRAP_NOTIFY is set, which schedules a STOP trap which is sticky - it isn't cleared by other traps and at least one STOP trap will happen eventually. STOP trap is synchronization point for event notification and the tracer can determine the current group stop state by looking at the signal number portion of exit code (si_status from waitid(2) or si_code from PTRACE_GETSIGINFO). Notifications are generated both on start and end of group stops but, because group stop participation always happens before STOP trap, this doesn't cause an extra trap while tracee is participating in group stop. The symmetry will be useful later. Note that this notification works iff tracee is not trapped. Currently there is no way to be notified of group stop state changes while tracee is trapped. This will be addressed by a later patch. An example program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_INTERRUPT 0x4207 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts1s = { .tv_sec = 1 }; int main(int argc, char **argv) { pid_t tracee, tracer; int i; tracee = fork(); if (!tracee) while (1) pause(); tracer = fork(); if (!tracer) { siginfo_t si; ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL); repeat: waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_GETSIGINFO, tracee, NULL, &si); if (!si.si_code) { printf("tracer: SIG %d\n", si.si_signo); ptrace(PTRACE_CONT, tracee, NULL, (void *)(unsigned long)si.si_signo); goto repeat; } printf("tracer: stopped=%d signo=%d\n", si.si_signo != SIGTRAP, si.si_signo); ptrace(PTRACE_CONT, tracee, NULL, NULL); goto repeat; } for (i = 0; i < 3; i++) { nanosleep(&ts1s, NULL); printf("mother: SIGSTOP\n"); kill(tracee, SIGSTOP); nanosleep(&ts1s, NULL); printf("mother: SIGCONT\n"); kill(tracee, SIGCONT); } nanosleep(&ts1s, NULL); kill(tracer, SIGKILL); kill(tracee, SIGKILL); return 0; } In the above program, tracer keeps tracee running and gets notification of each group stop state changes. # ./test-notify tracer: stopped=0 signo=5 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:17 +00:00
*
* CONTEXT:
* Must be called with @task->sighand->siglock held.
*/
static void ptrace_trap_notify(struct task_struct *t)
{
WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
lockdep_assert_held(&t->sighand->siglock);
ptrace: implement TRAP_NOTIFY and use it for group stop events Currently there's no way for ptracer to find out whether group stop finished other than polling with INTERRUPT - GETSIGINFO - CONT sequence. This patch implements group stop notification for ptracer using STOP traps. When group stop state of a seized tracee changes, JOBCTL_TRAP_NOTIFY is set, which schedules a STOP trap which is sticky - it isn't cleared by other traps and at least one STOP trap will happen eventually. STOP trap is synchronization point for event notification and the tracer can determine the current group stop state by looking at the signal number portion of exit code (si_status from waitid(2) or si_code from PTRACE_GETSIGINFO). Notifications are generated both on start and end of group stops but, because group stop participation always happens before STOP trap, this doesn't cause an extra trap while tracee is participating in group stop. The symmetry will be useful later. Note that this notification works iff tracee is not trapped. Currently there is no way to be notified of group stop state changes while tracee is trapped. This will be addressed by a later patch. An example program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_INTERRUPT 0x4207 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts1s = { .tv_sec = 1 }; int main(int argc, char **argv) { pid_t tracee, tracer; int i; tracee = fork(); if (!tracee) while (1) pause(); tracer = fork(); if (!tracer) { siginfo_t si; ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL); repeat: waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_GETSIGINFO, tracee, NULL, &si); if (!si.si_code) { printf("tracer: SIG %d\n", si.si_signo); ptrace(PTRACE_CONT, tracee, NULL, (void *)(unsigned long)si.si_signo); goto repeat; } printf("tracer: stopped=%d signo=%d\n", si.si_signo != SIGTRAP, si.si_signo); ptrace(PTRACE_CONT, tracee, NULL, NULL); goto repeat; } for (i = 0; i < 3; i++) { nanosleep(&ts1s, NULL); printf("mother: SIGSTOP\n"); kill(tracee, SIGSTOP); nanosleep(&ts1s, NULL); printf("mother: SIGCONT\n"); kill(tracee, SIGCONT); } nanosleep(&ts1s, NULL); kill(tracer, SIGKILL); kill(tracee, SIGKILL); return 0; } In the above program, tracer keeps tracee running and gets notification of each group stop state changes. # ./test-notify tracer: stopped=0 signo=5 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:17 +00:00
task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
ptrace: implement TRAP_NOTIFY and use it for group stop events Currently there's no way for ptracer to find out whether group stop finished other than polling with INTERRUPT - GETSIGINFO - CONT sequence. This patch implements group stop notification for ptracer using STOP traps. When group stop state of a seized tracee changes, JOBCTL_TRAP_NOTIFY is set, which schedules a STOP trap which is sticky - it isn't cleared by other traps and at least one STOP trap will happen eventually. STOP trap is synchronization point for event notification and the tracer can determine the current group stop state by looking at the signal number portion of exit code (si_status from waitid(2) or si_code from PTRACE_GETSIGINFO). Notifications are generated both on start and end of group stops but, because group stop participation always happens before STOP trap, this doesn't cause an extra trap while tracee is participating in group stop. The symmetry will be useful later. Note that this notification works iff tracee is not trapped. Currently there is no way to be notified of group stop state changes while tracee is trapped. This will be addressed by a later patch. An example program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_INTERRUPT 0x4207 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts1s = { .tv_sec = 1 }; int main(int argc, char **argv) { pid_t tracee, tracer; int i; tracee = fork(); if (!tracee) while (1) pause(); tracer = fork(); if (!tracer) { siginfo_t si; ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL); repeat: waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_GETSIGINFO, tracee, NULL, &si); if (!si.si_code) { printf("tracer: SIG %d\n", si.si_signo); ptrace(PTRACE_CONT, tracee, NULL, (void *)(unsigned long)si.si_signo); goto repeat; } printf("tracer: stopped=%d signo=%d\n", si.si_signo != SIGTRAP, si.si_signo); ptrace(PTRACE_CONT, tracee, NULL, NULL); goto repeat; } for (i = 0; i < 3; i++) { nanosleep(&ts1s, NULL); printf("mother: SIGSTOP\n"); kill(tracee, SIGSTOP); nanosleep(&ts1s, NULL); printf("mother: SIGCONT\n"); kill(tracee, SIGCONT); } nanosleep(&ts1s, NULL); kill(tracer, SIGKILL); kill(tracee, SIGKILL); return 0; } In the above program, tracer keeps tracee running and gets notification of each group stop state changes. # ./test-notify tracer: stopped=0 signo=5 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:17 +00:00
}
/*
* Handle magic process-wide effects of stop/continue signals. Unlike
* the signal actions, these happen immediately at signal-generation
* time regardless of blocking, ignoring, or handling. This does the
* actual continuing for SIGCONT, but not the actual stopping for stop
* signals. The process stop is done as a signal action for SIG_DFL.
*
* Returns true if the signal should be actually delivered, otherwise
* it should be dropped.
*/
coredump: only SIGKILL should interrupt the coredumping task There are 2 well known and ancient problems with coredump/signals, and a lot of related bug reports: - do_coredump() clears TIF_SIGPENDING but of course this can't help if, say, SIGCHLD comes after that. In this case the coredump can fail unexpectedly. See for example wait_for_dump_helper()->signal_pending() check but there are other reasons. - At the same time, dumping a huge core on the slow media can take a lot of time/resources and there is no way to kill the coredumping task reliably. In particular this is not oom_kill-friendly. This patch tries to fix the 1st problem, and makes the preparation for the next changes. We add the new SIGNAL_GROUP_COREDUMP flag set by zap_threads() to indicate that this process dumps the core. prepare_signal() checks this flag and nacks any signal except SIGKILL. Note that this check tries to be conservative, in the long term we should probably treat the SIGNAL_GROUP_EXIT case equally but this needs more discussion. See marc.info/?l=linux-kernel&m=120508897917439 Notes: - recalc_sigpending() doesn't check SIGNAL_GROUP_COREDUMP. The patch assumes that dump_write/etc paths should never call it, but we can change it as well. - There is another source of TIF_SIGPENDING, freezer. This will be addressed separately. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Tested-by: Mandeep Singh Baines <msb@chromium.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Neil Horman <nhorman@redhat.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Roland McGrath <roland@hack.frob.com> Cc: Tejun Heo <tj@kernel.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 22:28:10 +00:00
static bool prepare_signal(int sig, struct task_struct *p, bool force)
{
struct signal_struct *signal = p->signal;
struct task_struct *t;
sigset_t flush;
if (signal->flags & SIGNAL_GROUP_EXIT) {
if (signal->core_state)
coredump: only SIGKILL should interrupt the coredumping task There are 2 well known and ancient problems with coredump/signals, and a lot of related bug reports: - do_coredump() clears TIF_SIGPENDING but of course this can't help if, say, SIGCHLD comes after that. In this case the coredump can fail unexpectedly. See for example wait_for_dump_helper()->signal_pending() check but there are other reasons. - At the same time, dumping a huge core on the slow media can take a lot of time/resources and there is no way to kill the coredumping task reliably. In particular this is not oom_kill-friendly. This patch tries to fix the 1st problem, and makes the preparation for the next changes. We add the new SIGNAL_GROUP_COREDUMP flag set by zap_threads() to indicate that this process dumps the core. prepare_signal() checks this flag and nacks any signal except SIGKILL. Note that this check tries to be conservative, in the long term we should probably treat the SIGNAL_GROUP_EXIT case equally but this needs more discussion. See marc.info/?l=linux-kernel&m=120508897917439 Notes: - recalc_sigpending() doesn't check SIGNAL_GROUP_COREDUMP. The patch assumes that dump_write/etc paths should never call it, but we can change it as well. - There is another source of TIF_SIGPENDING, freezer. This will be addressed separately. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Tested-by: Mandeep Singh Baines <msb@chromium.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Neil Horman <nhorman@redhat.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Roland McGrath <roland@hack.frob.com> Cc: Tejun Heo <tj@kernel.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 22:28:10 +00:00
return sig == SIGKILL;
/*
signal: Drop signals received after a fatal signal has been processed In 403bad72b67d ("coredump: only SIGKILL should interrupt the coredumping task") Oleg modified the kernel to drop all signals that come in during a coredump except SIGKILL, and suggested that it might be a good idea to generalize that to other cases after the process has received a fatal signal. Semantically it does not make sense to perform any signal delivery after the process has already been killed. When a signal is sent while a process is dying today the signal is placed in the signal queue by __send_signal and a single task of the process is woken up with signal_wake_up, if there are any tasks that have not set PF_EXITING. Take things one step farther and have prepare_signal report that all signals that come after a process has been killed should be ignored. While retaining the historical exception of allowing SIGKILL to interrupt coredumps. Update the comment in fs/coredump.c to make it clear coredumps are special in being able to receive SIGKILL. This changes things so that a process stopped in PTRACE_EVENT_EXIT can not be made to escape it's ptracer and finish exiting by sending it SIGKILL. That a process can be made to leave PTRACE_EVENT_EXIT and escape it's tracer by sending the process a SIGKILL has been complicating tracer's for no apparent advantage. If the process needs to be made to leave PTRACE_EVENT_EXIT all that needs to happen is to kill the proceses's tracer. This differs from the coredump code where there is no other mechanism besides honoring SIGKILL to expedite the end of coredumping. Link: https://lkml.kernel.org/r/875yksd4s9.fsf_-_@email.froward.int.ebiederm.org Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-01-08 16:37:00 +00:00
* The process is in the middle of dying, drop the signal.
*/
signal: Drop signals received after a fatal signal has been processed In 403bad72b67d ("coredump: only SIGKILL should interrupt the coredumping task") Oleg modified the kernel to drop all signals that come in during a coredump except SIGKILL, and suggested that it might be a good idea to generalize that to other cases after the process has received a fatal signal. Semantically it does not make sense to perform any signal delivery after the process has already been killed. When a signal is sent while a process is dying today the signal is placed in the signal queue by __send_signal and a single task of the process is woken up with signal_wake_up, if there are any tasks that have not set PF_EXITING. Take things one step farther and have prepare_signal report that all signals that come after a process has been killed should be ignored. While retaining the historical exception of allowing SIGKILL to interrupt coredumps. Update the comment in fs/coredump.c to make it clear coredumps are special in being able to receive SIGKILL. This changes things so that a process stopped in PTRACE_EVENT_EXIT can not be made to escape it's ptracer and finish exiting by sending it SIGKILL. That a process can be made to leave PTRACE_EVENT_EXIT and escape it's tracer by sending the process a SIGKILL has been complicating tracer's for no apparent advantage. If the process needs to be made to leave PTRACE_EVENT_EXIT all that needs to happen is to kill the proceses's tracer. This differs from the coredump code where there is no other mechanism besides honoring SIGKILL to expedite the end of coredumping. Link: https://lkml.kernel.org/r/875yksd4s9.fsf_-_@email.froward.int.ebiederm.org Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-01-08 16:37:00 +00:00
return false;
} else if (sig_kernel_stop(sig)) {
/*
* This is a stop signal. Remove SIGCONT from all queues.
*/
siginitset(&flush, sigmask(SIGCONT));
flush_sigqueue_mask(&flush, &signal->shared_pending);
for_each_thread(p, t)
flush_sigqueue_mask(&flush, &t->pending);
} else if (sig == SIGCONT) {
unsigned int why;
/*
* Remove all stop signals from all queues, wake all threads.
*/
siginitset(&flush, SIG_KERNEL_STOP_MASK);
flush_sigqueue_mask(&flush, &signal->shared_pending);
for_each_thread(p, t) {
flush_sigqueue_mask(&flush, &t->pending);
task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
if (likely(!(t->ptrace & PT_SEIZED))) {
t->jobctl &= ~JOBCTL_STOPPED;
ptrace: implement TRAP_NOTIFY and use it for group stop events Currently there's no way for ptracer to find out whether group stop finished other than polling with INTERRUPT - GETSIGINFO - CONT sequence. This patch implements group stop notification for ptracer using STOP traps. When group stop state of a seized tracee changes, JOBCTL_TRAP_NOTIFY is set, which schedules a STOP trap which is sticky - it isn't cleared by other traps and at least one STOP trap will happen eventually. STOP trap is synchronization point for event notification and the tracer can determine the current group stop state by looking at the signal number portion of exit code (si_status from waitid(2) or si_code from PTRACE_GETSIGINFO). Notifications are generated both on start and end of group stops but, because group stop participation always happens before STOP trap, this doesn't cause an extra trap while tracee is participating in group stop. The symmetry will be useful later. Note that this notification works iff tracee is not trapped. Currently there is no way to be notified of group stop state changes while tracee is trapped. This will be addressed by a later patch. An example program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_INTERRUPT 0x4207 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts1s = { .tv_sec = 1 }; int main(int argc, char **argv) { pid_t tracee, tracer; int i; tracee = fork(); if (!tracee) while (1) pause(); tracer = fork(); if (!tracer) { siginfo_t si; ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL); repeat: waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_GETSIGINFO, tracee, NULL, &si); if (!si.si_code) { printf("tracer: SIG %d\n", si.si_signo); ptrace(PTRACE_CONT, tracee, NULL, (void *)(unsigned long)si.si_signo); goto repeat; } printf("tracer: stopped=%d signo=%d\n", si.si_signo != SIGTRAP, si.si_signo); ptrace(PTRACE_CONT, tracee, NULL, NULL); goto repeat; } for (i = 0; i < 3; i++) { nanosleep(&ts1s, NULL); printf("mother: SIGSTOP\n"); kill(tracee, SIGSTOP); nanosleep(&ts1s, NULL); printf("mother: SIGCONT\n"); kill(tracee, SIGCONT); } nanosleep(&ts1s, NULL); kill(tracer, SIGKILL); kill(tracee, SIGKILL); return 0; } In the above program, tracer keeps tracee running and gets notification of each group stop state changes. # ./test-notify tracer: stopped=0 signo=5 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:17 +00:00
wake_up_state(t, __TASK_STOPPED);
} else
ptrace: implement TRAP_NOTIFY and use it for group stop events Currently there's no way for ptracer to find out whether group stop finished other than polling with INTERRUPT - GETSIGINFO - CONT sequence. This patch implements group stop notification for ptracer using STOP traps. When group stop state of a seized tracee changes, JOBCTL_TRAP_NOTIFY is set, which schedules a STOP trap which is sticky - it isn't cleared by other traps and at least one STOP trap will happen eventually. STOP trap is synchronization point for event notification and the tracer can determine the current group stop state by looking at the signal number portion of exit code (si_status from waitid(2) or si_code from PTRACE_GETSIGINFO). Notifications are generated both on start and end of group stops but, because group stop participation always happens before STOP trap, this doesn't cause an extra trap while tracee is participating in group stop. The symmetry will be useful later. Note that this notification works iff tracee is not trapped. Currently there is no way to be notified of group stop state changes while tracee is trapped. This will be addressed by a later patch. An example program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_INTERRUPT 0x4207 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts1s = { .tv_sec = 1 }; int main(int argc, char **argv) { pid_t tracee, tracer; int i; tracee = fork(); if (!tracee) while (1) pause(); tracer = fork(); if (!tracer) { siginfo_t si; ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL); repeat: waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_GETSIGINFO, tracee, NULL, &si); if (!si.si_code) { printf("tracer: SIG %d\n", si.si_signo); ptrace(PTRACE_CONT, tracee, NULL, (void *)(unsigned long)si.si_signo); goto repeat; } printf("tracer: stopped=%d signo=%d\n", si.si_signo != SIGTRAP, si.si_signo); ptrace(PTRACE_CONT, tracee, NULL, NULL); goto repeat; } for (i = 0; i < 3; i++) { nanosleep(&ts1s, NULL); printf("mother: SIGSTOP\n"); kill(tracee, SIGSTOP); nanosleep(&ts1s, NULL); printf("mother: SIGCONT\n"); kill(tracee, SIGCONT); } nanosleep(&ts1s, NULL); kill(tracer, SIGKILL); kill(tracee, SIGKILL); return 0; } In the above program, tracer keeps tracee running and gets notification of each group stop state changes. # ./test-notify tracer: stopped=0 signo=5 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:17 +00:00
ptrace_trap_notify(t);
}
/*
* Notify the parent with CLD_CONTINUED if we were stopped.
*
* If we were in the middle of a group stop, we pretend it
* was already finished, and then continued. Since SIGCHLD
* doesn't queue we report only CLD_STOPPED, as if the next
* CLD_CONTINUED was dropped.
*/
why = 0;
if (signal->flags & SIGNAL_STOP_STOPPED)
why |= SIGNAL_CLD_CONTINUED;
else if (signal->group_stop_count)
why |= SIGNAL_CLD_STOPPED;
if (why) {
/*
* The first thread which returns from do_signal_stop()
* will take ->siglock, notice SIGNAL_CLD_MASK, and
* notify its parent. See get_signal().
*/
signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
signal->group_stop_count = 0;
signal->group_exit_code = 0;
}
}
return !sig_ignored(p, sig, force);
}
/*
* Test if P wants to take SIG. After we've checked all threads with this,
* it's equivalent to finding no threads not blocking SIG. Any threads not
* blocking SIG were ruled out because they are not running and already
* have pending signals. Such threads will dequeue from the shared queue
* as soon as they're available, so putting the signal on the shared queue
* will be equivalent to sending it to one such thread.
*/
static inline bool wants_signal(int sig, struct task_struct *p)
{
if (sigismember(&p->blocked, sig))
return false;
if (p->flags & PF_EXITING)
return false;
if (sig == SIGKILL)
return true;
if (task_is_stopped_or_traced(p))
return false;
return task_curr(p) || !task_sigpending(p);
}
static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
{
struct signal_struct *signal = p->signal;
struct task_struct *t;
/*
* Now find a thread we can wake up to take the signal off the queue.
*
* Try the suggested task first (may or may not be the main thread).
*/
if (wants_signal(sig, p))
t = p;
else if ((type == PIDTYPE_PID) || thread_group_empty(p))
/*
* There is just one thread and it does not need to be woken.
* It will dequeue unblocked signals before it runs again.
*/
return;
else {
/*
* Otherwise try to find a suitable thread.
*/
t = signal->curr_target;
while (!wants_signal(sig, t)) {
t = next_thread(t);
if (t == signal->curr_target)
/*
* No thread needs to be woken.
* Any eligible threads will see
* the signal in the queue soon.
*/
return;
}
signal->curr_target = t;
}
/*
* Found a killable thread. If the signal will be fatal,
* then start taking the whole group down immediately.
*/
if (sig_fatal(p, sig) &&
(signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
!sigismember(&t->real_blocked, sig) &&
kernel/signal.c: remove the no longer needed SIGNAL_UNKILLABLE check in complete_signal() complete_signal() checks SIGNAL_UNKILLABLE before it starts to destroy the thread group, today this is wrong in many ways. If nothing else, fatal_signal_pending() should always imply that the whole thread group (except ->group_exit_task if it is not NULL) is killed, this check breaks the rule. After the previous changes we can rely on sig_task_ignored(); sig_fatal(sig) && SIGNAL_UNKILLABLE can only be true if we actually want to kill this task and sig == SIGKILL OR it is traced and debugger can intercept the signal. This should hopefully fix the problem reported by Dmitry. This test-case static int init(void *arg) { for (;;) pause(); } int main(void) { char stack[16 * 1024]; for (;;) { int pid = clone(init, stack + sizeof(stack)/2, CLONE_NEWPID | SIGCHLD, NULL); assert(pid > 0); assert(ptrace(PTRACE_ATTACH, pid, 0, 0) == 0); assert(waitpid(-1, NULL, WSTOPPED) == pid); assert(ptrace(PTRACE_DETACH, pid, 0, SIGSTOP) == 0); assert(syscall(__NR_tkill, pid, SIGKILL) == 0); assert(pid == wait(NULL)); } } triggers the WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)) in task_participate_group_stop(). do_signal_stop()->signal_group_exit() checks SIGNAL_GROUP_EXIT and return false, but task_set_jobctl_pending() checks fatal_signal_pending() and does not set JOBCTL_STOP_PENDING. And his should fix the minor security problem reported by Kyle, SECCOMP_RET_TRACE can miss fatal_signal_pending() the same way if the task is the root of a pid namespace. Link: http://lkml.kernel.org/r/20171103184246.GD21036@redhat.com Signed-off-by: Oleg Nesterov <oleg@redhat.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Reported-by: Kyle Huey <me@kylehuey.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Kyle Huey <me@kylehuey.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-17 23:30:08 +00:00
(sig == SIGKILL || !p->ptrace)) {
/*
* This signal will be fatal to the whole group.
*/
if (!sig_kernel_coredump(sig)) {
/*
* Start a group exit and wake everybody up.
* This way we don't have other threads
* running and doing things after a slower
* thread has the fatal signal pending.
*/
signal->flags = SIGNAL_GROUP_EXIT;
signal->group_exit_code = sig;
signal->group_stop_count = 0;
t = p;
do {
task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
sigaddset(&t->pending.signal, SIGKILL);
signal_wake_up(t, 1);
} while_each_thread(p, t);
return;
}
}
/*
* The signal is already in the shared-pending queue.
* Tell the chosen thread to wake up and dequeue it.
*/
signal_wake_up(t, sig == SIGKILL);
return;
}
static inline bool legacy_queue(struct sigpending *signals, int sig)
{
return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
}
static int __send_signal_locked(int sig, struct kernel_siginfo *info,
struct task_struct *t, enum pid_type type, bool force)
{
struct sigpending *pending;
struct sigqueue *q;
int override_rlimit;
int ret = 0, result;
lockdep_assert_held(&t->sighand->siglock);
result = TRACE_SIGNAL_IGNORED;
if (!prepare_signal(sig, t, force))
goto ret;
pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
/*
* Short-circuit ignored signals and support queuing
* exactly one non-rt signal, so that we can get more
* detailed information about the cause of the signal.
*/
result = TRACE_SIGNAL_ALREADY_PENDING;
if (legacy_queue(pending, sig))
goto ret;
result = TRACE_SIGNAL_DELIVERED;
/*
signal: Always attempt to allocate siginfo for SIGSTOP Since 2.5.34 the code has had the potential to not allocate siginfo for SIGSTOP signals. Except for ptrace this is perfectly fine as only ptrace can use PTRACE_PEEK_SIGINFO and see what the contents of the delivered siginfo are. Users of PTRACE_PEEK_SIGINFO that care about the contents siginfo for SIGSTOP are rare, but they do exist. A seccomp self test has cared and lldb cares. Jack Andersen <jackoalan@gmail.com> writes: > The patch titled > `signal: Never allocate siginfo for SIGKILL or SIGSTOP` > created a regression for users of PTRACE_GETSIGINFO needing to > discern signals that were raised via the tgkill syscall. > > A notable user of this tgkill+ptrace combination is lldb while > debugging a multithreaded program. Without the ability to detect a > SIGSTOP originating from tgkill, lldb does not have a way to > synchronize on a per-thread basis and falls back to SIGSTOP-ing the > entire process. Everyone affected by this please note. The kernel can still fail to allocate a siginfo structure. The allocation is with GFP_KERNEL and is best effort only. If memory is tight when the signal allocation comes in this will fail to allocate a siginfo. So I strongly recommend looking at more robust solutions for synchronizing with a single thread such as PTRACE_INTERRUPT. Or if that does not work persuading your friendly local kernel developer to build the interface you need. Reported-by: Tycho Andersen <tycho@tycho.ws> Reported-by: Kees Cook <keescook@chromium.org> Reported-by: Jack Andersen <jackoalan@gmail.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Reviewed-by: Christian Brauner <christian@brauner.io> Cc: stable@vger.kernel.org Fixes: f149b3155744 ("signal: Never allocate siginfo for SIGKILL or SIGSTOP") Fixes: 6dfc88977e42 ("[PATCH] shared thread signals") History Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2019-02-05 13:19:11 +00:00
* Skip useless siginfo allocation for SIGKILL and kernel threads.
*/
if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
goto out_set;
/*
* Real-time signals must be queued if sent by sigqueue, or
* some other real-time mechanism. It is implementation
* defined whether kill() does so. We attempt to do so, on
* the principle of least surprise, but since kill is not
* allowed to fail with EAGAIN when low on memory we just
* make sure at least one signal gets delivered and don't
* pass on the info struct.
*/
if (sig < SIGRTMIN)
override_rlimit = (is_si_special(info) || info->si_code >= 0);
else
override_rlimit = 0;
q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
if (q) {
list_add_tail(&q->list, &pending->list);
switch ((unsigned long) info) {
case (unsigned long) SEND_SIG_NOINFO:
clear_siginfo(&q->info);
q->info.si_signo = sig;
q->info.si_errno = 0;
q->info.si_code = SI_USER;
q->info.si_pid = task_tgid_nr_ns(current,
task_active_pid_ns(t));
rcu_read_lock();
q->info.si_uid =
from_kuid_munged(task_cred_xxx(t, user_ns),
current_uid());
rcu_read_unlock();
break;
case (unsigned long) SEND_SIG_PRIV:
clear_siginfo(&q->info);
q->info.si_signo = sig;
q->info.si_errno = 0;
q->info.si_code = SI_KERNEL;
q->info.si_pid = 0;
q->info.si_uid = 0;
break;
default:
copy_siginfo(&q->info, info);
break;
}
} else if (!is_si_special(info) &&
sig >= SIGRTMIN && info->si_code != SI_USER) {
/*
* Queue overflow, abort. We may abort if the
* signal was rt and sent by user using something
* other than kill().
*/
result = TRACE_SIGNAL_OVERFLOW_FAIL;
ret = -EAGAIN;
goto ret;
} else {
/*
* This is a silent loss of information. We still
* send the signal, but the *info bits are lost.
*/
result = TRACE_SIGNAL_LOSE_INFO;
}
out_set:
signalfd_notify(t, sig);
sigaddset(&pending->signal, sig);
signal: Don't restart fork when signals come in. Wen Yang <wen.yang99@zte.com.cn> and majiang <ma.jiang@zte.com.cn> report that a periodic signal received during fork can cause fork to continually restart preventing an application from making progress. The code was being overly pessimistic. Fork needs to guarantee that a signal sent to multiple processes is logically delivered before the fork and just to the forking process or logically delivered after the fork to both the forking process and it's newly spawned child. For signals like periodic timers that are always delivered to a single process fork can safely complete and let them appear to logically delivered after the fork(). While examining this issue I also discovered that fork today will miss signals delivered to multiple processes during the fork and handled by another thread. Similarly the current code will also miss blocked signals that are delivered to multiple process, as those signals will not appear pending during fork. Add a list of each thread that is currently forking, and keep on that list a signal set that records all of the signals sent to multiple processes. When fork completes initialize the new processes shared_pending signal set with it. The calculate_sigpending function will see those signals and set TIF_SIGPENDING causing the new task to take the slow path to userspace to handle those signals. Making it appear as if those signals were received immediately after the fork. It is not possible to send real time signals to multiple processes and exceptions don't go to multiple processes, which means that that are no signals sent to multiple processes that require siginfo. This means it is safe to not bother collecting siginfo on signals sent during fork. The sigaction of a child of fork is initially the same as the sigaction of the parent process. So a signal the parent ignores the child will also initially ignore. Therefore it is safe to ignore signals sent to multiple processes and ignored by the forking process. Signals sent to only a single process or only a single thread and delivered during fork are treated as if they are received after the fork, and generally not dealt with. They won't cause any problems. V2: Added removal from the multiprocess list on failure. V3: Use -ERESTARTNOINTR directly V4: - Don't queue both SIGCONT and SIGSTOP - Initialize signal_struct.multiprocess in init_task - Move setting of shared_pending to before the new task is visible to signals. This prevents signals from comming in before shared_pending.signal is set to delayed.signal and being lost. V5: - rework list add and delete to account for idle threads v6: - Use sigdelsetmask when removing stop signals Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=200447 Reported-by: Wen Yang <wen.yang99@zte.com.cn> and Reported-by: majiang <ma.jiang@zte.com.cn> Fixes: 4a2c7a7837da ("[PATCH] make fork() atomic wrt pgrp/session signals") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-07-23 20:20:37 +00:00
/* Let multiprocess signals appear after on-going forks */
if (type > PIDTYPE_TGID) {
struct multiprocess_signals *delayed;
hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
sigset_t *signal = &delayed->signal;
/* Can't queue both a stop and a continue signal */
if (sig == SIGCONT)
sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
else if (sig_kernel_stop(sig))
sigdelset(signal, SIGCONT);
sigaddset(signal, sig);
}
}
complete_signal(sig, t, type);
ret:
trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
return ret;
}
static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
{
bool ret = false;
switch (siginfo_layout(info->si_signo, info->si_code)) {
case SIL_KILL:
case SIL_CHLD:
case SIL_RT:
ret = true;
break;
case SIL_TIMER:
case SIL_POLL:
case SIL_FAULT:
case SIL_FAULT_TRAPNO:
case SIL_FAULT_MCEERR:
case SIL_FAULT_BNDERR:
case SIL_FAULT_PKUERR:
case SIL_FAULT_PERF_EVENT:
case SIL_SYS:
ret = false;
break;
}
return ret;
}
int send_signal_locked(int sig, struct kernel_siginfo *info,
struct task_struct *t, enum pid_type type)
{
/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
bool force = false;
if (info == SEND_SIG_NOINFO) {
/* Force if sent from an ancestor pid namespace */
force = !task_pid_nr_ns(current, task_active_pid_ns(t));
} else if (info == SEND_SIG_PRIV) {
/* Don't ignore kernel generated signals */
force = true;
} else if (has_si_pid_and_uid(info)) {
/* SIGKILL and SIGSTOP is special or has ids */
struct user_namespace *t_user_ns;
rcu_read_lock();
t_user_ns = task_cred_xxx(t, user_ns);
if (current_user_ns() != t_user_ns) {
kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
info->si_uid = from_kuid_munged(t_user_ns, uid);
}
rcu_read_unlock();
/* A kernel generated signal? */
force = (info->si_code == SI_KERNEL);
/* From an ancestor pid namespace? */
if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
info->si_pid = 0;
force = true;
}
}
return __send_signal_locked(sig, info, t, type, force);
}
static void print_fatal_signal(int signr)
{
struct pt_regs *regs = task_pt_regs(current);
struct file *exe_file;
exe_file = get_task_exe_file(current);
if (exe_file) {
pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
exe_file, current->comm, signr);
fput(exe_file);
} else {
pr_info("%s: potentially unexpected fatal signal %d.\n",
current->comm, signr);
}
#if defined(__i386__) && !defined(__arch_um__)
pr_info("code at %08lx: ", regs->ip);
{
int i;
for (i = 0; i < 16; i++) {
unsigned char insn;
if (get_user(insn, (unsigned char *)(regs->ip + i)))
break;
pr_cont("%02x ", insn);
}
}
pr_cont("\n");
#endif
preempt_disable();
show_regs(regs);
preempt_enable();
}
static int __init setup_print_fatal_signals(char *str)
{
get_option (&str, &print_fatal_signals);
return 1;
}
__setup("print-fatal-signals=", setup_print_fatal_signals);
int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
enum pid_type type)
{
unsigned long flags;
int ret = -ESRCH;
if (lock_task_sighand(p, &flags)) {
ret = send_signal_locked(sig, info, p, type);
unlock_task_sighand(p, &flags);
}
return ret;
}
enum sig_handler {
HANDLER_CURRENT, /* If reachable use the current handler */
HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
HANDLER_EXIT, /* Only visible as the process exit code */
};
/*
* Force a signal that the process can't ignore: if necessary
* we unblock the signal and change any SIG_IGN to SIG_DFL.
*
* Note: If we unblock the signal, we always reset it to SIG_DFL,
* since we do not want to have a signal handler that was blocked
* be invoked when user space had explicitly blocked it.
*
* We don't want to have recursive SIGSEGV's etc, for example,
* that is why we also clear SIGNAL_UNKILLABLE.
*/
static int
force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
enum sig_handler handler)
{
unsigned long int flags;
int ret, blocked, ignored;
struct k_sigaction *action;
int sig = info->si_signo;
spin_lock_irqsave(&t->sighand->siglock, flags);
action = &t->sighand->action[sig-1];
ignored = action->sa.sa_handler == SIG_IGN;
blocked = sigismember(&t->blocked, sig);
if (blocked || ignored || (handler != HANDLER_CURRENT)) {
action->sa.sa_handler = SIG_DFL;
if (handler == HANDLER_EXIT)
action->sa.sa_flags |= SA_IMMUTABLE;
if (blocked) {
sigdelset(&t->blocked, sig);
recalc_sigpending_and_wake(t);
}
}
/*
* Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
* debugging to leave init killable. But HANDLER_EXIT is always fatal.
*/
if (action->sa.sa_handler == SIG_DFL &&
(!t->ptrace || (handler == HANDLER_EXIT)))
t->signal->flags &= ~SIGNAL_UNKILLABLE;
ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
spin_unlock_irqrestore(&t->sighand->siglock, flags);
return ret;
}
int force_sig_info(struct kernel_siginfo *info)
{
return force_sig_info_to_task(info, current, HANDLER_CURRENT);
}
/*
* Nuke all other threads in the group.
*/
int zap_other_threads(struct task_struct *p)
{
struct task_struct *t = p;
int count = 0;
p->signal->group_stop_count = 0;
while_each_thread(p, t) {
task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
fork, vhost: Use CLONE_THREAD to fix freezer/ps regression When switching from kthreads to vhost_tasks two bugs were added: 1. The vhost worker tasks's now show up as processes so scripts doing ps or ps a would not incorrectly detect the vhost task as another process. 2. kthreads disabled freeze by setting PF_NOFREEZE, but vhost tasks's didn't disable or add support for them. To fix both bugs, this switches the vhost task to be thread in the process that does the VHOST_SET_OWNER ioctl, and has vhost_worker call get_signal to support SIGKILL/SIGSTOP and freeze signals. Note that SIGKILL/STOP support is required because CLONE_THREAD requires CLONE_SIGHAND which requires those 2 signals to be supported. This is a modified version of the patch written by Mike Christie <michael.christie@oracle.com> which was a modified version of patch originally written by Linus. Much of what depended upon PF_IO_WORKER now depends on PF_USER_WORKER. Including ignoring signals, setting up the register state, and having get_signal return instead of calling do_group_exit. Tidied up the vhost_task abstraction so that the definition of vhost_task only needs to be visible inside of vhost_task.c. Making it easier to review the code and tell what needs to be done where. As part of this the main loop has been moved from vhost_worker into vhost_task_fn. vhost_worker now returns true if work was done. The main loop has been updated to call get_signal which handles SIGSTOP, freezing, and collects the message that tells the thread to exit as part of process exit. This collection clears __fatal_signal_pending. This collection is not guaranteed to clear signal_pending() so clear that explicitly so the schedule() sleeps. For now the vhost thread continues to exist and run work until the last file descriptor is closed and the release function is called as part of freeing struct file. To avoid hangs in the coredump rendezvous and when killing threads in a multi-threaded exec. The coredump code and de_thread have been modified to ignore vhost threads. Remvoing the special case for exec appears to require teaching vhost_dev_flush how to directly complete transactions in case the vhost thread is no longer running. Removing the special case for coredump rendezvous requires either the above fix needed for exec or moving the coredump rendezvous into get_signal. Fixes: 6e890c5d5021 ("vhost: use vhost_tasks for worker threads") Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Co-developed-by: Mike Christie <michael.christie@oracle.com> Signed-off-by: Mike Christie <michael.christie@oracle.com> Acked-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-06-01 18:32:32 +00:00
/* Don't require de_thread to wait for the vhost_worker */
if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
count++;
/* Don't bother with already dead threads */
if (t->exit_state)
continue;
sigaddset(&t->pending.signal, SIGKILL);
signal_wake_up(t, 1);
}
return count;
}
struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
unsigned long *flags)
{
struct sighand_struct *sighand;
rcu_read_lock();
for (;;) {
sighand = rcu_dereference(tsk->sighand);
if (unlikely(sighand == NULL))
break;
/*
* This sighand can be already freed and even reused, but
* we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
* initializes ->siglock: this slab can't go away, it has
* the same object type, ->siglock can't be reinitialized.
*
* We need to ensure that tsk->sighand is still the same
* after we take the lock, we can race with de_thread() or
* __exit_signal(). In the latter case the next iteration
* must see ->sighand == NULL.
*/
spin_lock_irqsave(&sighand->siglock, *flags);
if (likely(sighand == rcu_access_pointer(tsk->sighand)))
break;
spin_unlock_irqrestore(&sighand->siglock, *flags);
}
rcu_read_unlock();
return sighand;
}
#ifdef CONFIG_LOCKDEP
void lockdep_assert_task_sighand_held(struct task_struct *task)
{
struct sighand_struct *sighand;
rcu_read_lock();
sighand = rcu_dereference(task->sighand);
if (sighand)
lockdep_assert_held(&sighand->siglock);
else
WARN_ON_ONCE(1);
rcu_read_unlock();
}
#endif
/*
* send signal info to all the members of a group
*/
int group_send_sig_info(int sig, struct kernel_siginfo *info,
struct task_struct *p, enum pid_type type)
{
int ret;
rcu_read_lock();
ret = check_kill_permission(sig, info, p);
rcu_read_unlock();
if (!ret && sig)
ret = do_send_sig_info(sig, info, p, type);
return ret;
}
/*
* __kill_pgrp_info() sends a signal to a process group: this is what the tty
* control characters do (^C, ^Z etc)
* - the caller must hold at least a readlock on tasklist_lock
*/
int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
{
struct task_struct *p = NULL;
int retval, success;
success = 0;
retval = -ESRCH;
do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
success |= !err;
retval = err;
} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
return success ? 0 : retval;
}
int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
{
int error = -ESRCH;
struct task_struct *p;
for (;;) {
rcu_read_lock();
p = pid_task(pid, PIDTYPE_PID);
if (p)
error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
rcu_read_unlock();
if (likely(!p || error != -ESRCH))
return error;
/*
* The task was unhashed in between, try again. If it
* is dead, pid_task() will return NULL, if we race with
* de_thread() it will find the new leader.
*/
}
}
static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
{
int error;
rcu_read_lock();
error = kill_pid_info(sig, info, find_vpid(pid));
rcu_read_unlock();
return error;
}
static inline bool kill_as_cred_perm(const struct cred *cred,
struct task_struct *target)
{
const struct cred *pcred = __task_cred(target);
return uid_eq(cred->euid, pcred->suid) ||
uid_eq(cred->euid, pcred->uid) ||
uid_eq(cred->uid, pcred->suid) ||
uid_eq(cred->uid, pcred->uid);
}
signal/usb: Replace kill_pid_info_as_cred with kill_pid_usb_asyncio The usb support for asyncio encoded one of it's values in the wrong field. It should have used si_value but instead used si_addr which is not present in the _rt union member of struct siginfo. The practical result of this is that on a 64bit big endian kernel when delivering a signal to a 32bit process the si_addr field is set to NULL, instead of the expected pointer value. This issue can not be fixed in copy_siginfo_to_user32 as the usb usage of the the _sigfault (aka si_addr) member of the siginfo union when SI_ASYNCIO is set is incompatible with the POSIX and glibc usage of the _rt member of the siginfo union. Therefore replace kill_pid_info_as_cred with kill_pid_usb_asyncio a dedicated function for this one specific case. There are no other users of kill_pid_info_as_cred so this specialization should have no impact on the amount of code in the kernel. Have kill_pid_usb_asyncio take instead of a siginfo_t which is difficult and error prone, 3 arguments, a signal number, an errno value, and an address enconded as a sigval_t. The encoding of the address as a sigval_t allows the code that reads the userspace request for a signal to handle this compat issue along with all of the other compat issues. Add BUILD_BUG_ONs in kernel/signal.c to ensure that we can now place the pointer value at the in si_pid (instead of si_addr). That is the code now verifies that si_pid and si_addr always occur at the same location. Further the code veries that for native structures a value placed in si_pid and spilling into si_uid will appear in userspace in si_addr (on a byte by byte copy of siginfo or a field by field copy of siginfo). The code also verifies that for a 64bit kernel and a 32bit userspace the 32bit pointer will fit in si_pid. I have used the usbsig.c program below written by Alan Stern and slightly tweaked by me to run on a big endian machine to verify the issue exists (on sparc64) and to confirm the patch below fixes the issue. /* usbsig.c -- test USB async signal delivery */ #define _GNU_SOURCE #include <stdio.h> #include <fcntl.h> #include <signal.h> #include <string.h> #include <sys/ioctl.h> #include <unistd.h> #include <endian.h> #include <linux/usb/ch9.h> #include <linux/usbdevice_fs.h> static struct usbdevfs_urb urb; static struct usbdevfs_disconnectsignal ds; static volatile sig_atomic_t done = 0; void urb_handler(int sig, siginfo_t *info , void *ucontext) { printf("Got signal %d, signo %d errno %d code %d addr: %p urb: %p\n", sig, info->si_signo, info->si_errno, info->si_code, info->si_addr, &urb); printf("%s\n", (info->si_addr == &urb) ? "Good" : "Bad"); } void ds_handler(int sig, siginfo_t *info , void *ucontext) { printf("Got signal %d, signo %d errno %d code %d addr: %p ds: %p\n", sig, info->si_signo, info->si_errno, info->si_code, info->si_addr, &ds); printf("%s\n", (info->si_addr == &ds) ? "Good" : "Bad"); done = 1; } int main(int argc, char **argv) { char *devfilename; int fd; int rc; struct sigaction act; struct usb_ctrlrequest *req; void *ptr; char buf[80]; if (argc != 2) { fprintf(stderr, "Usage: usbsig device-file-name\n"); return 1; } devfilename = argv[1]; fd = open(devfilename, O_RDWR); if (fd == -1) { perror("Error opening device file"); return 1; } act.sa_sigaction = urb_handler; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO; rc = sigaction(SIGUSR1, &act, NULL); if (rc == -1) { perror("Error in sigaction"); return 1; } act.sa_sigaction = ds_handler; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO; rc = sigaction(SIGUSR2, &act, NULL); if (rc == -1) { perror("Error in sigaction"); return 1; } memset(&urb, 0, sizeof(urb)); urb.type = USBDEVFS_URB_TYPE_CONTROL; urb.endpoint = USB_DIR_IN | 0; urb.buffer = buf; urb.buffer_length = sizeof(buf); urb.signr = SIGUSR1; req = (struct usb_ctrlrequest *) buf; req->bRequestType = USB_DIR_IN | USB_TYPE_STANDARD | USB_RECIP_DEVICE; req->bRequest = USB_REQ_GET_DESCRIPTOR; req->wValue = htole16(USB_DT_DEVICE << 8); req->wIndex = htole16(0); req->wLength = htole16(sizeof(buf) - sizeof(*req)); rc = ioctl(fd, USBDEVFS_SUBMITURB, &urb); if (rc == -1) { perror("Error in SUBMITURB ioctl"); return 1; } rc = ioctl(fd, USBDEVFS_REAPURB, &ptr); if (rc == -1) { perror("Error in REAPURB ioctl"); return 1; } memset(&ds, 0, sizeof(ds)); ds.signr = SIGUSR2; ds.context = &ds; rc = ioctl(fd, USBDEVFS_DISCSIGNAL, &ds); if (rc == -1) { perror("Error in DISCSIGNAL ioctl"); return 1; } printf("Waiting for usb disconnect\n"); while (!done) { sleep(1); } close(fd); return 0; } Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: linux-usb@vger.kernel.org Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Oliver Neukum <oneukum@suse.com> Fixes: v2.3.39 Cc: stable@vger.kernel.org Acked-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2019-02-08 01:44:12 +00:00
/*
* The usb asyncio usage of siginfo is wrong. The glibc support
* for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
* AKA after the generic fields:
* kernel_pid_t si_pid;
* kernel_uid32_t si_uid;
* sigval_t si_value;
*
* Unfortunately when usb generates SI_ASYNCIO it assumes the layout
* after the generic fields is:
* void __user *si_addr;
*
* This is a practical problem when there is a 64bit big endian kernel
* and a 32bit userspace. As the 32bit address will encoded in the low
* 32bits of the pointer. Those low 32bits will be stored at higher
* address than appear in a 32 bit pointer. So userspace will not
* see the address it was expecting for it's completions.
*
* There is nothing in the encoding that can allow
* copy_siginfo_to_user32 to detect this confusion of formats, so
* handle this by requiring the caller of kill_pid_usb_asyncio to
* notice when this situration takes place and to store the 32bit
* pointer in sival_int, instead of sival_addr of the sigval_t addr
* parameter.
*/
int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
struct pid *pid, const struct cred *cred)
{
signal/usb: Replace kill_pid_info_as_cred with kill_pid_usb_asyncio The usb support for asyncio encoded one of it's values in the wrong field. It should have used si_value but instead used si_addr which is not present in the _rt union member of struct siginfo. The practical result of this is that on a 64bit big endian kernel when delivering a signal to a 32bit process the si_addr field is set to NULL, instead of the expected pointer value. This issue can not be fixed in copy_siginfo_to_user32 as the usb usage of the the _sigfault (aka si_addr) member of the siginfo union when SI_ASYNCIO is set is incompatible with the POSIX and glibc usage of the _rt member of the siginfo union. Therefore replace kill_pid_info_as_cred with kill_pid_usb_asyncio a dedicated function for this one specific case. There are no other users of kill_pid_info_as_cred so this specialization should have no impact on the amount of code in the kernel. Have kill_pid_usb_asyncio take instead of a siginfo_t which is difficult and error prone, 3 arguments, a signal number, an errno value, and an address enconded as a sigval_t. The encoding of the address as a sigval_t allows the code that reads the userspace request for a signal to handle this compat issue along with all of the other compat issues. Add BUILD_BUG_ONs in kernel/signal.c to ensure that we can now place the pointer value at the in si_pid (instead of si_addr). That is the code now verifies that si_pid and si_addr always occur at the same location. Further the code veries that for native structures a value placed in si_pid and spilling into si_uid will appear in userspace in si_addr (on a byte by byte copy of siginfo or a field by field copy of siginfo). The code also verifies that for a 64bit kernel and a 32bit userspace the 32bit pointer will fit in si_pid. I have used the usbsig.c program below written by Alan Stern and slightly tweaked by me to run on a big endian machine to verify the issue exists (on sparc64) and to confirm the patch below fixes the issue. /* usbsig.c -- test USB async signal delivery */ #define _GNU_SOURCE #include <stdio.h> #include <fcntl.h> #include <signal.h> #include <string.h> #include <sys/ioctl.h> #include <unistd.h> #include <endian.h> #include <linux/usb/ch9.h> #include <linux/usbdevice_fs.h> static struct usbdevfs_urb urb; static struct usbdevfs_disconnectsignal ds; static volatile sig_atomic_t done = 0; void urb_handler(int sig, siginfo_t *info , void *ucontext) { printf("Got signal %d, signo %d errno %d code %d addr: %p urb: %p\n", sig, info->si_signo, info->si_errno, info->si_code, info->si_addr, &urb); printf("%s\n", (info->si_addr == &urb) ? "Good" : "Bad"); } void ds_handler(int sig, siginfo_t *info , void *ucontext) { printf("Got signal %d, signo %d errno %d code %d addr: %p ds: %p\n", sig, info->si_signo, info->si_errno, info->si_code, info->si_addr, &ds); printf("%s\n", (info->si_addr == &ds) ? "Good" : "Bad"); done = 1; } int main(int argc, char **argv) { char *devfilename; int fd; int rc; struct sigaction act; struct usb_ctrlrequest *req; void *ptr; char buf[80]; if (argc != 2) { fprintf(stderr, "Usage: usbsig device-file-name\n"); return 1; } devfilename = argv[1]; fd = open(devfilename, O_RDWR); if (fd == -1) { perror("Error opening device file"); return 1; } act.sa_sigaction = urb_handler; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO; rc = sigaction(SIGUSR1, &act, NULL); if (rc == -1) { perror("Error in sigaction"); return 1; } act.sa_sigaction = ds_handler; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO; rc = sigaction(SIGUSR2, &act, NULL); if (rc == -1) { perror("Error in sigaction"); return 1; } memset(&urb, 0, sizeof(urb)); urb.type = USBDEVFS_URB_TYPE_CONTROL; urb.endpoint = USB_DIR_IN | 0; urb.buffer = buf; urb.buffer_length = sizeof(buf); urb.signr = SIGUSR1; req = (struct usb_ctrlrequest *) buf; req->bRequestType = USB_DIR_IN | USB_TYPE_STANDARD | USB_RECIP_DEVICE; req->bRequest = USB_REQ_GET_DESCRIPTOR; req->wValue = htole16(USB_DT_DEVICE << 8); req->wIndex = htole16(0); req->wLength = htole16(sizeof(buf) - sizeof(*req)); rc = ioctl(fd, USBDEVFS_SUBMITURB, &urb); if (rc == -1) { perror("Error in SUBMITURB ioctl"); return 1; } rc = ioctl(fd, USBDEVFS_REAPURB, &ptr); if (rc == -1) { perror("Error in REAPURB ioctl"); return 1; } memset(&ds, 0, sizeof(ds)); ds.signr = SIGUSR2; ds.context = &ds; rc = ioctl(fd, USBDEVFS_DISCSIGNAL, &ds); if (rc == -1) { perror("Error in DISCSIGNAL ioctl"); return 1; } printf("Waiting for usb disconnect\n"); while (!done) { sleep(1); } close(fd); return 0; } Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: linux-usb@vger.kernel.org Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Oliver Neukum <oneukum@suse.com> Fixes: v2.3.39 Cc: stable@vger.kernel.org Acked-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2019-02-08 01:44:12 +00:00
struct kernel_siginfo info;
struct task_struct *p;
unsigned long flags;
signal/usb: Replace kill_pid_info_as_cred with kill_pid_usb_asyncio The usb support for asyncio encoded one of it's values in the wrong field. It should have used si_value but instead used si_addr which is not present in the _rt union member of struct siginfo. The practical result of this is that on a 64bit big endian kernel when delivering a signal to a 32bit process the si_addr field is set to NULL, instead of the expected pointer value. This issue can not be fixed in copy_siginfo_to_user32 as the usb usage of the the _sigfault (aka si_addr) member of the siginfo union when SI_ASYNCIO is set is incompatible with the POSIX and glibc usage of the _rt member of the siginfo union. Therefore replace kill_pid_info_as_cred with kill_pid_usb_asyncio a dedicated function for this one specific case. There are no other users of kill_pid_info_as_cred so this specialization should have no impact on the amount of code in the kernel. Have kill_pid_usb_asyncio take instead of a siginfo_t which is difficult and error prone, 3 arguments, a signal number, an errno value, and an address enconded as a sigval_t. The encoding of the address as a sigval_t allows the code that reads the userspace request for a signal to handle this compat issue along with all of the other compat issues. Add BUILD_BUG_ONs in kernel/signal.c to ensure that we can now place the pointer value at the in si_pid (instead of si_addr). That is the code now verifies that si_pid and si_addr always occur at the same location. Further the code veries that for native structures a value placed in si_pid and spilling into si_uid will appear in userspace in si_addr (on a byte by byte copy of siginfo or a field by field copy of siginfo). The code also verifies that for a 64bit kernel and a 32bit userspace the 32bit pointer will fit in si_pid. I have used the usbsig.c program below written by Alan Stern and slightly tweaked by me to run on a big endian machine to verify the issue exists (on sparc64) and to confirm the patch below fixes the issue. /* usbsig.c -- test USB async signal delivery */ #define _GNU_SOURCE #include <stdio.h> #include <fcntl.h> #include <signal.h> #include <string.h> #include <sys/ioctl.h> #include <unistd.h> #include <endian.h> #include <linux/usb/ch9.h> #include <linux/usbdevice_fs.h> static struct usbdevfs_urb urb; static struct usbdevfs_disconnectsignal ds; static volatile sig_atomic_t done = 0; void urb_handler(int sig, siginfo_t *info , void *ucontext) { printf("Got signal %d, signo %d errno %d code %d addr: %p urb: %p\n", sig, info->si_signo, info->si_errno, info->si_code, info->si_addr, &urb); printf("%s\n", (info->si_addr == &urb) ? "Good" : "Bad"); } void ds_handler(int sig, siginfo_t *info , void *ucontext) { printf("Got signal %d, signo %d errno %d code %d addr: %p ds: %p\n", sig, info->si_signo, info->si_errno, info->si_code, info->si_addr, &ds); printf("%s\n", (info->si_addr == &ds) ? "Good" : "Bad"); done = 1; } int main(int argc, char **argv) { char *devfilename; int fd; int rc; struct sigaction act; struct usb_ctrlrequest *req; void *ptr; char buf[80]; if (argc != 2) { fprintf(stderr, "Usage: usbsig device-file-name\n"); return 1; } devfilename = argv[1]; fd = open(devfilename, O_RDWR); if (fd == -1) { perror("Error opening device file"); return 1; } act.sa_sigaction = urb_handler; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO; rc = sigaction(SIGUSR1, &act, NULL); if (rc == -1) { perror("Error in sigaction"); return 1; } act.sa_sigaction = ds_handler; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO; rc = sigaction(SIGUSR2, &act, NULL); if (rc == -1) { perror("Error in sigaction"); return 1; } memset(&urb, 0, sizeof(urb)); urb.type = USBDEVFS_URB_TYPE_CONTROL; urb.endpoint = USB_DIR_IN | 0; urb.buffer = buf; urb.buffer_length = sizeof(buf); urb.signr = SIGUSR1; req = (struct usb_ctrlrequest *) buf; req->bRequestType = USB_DIR_IN | USB_TYPE_STANDARD | USB_RECIP_DEVICE; req->bRequest = USB_REQ_GET_DESCRIPTOR; req->wValue = htole16(USB_DT_DEVICE << 8); req->wIndex = htole16(0); req->wLength = htole16(sizeof(buf) - sizeof(*req)); rc = ioctl(fd, USBDEVFS_SUBMITURB, &urb); if (rc == -1) { perror("Error in SUBMITURB ioctl"); return 1; } rc = ioctl(fd, USBDEVFS_REAPURB, &ptr); if (rc == -1) { perror("Error in REAPURB ioctl"); return 1; } memset(&ds, 0, sizeof(ds)); ds.signr = SIGUSR2; ds.context = &ds; rc = ioctl(fd, USBDEVFS_DISCSIGNAL, &ds); if (rc == -1) { perror("Error in DISCSIGNAL ioctl"); return 1; } printf("Waiting for usb disconnect\n"); while (!done) { sleep(1); } close(fd); return 0; } Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: linux-usb@vger.kernel.org Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Oliver Neukum <oneukum@suse.com> Fixes: v2.3.39 Cc: stable@vger.kernel.org Acked-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2019-02-08 01:44:12 +00:00
int ret = -EINVAL;
if (!valid_signal(sig))
return ret;
signal/usb: Replace kill_pid_info_as_cred with kill_pid_usb_asyncio The usb support for asyncio encoded one of it's values in the wrong field. It should have used si_value but instead used si_addr which is not present in the _rt union member of struct siginfo. The practical result of this is that on a 64bit big endian kernel when delivering a signal to a 32bit process the si_addr field is set to NULL, instead of the expected pointer value. This issue can not be fixed in copy_siginfo_to_user32 as the usb usage of the the _sigfault (aka si_addr) member of the siginfo union when SI_ASYNCIO is set is incompatible with the POSIX and glibc usage of the _rt member of the siginfo union. Therefore replace kill_pid_info_as_cred with kill_pid_usb_asyncio a dedicated function for this one specific case. There are no other users of kill_pid_info_as_cred so this specialization should have no impact on the amount of code in the kernel. Have kill_pid_usb_asyncio take instead of a siginfo_t which is difficult and error prone, 3 arguments, a signal number, an errno value, and an address enconded as a sigval_t. The encoding of the address as a sigval_t allows the code that reads the userspace request for a signal to handle this compat issue along with all of the other compat issues. Add BUILD_BUG_ONs in kernel/signal.c to ensure that we can now place the pointer value at the in si_pid (instead of si_addr). That is the code now verifies that si_pid and si_addr always occur at the same location. Further the code veries that for native structures a value placed in si_pid and spilling into si_uid will appear in userspace in si_addr (on a byte by byte copy of siginfo or a field by field copy of siginfo). The code also verifies that for a 64bit kernel and a 32bit userspace the 32bit pointer will fit in si_pid. I have used the usbsig.c program below written by Alan Stern and slightly tweaked by me to run on a big endian machine to verify the issue exists (on sparc64) and to confirm the patch below fixes the issue. /* usbsig.c -- test USB async signal delivery */ #define _GNU_SOURCE #include <stdio.h> #include <fcntl.h> #include <signal.h> #include <string.h> #include <sys/ioctl.h> #include <unistd.h> #include <endian.h> #include <linux/usb/ch9.h> #include <linux/usbdevice_fs.h> static struct usbdevfs_urb urb; static struct usbdevfs_disconnectsignal ds; static volatile sig_atomic_t done = 0; void urb_handler(int sig, siginfo_t *info , void *ucontext) { printf("Got signal %d, signo %d errno %d code %d addr: %p urb: %p\n", sig, info->si_signo, info->si_errno, info->si_code, info->si_addr, &urb); printf("%s\n", (info->si_addr == &urb) ? "Good" : "Bad"); } void ds_handler(int sig, siginfo_t *info , void *ucontext) { printf("Got signal %d, signo %d errno %d code %d addr: %p ds: %p\n", sig, info->si_signo, info->si_errno, info->si_code, info->si_addr, &ds); printf("%s\n", (info->si_addr == &ds) ? "Good" : "Bad"); done = 1; } int main(int argc, char **argv) { char *devfilename; int fd; int rc; struct sigaction act; struct usb_ctrlrequest *req; void *ptr; char buf[80]; if (argc != 2) { fprintf(stderr, "Usage: usbsig device-file-name\n"); return 1; } devfilename = argv[1]; fd = open(devfilename, O_RDWR); if (fd == -1) { perror("Error opening device file"); return 1; } act.sa_sigaction = urb_handler; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO; rc = sigaction(SIGUSR1, &act, NULL); if (rc == -1) { perror("Error in sigaction"); return 1; } act.sa_sigaction = ds_handler; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO; rc = sigaction(SIGUSR2, &act, NULL); if (rc == -1) { perror("Error in sigaction"); return 1; } memset(&urb, 0, sizeof(urb)); urb.type = USBDEVFS_URB_TYPE_CONTROL; urb.endpoint = USB_DIR_IN | 0; urb.buffer = buf; urb.buffer_length = sizeof(buf); urb.signr = SIGUSR1; req = (struct usb_ctrlrequest *) buf; req->bRequestType = USB_DIR_IN | USB_TYPE_STANDARD | USB_RECIP_DEVICE; req->bRequest = USB_REQ_GET_DESCRIPTOR; req->wValue = htole16(USB_DT_DEVICE << 8); req->wIndex = htole16(0); req->wLength = htole16(sizeof(buf) - sizeof(*req)); rc = ioctl(fd, USBDEVFS_SUBMITURB, &urb); if (rc == -1) { perror("Error in SUBMITURB ioctl"); return 1; } rc = ioctl(fd, USBDEVFS_REAPURB, &ptr); if (rc == -1) { perror("Error in REAPURB ioctl"); return 1; } memset(&ds, 0, sizeof(ds)); ds.signr = SIGUSR2; ds.context = &ds; rc = ioctl(fd, USBDEVFS_DISCSIGNAL, &ds); if (rc == -1) { perror("Error in DISCSIGNAL ioctl"); return 1; } printf("Waiting for usb disconnect\n"); while (!done) { sleep(1); } close(fd); return 0; } Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: linux-usb@vger.kernel.org Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Oliver Neukum <oneukum@suse.com> Fixes: v2.3.39 Cc: stable@vger.kernel.org Acked-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2019-02-08 01:44:12 +00:00
clear_siginfo(&info);
info.si_signo = sig;
info.si_errno = errno;
info.si_code = SI_ASYNCIO;
*((sigval_t *)&info.si_pid) = addr;
rcu_read_lock();
p = pid_task(pid, PIDTYPE_PID);
if (!p) {
ret = -ESRCH;
goto out_unlock;
}
signal/usb: Replace kill_pid_info_as_cred with kill_pid_usb_asyncio The usb support for asyncio encoded one of it's values in the wrong field. It should have used si_value but instead used si_addr which is not present in the _rt union member of struct siginfo. The practical result of this is that on a 64bit big endian kernel when delivering a signal to a 32bit process the si_addr field is set to NULL, instead of the expected pointer value. This issue can not be fixed in copy_siginfo_to_user32 as the usb usage of the the _sigfault (aka si_addr) member of the siginfo union when SI_ASYNCIO is set is incompatible with the POSIX and glibc usage of the _rt member of the siginfo union. Therefore replace kill_pid_info_as_cred with kill_pid_usb_asyncio a dedicated function for this one specific case. There are no other users of kill_pid_info_as_cred so this specialization should have no impact on the amount of code in the kernel. Have kill_pid_usb_asyncio take instead of a siginfo_t which is difficult and error prone, 3 arguments, a signal number, an errno value, and an address enconded as a sigval_t. The encoding of the address as a sigval_t allows the code that reads the userspace request for a signal to handle this compat issue along with all of the other compat issues. Add BUILD_BUG_ONs in kernel/signal.c to ensure that we can now place the pointer value at the in si_pid (instead of si_addr). That is the code now verifies that si_pid and si_addr always occur at the same location. Further the code veries that for native structures a value placed in si_pid and spilling into si_uid will appear in userspace in si_addr (on a byte by byte copy of siginfo or a field by field copy of siginfo). The code also verifies that for a 64bit kernel and a 32bit userspace the 32bit pointer will fit in si_pid. I have used the usbsig.c program below written by Alan Stern and slightly tweaked by me to run on a big endian machine to verify the issue exists (on sparc64) and to confirm the patch below fixes the issue. /* usbsig.c -- test USB async signal delivery */ #define _GNU_SOURCE #include <stdio.h> #include <fcntl.h> #include <signal.h> #include <string.h> #include <sys/ioctl.h> #include <unistd.h> #include <endian.h> #include <linux/usb/ch9.h> #include <linux/usbdevice_fs.h> static struct usbdevfs_urb urb; static struct usbdevfs_disconnectsignal ds; static volatile sig_atomic_t done = 0; void urb_handler(int sig, siginfo_t *info , void *ucontext) { printf("Got signal %d, signo %d errno %d code %d addr: %p urb: %p\n", sig, info->si_signo, info->si_errno, info->si_code, info->si_addr, &urb); printf("%s\n", (info->si_addr == &urb) ? "Good" : "Bad"); } void ds_handler(int sig, siginfo_t *info , void *ucontext) { printf("Got signal %d, signo %d errno %d code %d addr: %p ds: %p\n", sig, info->si_signo, info->si_errno, info->si_code, info->si_addr, &ds); printf("%s\n", (info->si_addr == &ds) ? "Good" : "Bad"); done = 1; } int main(int argc, char **argv) { char *devfilename; int fd; int rc; struct sigaction act; struct usb_ctrlrequest *req; void *ptr; char buf[80]; if (argc != 2) { fprintf(stderr, "Usage: usbsig device-file-name\n"); return 1; } devfilename = argv[1]; fd = open(devfilename, O_RDWR); if (fd == -1) { perror("Error opening device file"); return 1; } act.sa_sigaction = urb_handler; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO; rc = sigaction(SIGUSR1, &act, NULL); if (rc == -1) { perror("Error in sigaction"); return 1; } act.sa_sigaction = ds_handler; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO; rc = sigaction(SIGUSR2, &act, NULL); if (rc == -1) { perror("Error in sigaction"); return 1; } memset(&urb, 0, sizeof(urb)); urb.type = USBDEVFS_URB_TYPE_CONTROL; urb.endpoint = USB_DIR_IN | 0; urb.buffer = buf; urb.buffer_length = sizeof(buf); urb.signr = SIGUSR1; req = (struct usb_ctrlrequest *) buf; req->bRequestType = USB_DIR_IN | USB_TYPE_STANDARD | USB_RECIP_DEVICE; req->bRequest = USB_REQ_GET_DESCRIPTOR; req->wValue = htole16(USB_DT_DEVICE << 8); req->wIndex = htole16(0); req->wLength = htole16(sizeof(buf) - sizeof(*req)); rc = ioctl(fd, USBDEVFS_SUBMITURB, &urb); if (rc == -1) { perror("Error in SUBMITURB ioctl"); return 1; } rc = ioctl(fd, USBDEVFS_REAPURB, &ptr); if (rc == -1) { perror("Error in REAPURB ioctl"); return 1; } memset(&ds, 0, sizeof(ds)); ds.signr = SIGUSR2; ds.context = &ds; rc = ioctl(fd, USBDEVFS_DISCSIGNAL, &ds); if (rc == -1) { perror("Error in DISCSIGNAL ioctl"); return 1; } printf("Waiting for usb disconnect\n"); while (!done) { sleep(1); } close(fd); return 0; } Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: linux-usb@vger.kernel.org Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Oliver Neukum <oneukum@suse.com> Fixes: v2.3.39 Cc: stable@vger.kernel.org Acked-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2019-02-08 01:44:12 +00:00
if (!kill_as_cred_perm(cred, p)) {
ret = -EPERM;
goto out_unlock;
}
signal/usb: Replace kill_pid_info_as_cred with kill_pid_usb_asyncio The usb support for asyncio encoded one of it's values in the wrong field. It should have used si_value but instead used si_addr which is not present in the _rt union member of struct siginfo. The practical result of this is that on a 64bit big endian kernel when delivering a signal to a 32bit process the si_addr field is set to NULL, instead of the expected pointer value. This issue can not be fixed in copy_siginfo_to_user32 as the usb usage of the the _sigfault (aka si_addr) member of the siginfo union when SI_ASYNCIO is set is incompatible with the POSIX and glibc usage of the _rt member of the siginfo union. Therefore replace kill_pid_info_as_cred with kill_pid_usb_asyncio a dedicated function for this one specific case. There are no other users of kill_pid_info_as_cred so this specialization should have no impact on the amount of code in the kernel. Have kill_pid_usb_asyncio take instead of a siginfo_t which is difficult and error prone, 3 arguments, a signal number, an errno value, and an address enconded as a sigval_t. The encoding of the address as a sigval_t allows the code that reads the userspace request for a signal to handle this compat issue along with all of the other compat issues. Add BUILD_BUG_ONs in kernel/signal.c to ensure that we can now place the pointer value at the in si_pid (instead of si_addr). That is the code now verifies that si_pid and si_addr always occur at the same location. Further the code veries that for native structures a value placed in si_pid and spilling into si_uid will appear in userspace in si_addr (on a byte by byte copy of siginfo or a field by field copy of siginfo). The code also verifies that for a 64bit kernel and a 32bit userspace the 32bit pointer will fit in si_pid. I have used the usbsig.c program below written by Alan Stern and slightly tweaked by me to run on a big endian machine to verify the issue exists (on sparc64) and to confirm the patch below fixes the issue. /* usbsig.c -- test USB async signal delivery */ #define _GNU_SOURCE #include <stdio.h> #include <fcntl.h> #include <signal.h> #include <string.h> #include <sys/ioctl.h> #include <unistd.h> #include <endian.h> #include <linux/usb/ch9.h> #include <linux/usbdevice_fs.h> static struct usbdevfs_urb urb; static struct usbdevfs_disconnectsignal ds; static volatile sig_atomic_t done = 0; void urb_handler(int sig, siginfo_t *info , void *ucontext) { printf("Got signal %d, signo %d errno %d code %d addr: %p urb: %p\n", sig, info->si_signo, info->si_errno, info->si_code, info->si_addr, &urb); printf("%s\n", (info->si_addr == &urb) ? "Good" : "Bad"); } void ds_handler(int sig, siginfo_t *info , void *ucontext) { printf("Got signal %d, signo %d errno %d code %d addr: %p ds: %p\n", sig, info->si_signo, info->si_errno, info->si_code, info->si_addr, &ds); printf("%s\n", (info->si_addr == &ds) ? "Good" : "Bad"); done = 1; } int main(int argc, char **argv) { char *devfilename; int fd; int rc; struct sigaction act; struct usb_ctrlrequest *req; void *ptr; char buf[80]; if (argc != 2) { fprintf(stderr, "Usage: usbsig device-file-name\n"); return 1; } devfilename = argv[1]; fd = open(devfilename, O_RDWR); if (fd == -1) { perror("Error opening device file"); return 1; } act.sa_sigaction = urb_handler; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO; rc = sigaction(SIGUSR1, &act, NULL); if (rc == -1) { perror("Error in sigaction"); return 1; } act.sa_sigaction = ds_handler; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO; rc = sigaction(SIGUSR2, &act, NULL); if (rc == -1) { perror("Error in sigaction"); return 1; } memset(&urb, 0, sizeof(urb)); urb.type = USBDEVFS_URB_TYPE_CONTROL; urb.endpoint = USB_DIR_IN | 0; urb.buffer = buf; urb.buffer_length = sizeof(buf); urb.signr = SIGUSR1; req = (struct usb_ctrlrequest *) buf; req->bRequestType = USB_DIR_IN | USB_TYPE_STANDARD | USB_RECIP_DEVICE; req->bRequest = USB_REQ_GET_DESCRIPTOR; req->wValue = htole16(USB_DT_DEVICE << 8); req->wIndex = htole16(0); req->wLength = htole16(sizeof(buf) - sizeof(*req)); rc = ioctl(fd, USBDEVFS_SUBMITURB, &urb); if (rc == -1) { perror("Error in SUBMITURB ioctl"); return 1; } rc = ioctl(fd, USBDEVFS_REAPURB, &ptr); if (rc == -1) { perror("Error in REAPURB ioctl"); return 1; } memset(&ds, 0, sizeof(ds)); ds.signr = SIGUSR2; ds.context = &ds; rc = ioctl(fd, USBDEVFS_DISCSIGNAL, &ds); if (rc == -1) { perror("Error in DISCSIGNAL ioctl"); return 1; } printf("Waiting for usb disconnect\n"); while (!done) { sleep(1); } close(fd); return 0; } Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: linux-usb@vger.kernel.org Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Oliver Neukum <oneukum@suse.com> Fixes: v2.3.39 Cc: stable@vger.kernel.org Acked-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2019-02-08 01:44:12 +00:00
ret = security_task_kill(p, &info, sig, cred);
if (ret)
goto out_unlock;
if (sig) {
if (lock_task_sighand(p, &flags)) {
ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
unlock_task_sighand(p, &flags);
} else
ret = -ESRCH;
}
out_unlock:
rcu_read_unlock();
return ret;
}
signal/usb: Replace kill_pid_info_as_cred with kill_pid_usb_asyncio The usb support for asyncio encoded one of it's values in the wrong field. It should have used si_value but instead used si_addr which is not present in the _rt union member of struct siginfo. The practical result of this is that on a 64bit big endian kernel when delivering a signal to a 32bit process the si_addr field is set to NULL, instead of the expected pointer value. This issue can not be fixed in copy_siginfo_to_user32 as the usb usage of the the _sigfault (aka si_addr) member of the siginfo union when SI_ASYNCIO is set is incompatible with the POSIX and glibc usage of the _rt member of the siginfo union. Therefore replace kill_pid_info_as_cred with kill_pid_usb_asyncio a dedicated function for this one specific case. There are no other users of kill_pid_info_as_cred so this specialization should have no impact on the amount of code in the kernel. Have kill_pid_usb_asyncio take instead of a siginfo_t which is difficult and error prone, 3 arguments, a signal number, an errno value, and an address enconded as a sigval_t. The encoding of the address as a sigval_t allows the code that reads the userspace request for a signal to handle this compat issue along with all of the other compat issues. Add BUILD_BUG_ONs in kernel/signal.c to ensure that we can now place the pointer value at the in si_pid (instead of si_addr). That is the code now verifies that si_pid and si_addr always occur at the same location. Further the code veries that for native structures a value placed in si_pid and spilling into si_uid will appear in userspace in si_addr (on a byte by byte copy of siginfo or a field by field copy of siginfo). The code also verifies that for a 64bit kernel and a 32bit userspace the 32bit pointer will fit in si_pid. I have used the usbsig.c program below written by Alan Stern and slightly tweaked by me to run on a big endian machine to verify the issue exists (on sparc64) and to confirm the patch below fixes the issue. /* usbsig.c -- test USB async signal delivery */ #define _GNU_SOURCE #include <stdio.h> #include <fcntl.h> #include <signal.h> #include <string.h> #include <sys/ioctl.h> #include <unistd.h> #include <endian.h> #include <linux/usb/ch9.h> #include <linux/usbdevice_fs.h> static struct usbdevfs_urb urb; static struct usbdevfs_disconnectsignal ds; static volatile sig_atomic_t done = 0; void urb_handler(int sig, siginfo_t *info , void *ucontext) { printf("Got signal %d, signo %d errno %d code %d addr: %p urb: %p\n", sig, info->si_signo, info->si_errno, info->si_code, info->si_addr, &urb); printf("%s\n", (info->si_addr == &urb) ? "Good" : "Bad"); } void ds_handler(int sig, siginfo_t *info , void *ucontext) { printf("Got signal %d, signo %d errno %d code %d addr: %p ds: %p\n", sig, info->si_signo, info->si_errno, info->si_code, info->si_addr, &ds); printf("%s\n", (info->si_addr == &ds) ? "Good" : "Bad"); done = 1; } int main(int argc, char **argv) { char *devfilename; int fd; int rc; struct sigaction act; struct usb_ctrlrequest *req; void *ptr; char buf[80]; if (argc != 2) { fprintf(stderr, "Usage: usbsig device-file-name\n"); return 1; } devfilename = argv[1]; fd = open(devfilename, O_RDWR); if (fd == -1) { perror("Error opening device file"); return 1; } act.sa_sigaction = urb_handler; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO; rc = sigaction(SIGUSR1, &act, NULL); if (rc == -1) { perror("Error in sigaction"); return 1; } act.sa_sigaction = ds_handler; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO; rc = sigaction(SIGUSR2, &act, NULL); if (rc == -1) { perror("Error in sigaction"); return 1; } memset(&urb, 0, sizeof(urb)); urb.type = USBDEVFS_URB_TYPE_CONTROL; urb.endpoint = USB_DIR_IN | 0; urb.buffer = buf; urb.buffer_length = sizeof(buf); urb.signr = SIGUSR1; req = (struct usb_ctrlrequest *) buf; req->bRequestType = USB_DIR_IN | USB_TYPE_STANDARD | USB_RECIP_DEVICE; req->bRequest = USB_REQ_GET_DESCRIPTOR; req->wValue = htole16(USB_DT_DEVICE << 8); req->wIndex = htole16(0); req->wLength = htole16(sizeof(buf) - sizeof(*req)); rc = ioctl(fd, USBDEVFS_SUBMITURB, &urb); if (rc == -1) { perror("Error in SUBMITURB ioctl"); return 1; } rc = ioctl(fd, USBDEVFS_REAPURB, &ptr); if (rc == -1) { perror("Error in REAPURB ioctl"); return 1; } memset(&ds, 0, sizeof(ds)); ds.signr = SIGUSR2; ds.context = &ds; rc = ioctl(fd, USBDEVFS_DISCSIGNAL, &ds); if (rc == -1) { perror("Error in DISCSIGNAL ioctl"); return 1; } printf("Waiting for usb disconnect\n"); while (!done) { sleep(1); } close(fd); return 0; } Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: linux-usb@vger.kernel.org Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Oliver Neukum <oneukum@suse.com> Fixes: v2.3.39 Cc: stable@vger.kernel.org Acked-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2019-02-08 01:44:12 +00:00
EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
/*
* kill_something_info() interprets pid in interesting ways just like kill(2).
*
* POSIX specifies that kill(-1,sig) is unspecified, but what we have
* is probably wrong. Should make it like BSD or SYSV.
*/
static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
{
int ret;
if (pid > 0)
return kill_proc_info(sig, info, pid);
/* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
if (pid == INT_MIN)
return -ESRCH;
read_lock(&tasklist_lock);
if (pid != -1) {
ret = __kill_pgrp_info(sig, info,
pid ? find_vpid(-pid) : task_pgrp(current));
} else {
int retval = 0, count = 0;
struct task_struct * p;
for_each_process(p) {
if (task_pid_vnr(p) > 1 &&
!same_thread_group(p, current)) {
int err = group_send_sig_info(sig, info, p,
PIDTYPE_MAX);
++count;
if (err != -EPERM)
retval = err;
}
}
ret = count ? retval : -ESRCH;
}
read_unlock(&tasklist_lock);
return ret;
}
/*
* These are for backward compatibility with the rest of the kernel source.
*/
int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
{
/*
* Make sure legacy kernel users don't send in bad values
* (normal paths check this in check_kill_permission).
*/
if (!valid_signal(sig))
return -EINVAL;
return do_send_sig_info(sig, info, p, PIDTYPE_PID);
}
EXPORT_SYMBOL(send_sig_info);
#define __si_special(priv) \
((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
int
send_sig(int sig, struct task_struct *p, int priv)
{
return send_sig_info(sig, __si_special(priv), p);
}
EXPORT_SYMBOL(send_sig);
void force_sig(int sig)
{
struct kernel_siginfo info;
clear_siginfo(&info);
info.si_signo = sig;
info.si_errno = 0;
info.si_code = SI_KERNEL;
info.si_pid = 0;
info.si_uid = 0;
force_sig_info(&info);
}
EXPORT_SYMBOL(force_sig);
void force_fatal_sig(int sig)
{
struct kernel_siginfo info;
clear_siginfo(&info);
info.si_signo = sig;
info.si_errno = 0;
info.si_code = SI_KERNEL;
info.si_pid = 0;
info.si_uid = 0;
force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
}
signal: Replace force_fatal_sig with force_exit_sig when in doubt Recently to prevent issues with SECCOMP_RET_KILL and similar signals being changed before they are delivered SA_IMMUTABLE was added. Unfortunately this broke debuggers[1][2] which reasonably expect to be able to trap synchronous SIGTRAP and SIGSEGV even when the target process is not configured to handle those signals. Add force_exit_sig and use it instead of force_fatal_sig where historically the code has directly called do_exit. This has the implementation benefits of going through the signal exit path (including generating core dumps) without the danger of allowing userspace to ignore or change these signals. This avoids userspace regressions as older kernels exited with do_exit which debuggers also can not intercept. In the future is should be possible to improve the quality of implementation of the kernel by changing some of these force_exit_sig calls to force_fatal_sig. That can be done where it matters on a case-by-case basis with careful analysis. Reported-by: Kyle Huey <me@kylehuey.com> Reported-by: kernel test robot <oliver.sang@intel.com> [1] https://lkml.kernel.org/r/CAP045AoMY4xf8aC_4QU_-j7obuEPYgTcnQQP3Yxk=2X90jtpjw@mail.gmail.com [2] https://lkml.kernel.org/r/20211117150258.GB5403@xsang-OptiPlex-9020 Fixes: 00b06da29cf9 ("signal: Add SA_IMMUTABLE to ensure forced siganls do not get changed") Fixes: a3616a3c0272 ("signal/m68k: Use force_sigsegv(SIGSEGV) in fpsp040_die") Fixes: 83a1f27ad773 ("signal/powerpc: On swapcontext failure force SIGSEGV") Fixes: 9bc508cf0791 ("signal/s390: Use force_sigsegv in default_trap_handler") Fixes: 086ec444f866 ("signal/sparc32: In setup_rt_frame and setup_fram use force_fatal_sig") Fixes: c317d306d550 ("signal/sparc32: Exit with a fatal signal when try_to_clear_window_buffer fails") Fixes: 695dd0d634df ("signal/x86: In emulate_vsyscall force a signal instead of calling do_exit") Fixes: 1fbd60df8a85 ("signal/vm86_32: Properly send SIGSEGV when the vm86 state cannot be saved.") Fixes: 941edc5bf174 ("exit/syscall_user_dispatch: Send ordinary signals on failure") Link: https://lkml.kernel.org/r/871r3dqfv8.fsf_-_@email.froward.int.ebiederm.org Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Kees Cook <keescook@chromium.org> Tested-by: Kyle Huey <khuey@kylehuey.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-11-18 20:23:21 +00:00
void force_exit_sig(int sig)
{
struct kernel_siginfo info;
clear_siginfo(&info);
info.si_signo = sig;
info.si_errno = 0;
info.si_code = SI_KERNEL;
info.si_pid = 0;
info.si_uid = 0;
force_sig_info_to_task(&info, current, HANDLER_EXIT);
}
/*
* When things go south during signal handling, we
* will force a SIGSEGV. And if the signal that caused
* the problem was already a SIGSEGV, we'll want to
* make sure we don't even try to deliver the signal..
*/
void force_sigsegv(int sig)
{
if (sig == SIGSEGV)
force_fatal_sig(SIGSEGV);
else
force_sig(SIGSEGV);
}
int force_sig_fault_to_task(int sig, int code, void __user *addr
___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
, struct task_struct *t)
{
struct kernel_siginfo info;
clear_siginfo(&info);
info.si_signo = sig;
info.si_errno = 0;
info.si_code = code;
info.si_addr = addr;
#ifdef __ia64__
info.si_imm = imm;
info.si_flags = flags;
info.si_isr = isr;
#endif
return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
}
int force_sig_fault(int sig, int code, void __user *addr
___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
{
return force_sig_fault_to_task(sig, code, addr
___ARCH_SI_IA64(imm, flags, isr), current);
}
int send_sig_fault(int sig, int code, void __user *addr
___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
, struct task_struct *t)
{
struct kernel_siginfo info;
clear_siginfo(&info);
info.si_signo = sig;
info.si_errno = 0;
info.si_code = code;
info.si_addr = addr;
#ifdef __ia64__
info.si_imm = imm;
info.si_flags = flags;
info.si_isr = isr;
#endif
return send_sig_info(info.si_signo, &info, t);
}
int force_sig_mceerr(int code, void __user *addr, short lsb)
{
struct kernel_siginfo info;
WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
clear_siginfo(&info);
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = code;
info.si_addr = addr;
info.si_addr_lsb = lsb;
return force_sig_info(&info);
}
int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
{
struct kernel_siginfo info;
WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
clear_siginfo(&info);
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = code;
info.si_addr = addr;
info.si_addr_lsb = lsb;
return send_sig_info(info.si_signo, &info, t);
}
EXPORT_SYMBOL(send_sig_mceerr);
int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
{
struct kernel_siginfo info;
clear_siginfo(&info);
info.si_signo = SIGSEGV;
info.si_errno = 0;
info.si_code = SEGV_BNDERR;
info.si_addr = addr;
info.si_lower = lower;
info.si_upper = upper;
return force_sig_info(&info);
}
#ifdef SEGV_PKUERR
int force_sig_pkuerr(void __user *addr, u32 pkey)
{
struct kernel_siginfo info;
clear_siginfo(&info);
info.si_signo = SIGSEGV;
info.si_errno = 0;
info.si_code = SEGV_PKUERR;
info.si_addr = addr;
info.si_pkey = pkey;
return force_sig_info(&info);
}
#endif
signal: Deliver SIGTRAP on perf event asynchronously if blocked With SIGTRAP on perf events, we have encountered termination of processes due to user space attempting to block delivery of SIGTRAP. Consider this case: <set up SIGTRAP on a perf event> ... sigset_t s; sigemptyset(&s); sigaddset(&s, SIGTRAP | <and others>); sigprocmask(SIG_BLOCK, &s, ...); ... <perf event triggers> When the perf event triggers, while SIGTRAP is blocked, force_sig_perf() will force the signal, but revert back to the default handler, thus terminating the task. This makes sense for error conditions, but not so much for explicitly requested monitoring. However, the expectation is still that signals generated by perf events are synchronous, which will no longer be the case if the signal is blocked and delivered later. To give user space the ability to clearly distinguish synchronous from asynchronous signals, introduce siginfo_t::si_perf_flags and TRAP_PERF_FLAG_ASYNC (opted for flags in case more binary information is required in future). The resolution to the problem is then to (a) no longer force the signal (avoiding the terminations), but (b) tell user space via si_perf_flags if the signal was synchronous or not, so that such signals can be handled differently (e.g. let user space decide to ignore or consider the data imprecise). The alternative of making the kernel ignore SIGTRAP on perf events if the signal is blocked may work for some usecases, but likely causes issues in others that then have to revert back to interception of sigprocmask() (which we want to avoid). [ A concrete example: when using breakpoint perf events to track data-flow, in a region of code where signals are blocked, data-flow can no longer be tracked accurately. When a relevant asynchronous signal is received after unblocking the signal, the data-flow tracking logic needs to know its state is imprecise. ] Fixes: 97ba62b27867 ("perf: Add support for SIGTRAP on perf events") Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Tested-by: Dmitry Vyukov <dvyukov@google.com> Link: https://lore.kernel.org/r/20220404111204.935357-1-elver@google.com
2022-04-04 11:12:04 +00:00
int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
{
struct kernel_siginfo info;
clear_siginfo(&info);
info.si_signo = SIGTRAP;
info.si_errno = 0;
info.si_code = TRAP_PERF;
info.si_addr = addr;
info.si_perf_data = sig_data;
info.si_perf_type = type;
signal: Deliver SIGTRAP on perf event asynchronously if blocked With SIGTRAP on perf events, we have encountered termination of processes due to user space attempting to block delivery of SIGTRAP. Consider this case: <set up SIGTRAP on a perf event> ... sigset_t s; sigemptyset(&s); sigaddset(&s, SIGTRAP | <and others>); sigprocmask(SIG_BLOCK, &s, ...); ... <perf event triggers> When the perf event triggers, while SIGTRAP is blocked, force_sig_perf() will force the signal, but revert back to the default handler, thus terminating the task. This makes sense for error conditions, but not so much for explicitly requested monitoring. However, the expectation is still that signals generated by perf events are synchronous, which will no longer be the case if the signal is blocked and delivered later. To give user space the ability to clearly distinguish synchronous from asynchronous signals, introduce siginfo_t::si_perf_flags and TRAP_PERF_FLAG_ASYNC (opted for flags in case more binary information is required in future). The resolution to the problem is then to (a) no longer force the signal (avoiding the terminations), but (b) tell user space via si_perf_flags if the signal was synchronous or not, so that such signals can be handled differently (e.g. let user space decide to ignore or consider the data imprecise). The alternative of making the kernel ignore SIGTRAP on perf events if the signal is blocked may work for some usecases, but likely causes issues in others that then have to revert back to interception of sigprocmask() (which we want to avoid). [ A concrete example: when using breakpoint perf events to track data-flow, in a region of code where signals are blocked, data-flow can no longer be tracked accurately. When a relevant asynchronous signal is received after unblocking the signal, the data-flow tracking logic needs to know its state is imprecise. ] Fixes: 97ba62b27867 ("perf: Add support for SIGTRAP on perf events") Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Tested-by: Dmitry Vyukov <dvyukov@google.com> Link: https://lore.kernel.org/r/20220404111204.935357-1-elver@google.com
2022-04-04 11:12:04 +00:00
/*
* Signals generated by perf events should not terminate the whole
* process if SIGTRAP is blocked, however, delivering the signal
* asynchronously is better than not delivering at all. But tell user
* space if the signal was asynchronous, so it can clearly be
* distinguished from normal synchronous ones.
*/
info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
TRAP_PERF_FLAG_ASYNC :
0;
return send_sig_info(info.si_signo, &info, current);
}
/**
* force_sig_seccomp - signals the task to allow in-process syscall emulation
* @syscall: syscall number to send to userland
* @reason: filter-supplied reason code to send to userland (via si_errno)
* @force_coredump: true to trigger a coredump
*
* Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
*/
int force_sig_seccomp(int syscall, int reason, bool force_coredump)
{
struct kernel_siginfo info;
clear_siginfo(&info);
info.si_signo = SIGSYS;
info.si_code = SYS_SECCOMP;
info.si_call_addr = (void __user *)KSTK_EIP(current);
info.si_errno = reason;
info.si_arch = syscall_get_arch(current);
info.si_syscall = syscall;
return force_sig_info_to_task(&info, current,
force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
}
/* For the crazy architectures that include trap information in
* the errno field, instead of an actual errno value.
*/
int force_sig_ptrace_errno_trap(int errno, void __user *addr)
{
struct kernel_siginfo info;
clear_siginfo(&info);
info.si_signo = SIGTRAP;
info.si_errno = errno;
info.si_code = TRAP_HWBKPT;
info.si_addr = addr;
return force_sig_info(&info);
}
/* For the rare architectures that include trap information using
* si_trapno.
*/
int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
{
struct kernel_siginfo info;
clear_siginfo(&info);
info.si_signo = sig;
info.si_errno = 0;
info.si_code = code;
info.si_addr = addr;
info.si_trapno = trapno;
return force_sig_info(&info);
}
/* For the rare architectures that include trap information using
* si_trapno.
*/
int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
struct task_struct *t)
{
struct kernel_siginfo info;
clear_siginfo(&info);
info.si_signo = sig;
info.si_errno = 0;
info.si_code = code;
info.si_addr = addr;
info.si_trapno = trapno;
return send_sig_info(info.si_signo, &info, t);
}
int kill_pgrp(struct pid *pid, int sig, int priv)
{
int ret;
read_lock(&tasklist_lock);
ret = __kill_pgrp_info(sig, __si_special(priv), pid);
read_unlock(&tasklist_lock);
return ret;
}
EXPORT_SYMBOL(kill_pgrp);
int kill_pid(struct pid *pid, int sig, int priv)
{
return kill_pid_info(sig, __si_special(priv), pid);
}
EXPORT_SYMBOL(kill_pid);
/*
* These functions support sending signals using preallocated sigqueue
* structures. This is needed "because realtime applications cannot
* afford to lose notifications of asynchronous events, like timer
* expirations or I/O completions". In the case of POSIX Timers
* we allocate the sigqueue structure from the timer_create. If this
* allocation fails we are able to report the failure to the application
* with an EAGAIN error.
*/
struct sigqueue *sigqueue_alloc(void)
{
return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
}
void sigqueue_free(struct sigqueue *q)
{
unsigned long flags;
2007-08-31 06:56:35 +00:00
spinlock_t *lock = &current->sighand->siglock;
BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
/*
* We must hold ->siglock while testing q->list
* to serialize with collect_signal() or with
* __exit_signal()->flush_sigqueue().
*/
2007-08-31 06:56:35 +00:00
spin_lock_irqsave(lock, flags);
q->flags &= ~SIGQUEUE_PREALLOC;
/*
* If it is queued it will be freed when dequeued,
* like the "regular" sigqueue.
*/
2007-08-31 06:56:35 +00:00
if (!list_empty(&q->list))
q = NULL;
2007-08-31 06:56:35 +00:00
spin_unlock_irqrestore(lock, flags);
if (q)
__sigqueue_free(q);
}
int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
2008-04-30 07:52:41 +00:00
{
int sig = q->info.si_signo;
struct sigpending *pending;
struct task_struct *t;
unsigned long flags;
int ret, result;
BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
ret = -1;
rcu_read_lock();
/*
* This function is used by POSIX timers to deliver a timer signal.
* Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
* set), the signal must be delivered to the specific thread (queues
* into t->pending).
*
* Where type is not PIDTYPE_PID, signals must be delivered to the
* process. In this case, prefer to deliver to current if it is in
* the same thread group as the target process, which avoids
* unnecessarily waking up a potentially idle task.
*/
t = pid_task(pid, type);
if (!t)
goto ret;
if (type != PIDTYPE_PID && same_thread_group(t, current))
t = current;
if (!likely(lock_task_sighand(t, &flags)))
goto ret;
ret = 1; /* the signal is ignored */
result = TRACE_SIGNAL_IGNORED;
if (!prepare_signal(sig, t, false))
goto out;
ret = 0;
2008-04-30 07:52:41 +00:00
if (unlikely(!list_empty(&q->list))) {
/*
* If an SI_TIMER entry is already queue just increment
* the overrun count.
*/
BUG_ON(q->info.si_code != SI_TIMER);
q->info.si_overrun++;
result = TRACE_SIGNAL_ALREADY_PENDING;
goto out;
2008-04-30 07:52:41 +00:00
}
posix-timers: fix posix_timer_event() vs dequeue_signal() race The bug was reported and analysed by Mark McLoughlin <markmc@redhat.com>, the patch is based on his and Roland's suggestions. posix_timer_event() always rewrites the pre-allocated siginfo before sending the signal. Most of the written info is the same all the time, but memset(0) is very wrong. If ->sigq is queued we can race with collect_signal() which can fail to find this siginfo looking at .si_signo, or copy_siginfo() can copy the wrong .si_code/si_tid/etc. In short, sys_timer_settime() can in fact stop the active timer, or the user can receive the siginfo with the wrong .si_xxx values. Move "memset(->info, 0)" from posix_timer_event() to alloc_posix_timer(), change send_sigqueue() to set .si_overrun = 0 when ->sigq is not queued. It would be nice to move the whole sigq->info initialization from send to create path, but this is not easy to do without uglifying timer_create() further. As Roland rightly pointed out, we need more cleanups/fixes here, see the "FIXME" comment in the patch. Hopefully this patch makes sense anyway, and it can mask the most bad implications. Reported-by: Mark McLoughlin <markmc@redhat.com> Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: Mark McLoughlin <markmc@redhat.com> Cc: Oliver Pinter <oliver.pntr@gmail.com> Cc: Roland McGrath <roland@redhat.com> Cc: stable@kernel.org Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> kernel/posix-timers.c | 17 +++++++++++++---- kernel/signal.c | 1 + 2 files changed, 14 insertions(+), 4 deletions(-)
2008-07-23 16:52:05 +00:00
q->info.si_overrun = 0;
2008-04-30 07:52:41 +00:00
signalfd_notify(t, sig);
pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2008-04-30 07:52:41 +00:00
list_add_tail(&q->list, &pending->list);
sigaddset(&pending->signal, sig);
complete_signal(sig, t, type);
result = TRACE_SIGNAL_DELIVERED;
out:
trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
unlock_task_sighand(t, &flags);
ret:
rcu_read_unlock();
return ret;
2008-04-30 07:52:41 +00:00
}
pidfd: add polling support This patch adds polling support to pidfd. Android low memory killer (LMK) needs to know when a process dies once it is sent the kill signal. It does so by checking for the existence of /proc/pid which is both racy and slow. For example, if a PID is reused between when LMK sends a kill signal and checks for existence of the PID, since the wrong PID is now possibly checked for existence. Using the polling support, LMK will be able to get notified when a process exists in race-free and fast way, and allows the LMK to do other things (such as by polling on other fds) while awaiting the process being killed to die. For notification to polling processes, we follow the same existing mechanism in the kernel used when the parent of the task group is to be notified of a child's death (do_notify_parent). This is precisely when the tasks waiting on a poll of pidfd are also awakened in this patch. We have decided to include the waitqueue in struct pid for the following reasons: 1. The wait queue has to survive for the lifetime of the poll. Including it in task_struct would not be option in this case because the task can be reaped and destroyed before the poll returns. 2. By including the struct pid for the waitqueue means that during de_thread(), the new thread group leader automatically gets the new waitqueue/pid even though its task_struct is different. Appropriate test cases are added in the second patch to provide coverage of all the cases the patch is handling. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Daniel Colascione <dancol@google.com> Cc: Jann Horn <jannh@google.com> Cc: Tim Murray <timmurray@google.com> Cc: Jonathan Kowalski <bl0pbl33p@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Kees Cook <keescook@chromium.org> Cc: David Howells <dhowells@redhat.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: kernel-team@android.com Reviewed-by: Oleg Nesterov <oleg@redhat.com> Co-developed-by: Daniel Colascione <dancol@google.com> Signed-off-by: Daniel Colascione <dancol@google.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Christian Brauner <christian@brauner.io>
2019-04-30 16:21:53 +00:00
static void do_notify_pidfd(struct task_struct *task)
{
struct pid *pid;
WARN_ON(task->exit_state == 0);
pidfd: add polling support This patch adds polling support to pidfd. Android low memory killer (LMK) needs to know when a process dies once it is sent the kill signal. It does so by checking for the existence of /proc/pid which is both racy and slow. For example, if a PID is reused between when LMK sends a kill signal and checks for existence of the PID, since the wrong PID is now possibly checked for existence. Using the polling support, LMK will be able to get notified when a process exists in race-free and fast way, and allows the LMK to do other things (such as by polling on other fds) while awaiting the process being killed to die. For notification to polling processes, we follow the same existing mechanism in the kernel used when the parent of the task group is to be notified of a child's death (do_notify_parent). This is precisely when the tasks waiting on a poll of pidfd are also awakened in this patch. We have decided to include the waitqueue in struct pid for the following reasons: 1. The wait queue has to survive for the lifetime of the poll. Including it in task_struct would not be option in this case because the task can be reaped and destroyed before the poll returns. 2. By including the struct pid for the waitqueue means that during de_thread(), the new thread group leader automatically gets the new waitqueue/pid even though its task_struct is different. Appropriate test cases are added in the second patch to provide coverage of all the cases the patch is handling. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Daniel Colascione <dancol@google.com> Cc: Jann Horn <jannh@google.com> Cc: Tim Murray <timmurray@google.com> Cc: Jonathan Kowalski <bl0pbl33p@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Kees Cook <keescook@chromium.org> Cc: David Howells <dhowells@redhat.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: kernel-team@android.com Reviewed-by: Oleg Nesterov <oleg@redhat.com> Co-developed-by: Daniel Colascione <dancol@google.com> Signed-off-by: Daniel Colascione <dancol@google.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Christian Brauner <christian@brauner.io>
2019-04-30 16:21:53 +00:00
pid = task_pid(task);
wake_up_all(&pid->wait_pidfd);
}
/*
* Let a parent know about the death of a child.
* For a stopped/continued status change, use do_notify_parent_cldstop instead.
*
* Returns true if our parent ignored us and so we've switched to
* self-reaping.
*/
bool do_notify_parent(struct task_struct *tsk, int sig)
{
struct kernel_siginfo info;
unsigned long flags;
struct sighand_struct *psig;
bool autoreap = false;
u64 utime, stime;
WARN_ON_ONCE(sig == -1);
/* do_notify_parent_cldstop should have been called instead. */
WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
WARN_ON_ONCE(!tsk->ptrace &&
(tsk->group_leader != tsk || !thread_group_empty(tsk)));
pidfd: add polling support This patch adds polling support to pidfd. Android low memory killer (LMK) needs to know when a process dies once it is sent the kill signal. It does so by checking for the existence of /proc/pid which is both racy and slow. For example, if a PID is reused between when LMK sends a kill signal and checks for existence of the PID, since the wrong PID is now possibly checked for existence. Using the polling support, LMK will be able to get notified when a process exists in race-free and fast way, and allows the LMK to do other things (such as by polling on other fds) while awaiting the process being killed to die. For notification to polling processes, we follow the same existing mechanism in the kernel used when the parent of the task group is to be notified of a child's death (do_notify_parent). This is precisely when the tasks waiting on a poll of pidfd are also awakened in this patch. We have decided to include the waitqueue in struct pid for the following reasons: 1. The wait queue has to survive for the lifetime of the poll. Including it in task_struct would not be option in this case because the task can be reaped and destroyed before the poll returns. 2. By including the struct pid for the waitqueue means that during de_thread(), the new thread group leader automatically gets the new waitqueue/pid even though its task_struct is different. Appropriate test cases are added in the second patch to provide coverage of all the cases the patch is handling. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Daniel Colascione <dancol@google.com> Cc: Jann Horn <jannh@google.com> Cc: Tim Murray <timmurray@google.com> Cc: Jonathan Kowalski <bl0pbl33p@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Kees Cook <keescook@chromium.org> Cc: David Howells <dhowells@redhat.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: kernel-team@android.com Reviewed-by: Oleg Nesterov <oleg@redhat.com> Co-developed-by: Daniel Colascione <dancol@google.com> Signed-off-by: Daniel Colascione <dancol@google.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Christian Brauner <christian@brauner.io>
2019-04-30 16:21:53 +00:00
/* Wake up all pidfd waiters */
do_notify_pidfd(tsk);
if (sig != SIGCHLD) {
/*
* This is only possible if parent == real_parent.
* Check if it has changed security domain.
*/
signal: Extend exec_id to 64bits Replace the 32bit exec_id with a 64bit exec_id to make it impossible to wrap the exec_id counter. With care an attacker can cause exec_id wrap and send arbitrary signals to a newly exec'd parent. This bypasses the signal sending checks if the parent changes their credentials during exec. The severity of this problem can been seen that in my limited testing of a 32bit exec_id it can take as little as 19s to exec 65536 times. Which means that it can take as little as 14 days to wrap a 32bit exec_id. Adam Zabrocki has succeeded wrapping the self_exe_id in 7 days. Even my slower timing is in the uptime of a typical server. Which means self_exec_id is simply a speed bump today, and if exec gets noticably faster self_exec_id won't even be a speed bump. Extending self_exec_id to 64bits introduces a problem on 32bit architectures where reading self_exec_id is no longer atomic and can take two read instructions. Which means that is is possible to hit a window where the read value of exec_id does not match the written value. So with very lucky timing after this change this still remains expoiltable. I have updated the update of exec_id on exec to use WRITE_ONCE and the read of exec_id in do_notify_parent to use READ_ONCE to make it clear that there is no locking between these two locations. Link: https://lore.kernel.org/kernel-hardening/20200324215049.GA3710@pi3.com.pl Fixes: 2.3.23pre2 Cc: stable@vger.kernel.org Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2020-03-31 00:01:04 +00:00
if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
sig = SIGCHLD;
}
clear_siginfo(&info);
info.si_signo = sig;
info.si_errno = 0;
/*
* We are under tasklist_lock here so our parent is tied to
* us and cannot change.
*
* task_active_pid_ns will always return the same pid namespace
* until a task passes through release_task.
*
* write_lock() currently calls preempt_disable() which is the
* same as rcu_read_lock(), but according to Oleg, this is not
* correct to rely on this
*/
rcu_read_lock();
info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
task_uid(tsk));
rcu_read_unlock();
task_cputime(tsk, &utime, &stime);
info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
info.si_status = tsk->exit_code & 0x7f;
if (tsk->exit_code & 0x80)
info.si_code = CLD_DUMPED;
else if (tsk->exit_code & 0x7f)
info.si_code = CLD_KILLED;
else {
info.si_code = CLD_EXITED;
info.si_status = tsk->exit_code >> 8;
}
psig = tsk->parent->sighand;
spin_lock_irqsave(&psig->siglock, flags);
if (!tsk->ptrace && sig == SIGCHLD &&
(psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
(psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
/*
* We are exiting and our parent doesn't care. POSIX.1
* defines special semantics for setting SIGCHLD to SIG_IGN
* or setting the SA_NOCLDWAIT flag: we should be reaped
* automatically and not left for our parent's wait4 call.
* Rather than having the parent do it as a magic kind of
* signal handler, we just set this to tell do_exit that we
* can be cleaned up without becoming a zombie. Note that
* we still call __wake_up_parent in this case, because a
* blocked sys_wait4 might now return -ECHILD.
*
* Whether we send SIGCHLD or not for SA_NOCLDWAIT
* is implementation-defined: we do (if you don't want
* it, just use SIG_IGN instead).
*/
autoreap = true;
if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
sig = 0;
}
signal: Avoid corrupting si_pid and si_uid in do_notify_parent Christof Meerwald <cmeerw@cmeerw.org> writes: > Hi, > > this is probably related to commit > 7a0cf094944e2540758b7f957eb6846d5126f535 (signal: Correct namespace > fixups of si_pid and si_uid). > > With a 5.6.5 kernel I am seeing SIGCHLD signals that don't include a > properly set si_pid field - this seems to happen for multi-threaded > child processes. > > A simple test program (based on the sample from the signalfd man page): > > #include <sys/signalfd.h> > #include <signal.h> > #include <unistd.h> > #include <spawn.h> > #include <stdlib.h> > #include <stdio.h> > > #define handle_error(msg) \ > do { perror(msg); exit(EXIT_FAILURE); } while (0) > > int main(int argc, char *argv[]) > { > sigset_t mask; > int sfd; > struct signalfd_siginfo fdsi; > ssize_t s; > > sigemptyset(&mask); > sigaddset(&mask, SIGCHLD); > > if (sigprocmask(SIG_BLOCK, &mask, NULL) == -1) > handle_error("sigprocmask"); > > pid_t chldpid; > char *chldargv[] = { "./sfdclient", NULL }; > posix_spawn(&chldpid, "./sfdclient", NULL, NULL, chldargv, NULL); > > sfd = signalfd(-1, &mask, 0); > if (sfd == -1) > handle_error("signalfd"); > > for (;;) { > s = read(sfd, &fdsi, sizeof(struct signalfd_siginfo)); > if (s != sizeof(struct signalfd_siginfo)) > handle_error("read"); > > if (fdsi.ssi_signo == SIGCHLD) { > printf("Got SIGCHLD %d %d %d %d\n", > fdsi.ssi_status, fdsi.ssi_code, > fdsi.ssi_uid, fdsi.ssi_pid); > return 0; > } else { > printf("Read unexpected signal\n"); > } > } > } > > > and a multi-threaded client to test with: > > #include <unistd.h> > #include <pthread.h> > > void *f(void *arg) > { > sleep(100); > } > > int main() > { > pthread_t t[8]; > > for (int i = 0; i != 8; ++i) > { > pthread_create(&t[i], NULL, f, NULL); > } > } > > I tried to do a bit of debugging and what seems to be happening is > that > > /* From an ancestor pid namespace? */ > if (!task_pid_nr_ns(current, task_active_pid_ns(t))) { > > fails inside task_pid_nr_ns because the check for "pid_alive" fails. > > This code seems to be called from do_notify_parent and there we > actually have "tsk != current" (I am assuming both are threads of the > current process?) I instrumented the code with a warning and received the following backtrace: > WARNING: CPU: 0 PID: 777 at kernel/pid.c:501 __task_pid_nr_ns.cold.6+0xc/0x15 > Modules linked in: > CPU: 0 PID: 777 Comm: sfdclient Not tainted 5.7.0-rc1userns+ #2924 > Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 > RIP: 0010:__task_pid_nr_ns.cold.6+0xc/0x15 > Code: ff 66 90 48 83 ec 08 89 7c 24 04 48 8d 7e 08 48 8d 74 24 04 e8 9a b6 44 00 48 83 c4 08 c3 48 c7 c7 59 9f ac 82 e8 c2 c4 04 00 <0f> 0b e9 3fd > RSP: 0018:ffffc9000042fbf8 EFLAGS: 00010046 > RAX: 000000000000000c RBX: 0000000000000000 RCX: ffffc9000042faf4 > RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffff81193d29 > RBP: ffffc9000042fc18 R08: 0000000000000000 R09: 0000000000000001 > R10: 000000100f938416 R11: 0000000000000309 R12: ffff8880b941c140 > R13: 0000000000000000 R14: 0000000000000000 R15: ffff8880b941c140 > FS: 0000000000000000(0000) GS:ffff8880bca00000(0000) knlGS:0000000000000000 > CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 > CR2: 00007f2e8c0a32e0 CR3: 0000000002e10000 CR4: 00000000000006f0 > Call Trace: > send_signal+0x1c8/0x310 > do_notify_parent+0x50f/0x550 > release_task.part.21+0x4fd/0x620 > do_exit+0x6f6/0xaf0 > do_group_exit+0x42/0xb0 > get_signal+0x13b/0xbb0 > do_signal+0x2b/0x670 > ? __audit_syscall_exit+0x24d/0x2b0 > ? rcu_read_lock_sched_held+0x4d/0x60 > ? kfree+0x24c/0x2b0 > do_syscall_64+0x176/0x640 > ? trace_hardirqs_off_thunk+0x1a/0x1c > entry_SYSCALL_64_after_hwframe+0x49/0xb3 The immediate problem is as Christof noticed that "pid_alive(current) == false". This happens because do_notify_parent is called from the last thread to exit in a process after that thread has been reaped. The bigger issue is that do_notify_parent can be called from any process that manages to wait on a thread of a multi-threaded process from wait_task_zombie. So any logic based upon current for do_notify_parent is just nonsense, as current can be pretty much anything. So change do_notify_parent to call __send_signal directly. Inspecting the code it appears this problem has existed since the pid namespace support started handling this case in 2.6.30. This fix only backports to 7a0cf094944e ("signal: Correct namespace fixups of si_pid and si_uid") where the problem logic was moved out of __send_signal and into send_signal. Cc: stable@vger.kernel.org Fixes: 6588c1e3ff01 ("signals: SI_USER: Masquerade si_pid when crossing pid ns boundary") Ref: 921cf9f63089 ("signals: protect cinit from unblocked SIG_DFL signals") Link: https://lore.kernel.org/lkml/20200419201336.GI22017@edge.cmeerw.net/ Reported-by: Christof Meerwald <cmeerw@cmeerw.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2020-04-20 16:41:50 +00:00
/*
* Send with __send_signal as si_pid and si_uid are in the
* parent's namespaces.
*/
if (valid_signal(sig) && sig)
__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
__wake_up_parent(tsk, tsk->parent);
spin_unlock_irqrestore(&psig->siglock, flags);
return autoreap;
}
/**
* do_notify_parent_cldstop - notify parent of stopped/continued state change
* @tsk: task reporting the state change
* @for_ptracer: the notification is for ptracer
* @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
*
* Notify @tsk's parent that the stopped/continued state has changed. If
* @for_ptracer is %false, @tsk's group leader notifies to its real parent.
* If %true, @tsk reports to @tsk->parent which should be the ptracer.
*
* CONTEXT:
* Must be called with tasklist_lock at least read locked.
*/
static void do_notify_parent_cldstop(struct task_struct *tsk,
bool for_ptracer, int why)
{
struct kernel_siginfo info;
unsigned long flags;
struct task_struct *parent;
struct sighand_struct *sighand;
u64 utime, stime;
if (for_ptracer) {
parent = tsk->parent;
} else {
tsk = tsk->group_leader;
parent = tsk->real_parent;
}
clear_siginfo(&info);
info.si_signo = SIGCHLD;
info.si_errno = 0;
/*
* see comment in do_notify_parent() about the following 4 lines
*/
rcu_read_lock();
info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
rcu_read_unlock();
task_cputime(tsk, &utime, &stime);
info.si_utime = nsec_to_clock_t(utime);
info.si_stime = nsec_to_clock_t(stime);
info.si_code = why;
switch (why) {
case CLD_CONTINUED:
info.si_status = SIGCONT;
break;
case CLD_STOPPED:
info.si_status = tsk->signal->group_exit_code & 0x7f;
break;
case CLD_TRAPPED:
info.si_status = tsk->exit_code & 0x7f;
break;
default:
BUG();
}
sighand = parent->sighand;
spin_lock_irqsave(&sighand->siglock, flags);
if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
!(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
/*
* Even if SIGCHLD is not generated, we must wake up wait4 calls.
*/
__wake_up_parent(tsk, parent);
spin_unlock_irqrestore(&sighand->siglock, flags);
}
/*
* This must be called with current->sighand->siglock held.
*
* This should be the path for all ptrace stops.
* We always set current->last_siginfo while stopped here.
* That makes it a way to test a stopped process for
* being ptrace-stopped vs being job-control-stopped.
*
* Returns the signal the ptracer requested the code resume
* with. If the code did not stop because the tracer is gone,
* the stop signal remains unchanged unless clear_code.
*/
ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs Long ago and far away there was a BUG_ON at the start of ptrace_stop that did "BUG_ON(!(current->ptrace & PT_PTRACED));" [1]. The BUG_ON had never triggered but examination of the code showed that the BUG_ON could actually trigger. To complement removing the BUG_ON an attempt to better handle the race was added. The code detected the tracer had gone away and did not call do_notify_parent_cldstop. The code also attempted to prevent ptrace_report_syscall from sending spurious SIGTRAPs when the tracer went away. The code to detect when the tracer had gone away before sending a signal to tracer was a legitimate fix and continues to work to this date. The code to prevent sending spurious SIGTRAPs is a failure. At the time and until today the code only catches it when the tracer goes away after siglock is dropped and before read_lock is acquired. If the tracer goes away after read_lock is dropped a spurious SIGTRAP can still be sent to the tracee. The tracer going away after read_lock is dropped is the far likelier case as it is the bigger window. Given that the attempt to prevent the generation of a SIGTRAP was a failure and continues to be a failure remove the code that attempts to do that. This simplifies the code in ptrace_stop and makes ptrace_stop much easier to reason about. To successfully deal with the tracer going away, all of the tracer's instrumentation of the child would need to be removed, and reliably detecting when the tracer has set a signal to continue with would need to be implemented. [1] 66519f549ae5 ("[PATCH] fix ptracer death race yielding bogus BUG_ON") History-Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-9-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-05-04 18:39:58 +00:00
static int ptrace_stop(int exit_code, int why, unsigned long message,
kernel_siginfo_t *info)
__releases(&current->sighand->siglock)
__acquires(&current->sighand->siglock)
{
job control: Notify the real parent of job control events regardless of ptrace With recent changes, job control and ptrace stopped states are properly separated and accessible to the real parent and the ptracer respectively; however, notifications of job control stopped/continued events to the real parent while ptraced are still missing. A ptracee participates in group stop in ptrace_stop() but the completion isn't notified. If participation results in completion of group stop, notify the real parent of the event. The ptrace and group stops are separate and can be handled as such. However, when the real parent and the ptracer are in the same thread group, only the ptrace stop event is visible through wait(2) and the duplicate notifications are different from the current behavior and are confusing. Suppress group stop notification in such cases. The continued state is shared between the real parent and the ptracer but is only meaningful to the real parent. Always notify the real parent and notify the ptracer too for backward compatibility. Similar to stop notification, if the real parent is the ptracer, suppress a duplicate notification. Test case follows. #include <stdio.h> #include <unistd.h> #include <time.h> #include <errno.h> #include <sys/types.h> #include <sys/ptrace.h> #include <sys/wait.h> int main(void) { const struct timespec ts100ms = { .tv_nsec = 100000000 }; pid_t tracee, tracer; siginfo_t si; int i; tracee = fork(); if (tracee == 0) { while (1) { printf("tracee: SIGSTOP\n"); raise(SIGSTOP); nanosleep(&ts100ms, NULL); printf("tracee: SIGCONT\n"); raise(SIGCONT); nanosleep(&ts100ms, NULL); } } waitid(P_PID, tracee, &si, WSTOPPED | WNOHANG | WNOWAIT); tracer = fork(); if (tracer == 0) { nanosleep(&ts100ms, NULL); ptrace(PTRACE_ATTACH, tracee, NULL, NULL); for (i = 0; i < 11; i++) { si.si_pid = 0; waitid(P_PID, tracee, &si, WSTOPPED); if (si.si_pid && si.si_code == CLD_TRAPPED) ptrace(PTRACE_CONT, tracee, NULL, (void *)(long)si.si_status); } printf("tracer: EXITING\n"); return 0; } while (1) { si.si_pid = 0; waitid(P_PID, tracee, &si, WSTOPPED | WCONTINUED | WEXITED); if (si.si_pid) printf("mommy : WAIT status=%02d code=%02d\n", si.si_status, si.si_code); } return 0; } Before this patch, while ptraced, the real parent doesn't get notifications for job control events, so although it can access those events, the later waitid(2) call never wakes up. tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT tracee: SIGSTOP tracee: SIGCONT tracee: SIGSTOP tracee: SIGCONT tracee: SIGSTOP tracer: EXITING mommy : WAIT status=19 code=05 ^C After this patch, it works as expected. tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT mommy : WAIT status=18 code=06 tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT mommy : WAIT status=18 code=06 tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT mommy : WAIT status=18 code=06 tracee: SIGSTOP tracer: EXITING mommy : WAIT status=19 code=05 ^C -v2: Oleg pointed out that * Group stop notification to the real parent should also happen when ptracer detach races with ptrace_stop(). * real_parent_is_ptracer() should be testing thread group equality not the task itself as wait(2) and stop/cont notifications are normally thread-group wide. Both issues are fixed accordingly. -v3: real_parent_is_ptracer() updated to test child->real_parent instead of child->group_leader->real_parent per Oleg's suggestion. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com>
2011-03-23 09:37:01 +00:00
bool gstop_done = false;
if (arch_ptrace_stop_needed()) {
/*
* The arch code has something special to do before a
* ptrace stop. This is allowed to block, e.g. for faults
* on user stack pages. We can't keep the siglock while
* calling arch_ptrace_stop, so we must release it now.
* To preserve proper semantics, we must do this before
* any signal bookkeeping like checking group_stop_count.
*/
spin_unlock_irq(&current->sighand->siglock);
arch_ptrace_stop();
spin_lock_irq(&current->sighand->siglock);
}
/*
ptrace: Don't change __state Stop playing with tsk->__state to remove TASK_WAKEKILL while a ptrace command is executing. Instead remove TASK_WAKEKILL from the definition of TASK_TRACED, and implement a new jobctl flag TASK_PTRACE_FROZEN. This new flag is set in jobctl_freeze_task and cleared when ptrace_stop is awoken or in jobctl_unfreeze_task (when ptrace_stop remains asleep). In signal_wake_up add __TASK_TRACED to state along with TASK_WAKEKILL when the wake up is for a fatal signal. Skip adding __TASK_TRACED when TASK_PTRACE_FROZEN is not set. This has the same effect as changing TASK_TRACED to __TASK_TRACED as all of the wake_ups that use TASK_KILLABLE go through signal_wake_up. Handle a ptrace_stop being called with a pending fatal signal. Previously it would have been handled by schedule simply failing to sleep. As TASK_WAKEKILL is no longer part of TASK_TRACED schedule will sleep with a fatal_signal_pending. The code in signal_wake_up guarantees that the code will be awaked by any fatal signal that codes after TASK_TRACED is set. Previously the __state value of __TASK_TRACED was changed to TASK_RUNNING when woken up or back to TASK_TRACED when the code was left in ptrace_stop. Now when woken up ptrace_stop now clears JOBCTL_PTRACE_FROZEN and when left sleeping ptrace_unfreezed_traced clears JOBCTL_PTRACE_FROZEN. Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-10-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-04-29 13:43:34 +00:00
* After this point ptrace_signal_wake_up or signal_wake_up
* will clear TASK_TRACED if ptrace_unlink happens or a fatal
* signal comes in. Handle previous ptrace_unlinks and fatal
* signals here to prevent ptrace_stop sleeping in schedule.
*/
ptrace: Don't change __state Stop playing with tsk->__state to remove TASK_WAKEKILL while a ptrace command is executing. Instead remove TASK_WAKEKILL from the definition of TASK_TRACED, and implement a new jobctl flag TASK_PTRACE_FROZEN. This new flag is set in jobctl_freeze_task and cleared when ptrace_stop is awoken or in jobctl_unfreeze_task (when ptrace_stop remains asleep). In signal_wake_up add __TASK_TRACED to state along with TASK_WAKEKILL when the wake up is for a fatal signal. Skip adding __TASK_TRACED when TASK_PTRACE_FROZEN is not set. This has the same effect as changing TASK_TRACED to __TASK_TRACED as all of the wake_ups that use TASK_KILLABLE go through signal_wake_up. Handle a ptrace_stop being called with a pending fatal signal. Previously it would have been handled by schedule simply failing to sleep. As TASK_WAKEKILL is no longer part of TASK_TRACED schedule will sleep with a fatal_signal_pending. The code in signal_wake_up guarantees that the code will be awaked by any fatal signal that codes after TASK_TRACED is set. Previously the __state value of __TASK_TRACED was changed to TASK_RUNNING when woken up or back to TASK_TRACED when the code was left in ptrace_stop. Now when woken up ptrace_stop now clears JOBCTL_PTRACE_FROZEN and when left sleeping ptrace_unfreezed_traced clears JOBCTL_PTRACE_FROZEN. Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-10-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-04-29 13:43:34 +00:00
if (!current->ptrace || __fatal_signal_pending(current))
ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs Long ago and far away there was a BUG_ON at the start of ptrace_stop that did "BUG_ON(!(current->ptrace & PT_PTRACED));" [1]. The BUG_ON had never triggered but examination of the code showed that the BUG_ON could actually trigger. To complement removing the BUG_ON an attempt to better handle the race was added. The code detected the tracer had gone away and did not call do_notify_parent_cldstop. The code also attempted to prevent ptrace_report_syscall from sending spurious SIGTRAPs when the tracer went away. The code to detect when the tracer had gone away before sending a signal to tracer was a legitimate fix and continues to work to this date. The code to prevent sending spurious SIGTRAPs is a failure. At the time and until today the code only catches it when the tracer goes away after siglock is dropped and before read_lock is acquired. If the tracer goes away after read_lock is dropped a spurious SIGTRAP can still be sent to the tracee. The tracer going away after read_lock is dropped is the far likelier case as it is the bigger window. Given that the attempt to prevent the generation of a SIGTRAP was a failure and continues to be a failure remove the code that attempts to do that. This simplifies the code in ptrace_stop and makes ptrace_stop much easier to reason about. To successfully deal with the tracer going away, all of the tracer's instrumentation of the child would need to be removed, and reliably detecting when the tracer has set a signal to continue with would need to be implemented. [1] 66519f549ae5 ("[PATCH] fix ptracer death race yielding bogus BUG_ON") History-Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-9-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-05-04 18:39:58 +00:00
return exit_code;
set_special_state(TASK_TRACED);
current->jobctl |= JOBCTL_TRACED;
/*
* We're committing to trapping. TRACED should be visible before
* TRAPPING is cleared; otherwise, the tracer might fail do_wait().
* Also, transition to TRACED and updates to ->jobctl should be
* atomic with respect to siglock and should be done after the arch
* hook as siglock is released and regrabbed across it.
*
* TRACER TRACEE
*
* ptrace_attach()
* [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
* do_wait()
* set_current_state() smp_wmb();
* ptrace_do_wait()
* wait_task_stopped()
* task_stopped_code()
* [L] task_is_traced() [S] task_clear_jobctl_trapping();
*/
smp_wmb();
current->ptrace_message = message;
current->last_siginfo = info;
current->exit_code = exit_code;
ptrace: Clean transitions between TASK_STOPPED and TRACED Currently, if the task is STOPPED on ptrace attach, it's left alone and the state is silently changed to TRACED on the next ptrace call. The behavior breaks the assumption that arch_ptrace_stop() is called before any task is poked by ptrace and is ugly in that a task manipulates the state of another task directly. With GROUP_STOP_PENDING, the transitions between TASK_STOPPED and TRACED can be made clean. The tracer can use the flag to tell the tracee to retry stop on attach and detach. On retry, the tracee will enter the desired state in the correct way. The lower 16bits of task->group_stop is used to remember the signal number which caused the last group stop. This is used while retrying for ptrace attach as the original group_exit_code could have been consumed with wait(2) by then. As the real parent may wait(2) and consume the group_exit_code anytime, the group_exit_code needs to be saved separately so that it can be used when switching from regular sleep to ptrace_stop(). This is recorded in the lower 16bits of task->group_stop. If a task is already stopped and there's no intervening SIGCONT, a ptrace request immediately following a successful PTRACE_ATTACH should always succeed even if the tracer doesn't wait(2) for attach completion; however, with this change, the tracee might still be TASK_RUNNING trying to enter TASK_TRACED which would cause the following request to fail with -ESRCH. This intermediate state is hidden from the ptracer by setting GROUP_STOP_TRAPPING on attach and making ptrace_check_attach() wait for it to clear on its signal->wait_chldexit. Completing the transition or getting killed clears TRAPPING and wakes up the tracer. Note that the STOPPED -> RUNNING -> TRACED transition is still visible to other threads which are in the same group as the ptracer and the reverse transition is visible to all. Please read the comments for details. Oleg: * Spotted a race condition where a task may retry group stop without proper bookkeeping. Fixed by redoing bookkeeping on retry. * Spotted that the transition is visible to userland in several different ways. Most are fixed with GROUP_STOP_TRAPPING. Unhandled corner case is documented. * Pointed out not setting GROUP_STOP_SIGMASK on an already stopped task would result in more consistent behavior. * Pointed out that calling ptrace_stop() from do_signal_stop() in TASK_STOPPED can race with group stop start logic and then confuse the TRAPPING wait in ptrace_check_attach(). ptrace_stop() is now called with TASK_RUNNING. * Suggested using signal->wait_chldexit instead of bit wait. * Spotted a race condition between TRACED transition and clearing of TRAPPING. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
2011-03-23 09:37:00 +00:00
/*
* If @why is CLD_STOPPED, we're trapping to participate in a group
* stop. Do the bookkeeping. Note that if SIGCONT was delievered
job control: introduce JOBCTL_TRAP_STOP and use it for group stop trap do_signal_stop() implemented both normal group stop and trap for group stop while ptraced. This approach has been enough but scheduled changes require trap mechanism which can be used in more generic manner and using group stop trap for generic trap site simplifies both userland visible interface and implementation. This patch adds a new jobctl flag - JOBCTL_TRAP_STOP. When set, it triggers a trap site, which behaves like group stop trap, in get_signal_to_deliver() after checking for pending signals. While ptraced, do_signal_stop() doesn't stop itself. It initiates group stop if requested and schedules JOBCTL_TRAP_STOP and returns. The caller - get_signal_to_deliver() - is responsible for checking whether TRAP_STOP is pending afterwards and handling it. ptrace_attach() is updated to use JOBCTL_TRAP_STOP instead of JOBCTL_STOP_PENDING and __ptrace_unlink() to clear all pending trap bits and TRAPPING so that TRAP_STOP and future trap bits don't linger after detach. While at it, add proper function comment to do_signal_stop() and make it return bool. -v2: __ptrace_unlink() updated to clear JOBCTL_TRAP_MASK and TRAPPING instead of JOBCTL_PENDING_MASK. This avoids accidentally clearing JOBCTL_STOP_CONSUME. Spotted by Oleg. -v3: do_signal_stop() updated to return %false without dropping siglock while ptraced and TRAP_STOP check moved inside for(;;) loop after group stop participation. This avoids unnecessary relocking and also will help avoiding unnecessary traps by consuming group stop before handling pending traps. -v4: Jobctl trap handling moved into a separate function - do_jobctl_trap(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:14 +00:00
* across siglock relocks since INTERRUPT was scheduled, PENDING
* could be clear now. We act as if SIGCONT is received after
* TASK_TRACED is entered - ignore it.
ptrace: Clean transitions between TASK_STOPPED and TRACED Currently, if the task is STOPPED on ptrace attach, it's left alone and the state is silently changed to TRACED on the next ptrace call. The behavior breaks the assumption that arch_ptrace_stop() is called before any task is poked by ptrace and is ugly in that a task manipulates the state of another task directly. With GROUP_STOP_PENDING, the transitions between TASK_STOPPED and TRACED can be made clean. The tracer can use the flag to tell the tracee to retry stop on attach and detach. On retry, the tracee will enter the desired state in the correct way. The lower 16bits of task->group_stop is used to remember the signal number which caused the last group stop. This is used while retrying for ptrace attach as the original group_exit_code could have been consumed with wait(2) by then. As the real parent may wait(2) and consume the group_exit_code anytime, the group_exit_code needs to be saved separately so that it can be used when switching from regular sleep to ptrace_stop(). This is recorded in the lower 16bits of task->group_stop. If a task is already stopped and there's no intervening SIGCONT, a ptrace request immediately following a successful PTRACE_ATTACH should always succeed even if the tracer doesn't wait(2) for attach completion; however, with this change, the tracee might still be TASK_RUNNING trying to enter TASK_TRACED which would cause the following request to fail with -ESRCH. This intermediate state is hidden from the ptracer by setting GROUP_STOP_TRAPPING on attach and making ptrace_check_attach() wait for it to clear on its signal->wait_chldexit. Completing the transition or getting killed clears TRAPPING and wakes up the tracer. Note that the STOPPED -> RUNNING -> TRACED transition is still visible to other threads which are in the same group as the ptracer and the reverse transition is visible to all. Please read the comments for details. Oleg: * Spotted a race condition where a task may retry group stop without proper bookkeeping. Fixed by redoing bookkeeping on retry. * Spotted that the transition is visible to userland in several different ways. Most are fixed with GROUP_STOP_TRAPPING. Unhandled corner case is documented. * Pointed out not setting GROUP_STOP_SIGMASK on an already stopped task would result in more consistent behavior. * Pointed out that calling ptrace_stop() from do_signal_stop() in TASK_STOPPED can race with group stop start logic and then confuse the TRAPPING wait in ptrace_check_attach(). ptrace_stop() is now called with TASK_RUNNING. * Suggested using signal->wait_chldexit instead of bit wait. * Spotted a race condition between TRACED transition and clearing of TRAPPING. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
2011-03-23 09:37:00 +00:00
*/
if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
job control: Notify the real parent of job control events regardless of ptrace With recent changes, job control and ptrace stopped states are properly separated and accessible to the real parent and the ptracer respectively; however, notifications of job control stopped/continued events to the real parent while ptraced are still missing. A ptracee participates in group stop in ptrace_stop() but the completion isn't notified. If participation results in completion of group stop, notify the real parent of the event. The ptrace and group stops are separate and can be handled as such. However, when the real parent and the ptracer are in the same thread group, only the ptrace stop event is visible through wait(2) and the duplicate notifications are different from the current behavior and are confusing. Suppress group stop notification in such cases. The continued state is shared between the real parent and the ptracer but is only meaningful to the real parent. Always notify the real parent and notify the ptracer too for backward compatibility. Similar to stop notification, if the real parent is the ptracer, suppress a duplicate notification. Test case follows. #include <stdio.h> #include <unistd.h> #include <time.h> #include <errno.h> #include <sys/types.h> #include <sys/ptrace.h> #include <sys/wait.h> int main(void) { const struct timespec ts100ms = { .tv_nsec = 100000000 }; pid_t tracee, tracer; siginfo_t si; int i; tracee = fork(); if (tracee == 0) { while (1) { printf("tracee: SIGSTOP\n"); raise(SIGSTOP); nanosleep(&ts100ms, NULL); printf("tracee: SIGCONT\n"); raise(SIGCONT); nanosleep(&ts100ms, NULL); } } waitid(P_PID, tracee, &si, WSTOPPED | WNOHANG | WNOWAIT); tracer = fork(); if (tracer == 0) { nanosleep(&ts100ms, NULL); ptrace(PTRACE_ATTACH, tracee, NULL, NULL); for (i = 0; i < 11; i++) { si.si_pid = 0; waitid(P_PID, tracee, &si, WSTOPPED); if (si.si_pid && si.si_code == CLD_TRAPPED) ptrace(PTRACE_CONT, tracee, NULL, (void *)(long)si.si_status); } printf("tracer: EXITING\n"); return 0; } while (1) { si.si_pid = 0; waitid(P_PID, tracee, &si, WSTOPPED | WCONTINUED | WEXITED); if (si.si_pid) printf("mommy : WAIT status=%02d code=%02d\n", si.si_status, si.si_code); } return 0; } Before this patch, while ptraced, the real parent doesn't get notifications for job control events, so although it can access those events, the later waitid(2) call never wakes up. tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT tracee: SIGSTOP tracee: SIGCONT tracee: SIGSTOP tracee: SIGCONT tracee: SIGSTOP tracer: EXITING mommy : WAIT status=19 code=05 ^C After this patch, it works as expected. tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT mommy : WAIT status=18 code=06 tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT mommy : WAIT status=18 code=06 tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT mommy : WAIT status=18 code=06 tracee: SIGSTOP tracer: EXITING mommy : WAIT status=19 code=05 ^C -v2: Oleg pointed out that * Group stop notification to the real parent should also happen when ptracer detach races with ptrace_stop(). * real_parent_is_ptracer() should be testing thread group equality not the task itself as wait(2) and stop/cont notifications are normally thread-group wide. Both issues are fixed accordingly. -v3: real_parent_is_ptracer() updated to test child->real_parent instead of child->group_leader->real_parent per Oleg's suggestion. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com>
2011-03-23 09:37:01 +00:00
gstop_done = task_participate_group_stop(current);
ptrace: Clean transitions between TASK_STOPPED and TRACED Currently, if the task is STOPPED on ptrace attach, it's left alone and the state is silently changed to TRACED on the next ptrace call. The behavior breaks the assumption that arch_ptrace_stop() is called before any task is poked by ptrace and is ugly in that a task manipulates the state of another task directly. With GROUP_STOP_PENDING, the transitions between TASK_STOPPED and TRACED can be made clean. The tracer can use the flag to tell the tracee to retry stop on attach and detach. On retry, the tracee will enter the desired state in the correct way. The lower 16bits of task->group_stop is used to remember the signal number which caused the last group stop. This is used while retrying for ptrace attach as the original group_exit_code could have been consumed with wait(2) by then. As the real parent may wait(2) and consume the group_exit_code anytime, the group_exit_code needs to be saved separately so that it can be used when switching from regular sleep to ptrace_stop(). This is recorded in the lower 16bits of task->group_stop. If a task is already stopped and there's no intervening SIGCONT, a ptrace request immediately following a successful PTRACE_ATTACH should always succeed even if the tracer doesn't wait(2) for attach completion; however, with this change, the tracee might still be TASK_RUNNING trying to enter TASK_TRACED which would cause the following request to fail with -ESRCH. This intermediate state is hidden from the ptracer by setting GROUP_STOP_TRAPPING on attach and making ptrace_check_attach() wait for it to clear on its signal->wait_chldexit. Completing the transition or getting killed clears TRAPPING and wakes up the tracer. Note that the STOPPED -> RUNNING -> TRACED transition is still visible to other threads which are in the same group as the ptracer and the reverse transition is visible to all. Please read the comments for details. Oleg: * Spotted a race condition where a task may retry group stop without proper bookkeeping. Fixed by redoing bookkeeping on retry. * Spotted that the transition is visible to userland in several different ways. Most are fixed with GROUP_STOP_TRAPPING. Unhandled corner case is documented. * Pointed out not setting GROUP_STOP_SIGMASK on an already stopped task would result in more consistent behavior. * Pointed out that calling ptrace_stop() from do_signal_stop() in TASK_STOPPED can race with group stop start logic and then confuse the TRAPPING wait in ptrace_check_attach(). ptrace_stop() is now called with TASK_RUNNING. * Suggested using signal->wait_chldexit instead of bit wait. * Spotted a race condition between TRACED transition and clearing of TRAPPING. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
2011-03-23 09:37:00 +00:00
ptrace: implement TRAP_NOTIFY and use it for group stop events Currently there's no way for ptracer to find out whether group stop finished other than polling with INTERRUPT - GETSIGINFO - CONT sequence. This patch implements group stop notification for ptracer using STOP traps. When group stop state of a seized tracee changes, JOBCTL_TRAP_NOTIFY is set, which schedules a STOP trap which is sticky - it isn't cleared by other traps and at least one STOP trap will happen eventually. STOP trap is synchronization point for event notification and the tracer can determine the current group stop state by looking at the signal number portion of exit code (si_status from waitid(2) or si_code from PTRACE_GETSIGINFO). Notifications are generated both on start and end of group stops but, because group stop participation always happens before STOP trap, this doesn't cause an extra trap while tracee is participating in group stop. The symmetry will be useful later. Note that this notification works iff tracee is not trapped. Currently there is no way to be notified of group stop state changes while tracee is trapped. This will be addressed by a later patch. An example program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_INTERRUPT 0x4207 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts1s = { .tv_sec = 1 }; int main(int argc, char **argv) { pid_t tracee, tracer; int i; tracee = fork(); if (!tracee) while (1) pause(); tracer = fork(); if (!tracer) { siginfo_t si; ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL); repeat: waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_GETSIGINFO, tracee, NULL, &si); if (!si.si_code) { printf("tracer: SIG %d\n", si.si_signo); ptrace(PTRACE_CONT, tracee, NULL, (void *)(unsigned long)si.si_signo); goto repeat; } printf("tracer: stopped=%d signo=%d\n", si.si_signo != SIGTRAP, si.si_signo); ptrace(PTRACE_CONT, tracee, NULL, NULL); goto repeat; } for (i = 0; i < 3; i++) { nanosleep(&ts1s, NULL); printf("mother: SIGSTOP\n"); kill(tracee, SIGSTOP); nanosleep(&ts1s, NULL); printf("mother: SIGCONT\n"); kill(tracee, SIGCONT); } nanosleep(&ts1s, NULL); kill(tracer, SIGKILL); kill(tracee, SIGKILL); return 0; } In the above program, tracer keeps tracee running and gets notification of each group stop state changes. # ./test-notify tracer: stopped=0 signo=5 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:17 +00:00
/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
job control: introduce JOBCTL_TRAP_STOP and use it for group stop trap do_signal_stop() implemented both normal group stop and trap for group stop while ptraced. This approach has been enough but scheduled changes require trap mechanism which can be used in more generic manner and using group stop trap for generic trap site simplifies both userland visible interface and implementation. This patch adds a new jobctl flag - JOBCTL_TRAP_STOP. When set, it triggers a trap site, which behaves like group stop trap, in get_signal_to_deliver() after checking for pending signals. While ptraced, do_signal_stop() doesn't stop itself. It initiates group stop if requested and schedules JOBCTL_TRAP_STOP and returns. The caller - get_signal_to_deliver() - is responsible for checking whether TRAP_STOP is pending afterwards and handling it. ptrace_attach() is updated to use JOBCTL_TRAP_STOP instead of JOBCTL_STOP_PENDING and __ptrace_unlink() to clear all pending trap bits and TRAPPING so that TRAP_STOP and future trap bits don't linger after detach. While at it, add proper function comment to do_signal_stop() and make it return bool. -v2: __ptrace_unlink() updated to clear JOBCTL_TRAP_MASK and TRAPPING instead of JOBCTL_PENDING_MASK. This avoids accidentally clearing JOBCTL_STOP_CONSUME. Spotted by Oleg. -v3: do_signal_stop() updated to return %false without dropping siglock while ptraced and TRAP_STOP check moved inside for(;;) loop after group stop participation. This avoids unnecessary relocking and also will help avoiding unnecessary traps by consuming group stop before handling pending traps. -v4: Jobctl trap handling moved into a separate function - do_jobctl_trap(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:14 +00:00
task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
ptrace: implement TRAP_NOTIFY and use it for group stop events Currently there's no way for ptracer to find out whether group stop finished other than polling with INTERRUPT - GETSIGINFO - CONT sequence. This patch implements group stop notification for ptracer using STOP traps. When group stop state of a seized tracee changes, JOBCTL_TRAP_NOTIFY is set, which schedules a STOP trap which is sticky - it isn't cleared by other traps and at least one STOP trap will happen eventually. STOP trap is synchronization point for event notification and the tracer can determine the current group stop state by looking at the signal number portion of exit code (si_status from waitid(2) or si_code from PTRACE_GETSIGINFO). Notifications are generated both on start and end of group stops but, because group stop participation always happens before STOP trap, this doesn't cause an extra trap while tracee is participating in group stop. The symmetry will be useful later. Note that this notification works iff tracee is not trapped. Currently there is no way to be notified of group stop state changes while tracee is trapped. This will be addressed by a later patch. An example program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_INTERRUPT 0x4207 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts1s = { .tv_sec = 1 }; int main(int argc, char **argv) { pid_t tracee, tracer; int i; tracee = fork(); if (!tracee) while (1) pause(); tracer = fork(); if (!tracer) { siginfo_t si; ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL); repeat: waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_GETSIGINFO, tracee, NULL, &si); if (!si.si_code) { printf("tracer: SIG %d\n", si.si_signo); ptrace(PTRACE_CONT, tracee, NULL, (void *)(unsigned long)si.si_signo); goto repeat; } printf("tracer: stopped=%d signo=%d\n", si.si_signo != SIGTRAP, si.si_signo); ptrace(PTRACE_CONT, tracee, NULL, NULL); goto repeat; } for (i = 0; i < 3; i++) { nanosleep(&ts1s, NULL); printf("mother: SIGSTOP\n"); kill(tracee, SIGSTOP); nanosleep(&ts1s, NULL); printf("mother: SIGCONT\n"); kill(tracee, SIGCONT); } nanosleep(&ts1s, NULL); kill(tracer, SIGKILL); kill(tracee, SIGKILL); return 0; } In the above program, tracer keeps tracee running and gets notification of each group stop state changes. # ./test-notify tracer: stopped=0 signo=5 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:17 +00:00
if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
job control: introduce JOBCTL_TRAP_STOP and use it for group stop trap do_signal_stop() implemented both normal group stop and trap for group stop while ptraced. This approach has been enough but scheduled changes require trap mechanism which can be used in more generic manner and using group stop trap for generic trap site simplifies both userland visible interface and implementation. This patch adds a new jobctl flag - JOBCTL_TRAP_STOP. When set, it triggers a trap site, which behaves like group stop trap, in get_signal_to_deliver() after checking for pending signals. While ptraced, do_signal_stop() doesn't stop itself. It initiates group stop if requested and schedules JOBCTL_TRAP_STOP and returns. The caller - get_signal_to_deliver() - is responsible for checking whether TRAP_STOP is pending afterwards and handling it. ptrace_attach() is updated to use JOBCTL_TRAP_STOP instead of JOBCTL_STOP_PENDING and __ptrace_unlink() to clear all pending trap bits and TRAPPING so that TRAP_STOP and future trap bits don't linger after detach. While at it, add proper function comment to do_signal_stop() and make it return bool. -v2: __ptrace_unlink() updated to clear JOBCTL_TRAP_MASK and TRAPPING instead of JOBCTL_PENDING_MASK. This avoids accidentally clearing JOBCTL_STOP_CONSUME. Spotted by Oleg. -v3: do_signal_stop() updated to return %false without dropping siglock while ptraced and TRAP_STOP check moved inside for(;;) loop after group stop participation. This avoids unnecessary relocking and also will help avoiding unnecessary traps by consuming group stop before handling pending traps. -v4: Jobctl trap handling moved into a separate function - do_jobctl_trap(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:14 +00:00
/* entering a trap, clear TRAPPING */
task_clear_jobctl_trapping(current);
ptrace: Clean transitions between TASK_STOPPED and TRACED Currently, if the task is STOPPED on ptrace attach, it's left alone and the state is silently changed to TRACED on the next ptrace call. The behavior breaks the assumption that arch_ptrace_stop() is called before any task is poked by ptrace and is ugly in that a task manipulates the state of another task directly. With GROUP_STOP_PENDING, the transitions between TASK_STOPPED and TRACED can be made clean. The tracer can use the flag to tell the tracee to retry stop on attach and detach. On retry, the tracee will enter the desired state in the correct way. The lower 16bits of task->group_stop is used to remember the signal number which caused the last group stop. This is used while retrying for ptrace attach as the original group_exit_code could have been consumed with wait(2) by then. As the real parent may wait(2) and consume the group_exit_code anytime, the group_exit_code needs to be saved separately so that it can be used when switching from regular sleep to ptrace_stop(). This is recorded in the lower 16bits of task->group_stop. If a task is already stopped and there's no intervening SIGCONT, a ptrace request immediately following a successful PTRACE_ATTACH should always succeed even if the tracer doesn't wait(2) for attach completion; however, with this change, the tracee might still be TASK_RUNNING trying to enter TASK_TRACED which would cause the following request to fail with -ESRCH. This intermediate state is hidden from the ptracer by setting GROUP_STOP_TRAPPING on attach and making ptrace_check_attach() wait for it to clear on its signal->wait_chldexit. Completing the transition or getting killed clears TRAPPING and wakes up the tracer. Note that the STOPPED -> RUNNING -> TRACED transition is still visible to other threads which are in the same group as the ptracer and the reverse transition is visible to all. Please read the comments for details. Oleg: * Spotted a race condition where a task may retry group stop without proper bookkeeping. Fixed by redoing bookkeeping on retry. * Spotted that the transition is visible to userland in several different ways. Most are fixed with GROUP_STOP_TRAPPING. Unhandled corner case is documented. * Pointed out not setting GROUP_STOP_SIGMASK on an already stopped task would result in more consistent behavior. * Pointed out that calling ptrace_stop() from do_signal_stop() in TASK_STOPPED can race with group stop start logic and then confuse the TRAPPING wait in ptrace_check_attach(). ptrace_stop() is now called with TASK_RUNNING. * Suggested using signal->wait_chldexit instead of bit wait. * Spotted a race condition between TRACED transition and clearing of TRAPPING. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
2011-03-23 09:37:00 +00:00
spin_unlock_irq(&current->sighand->siglock);
read_lock(&tasklist_lock);
ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs Long ago and far away there was a BUG_ON at the start of ptrace_stop that did "BUG_ON(!(current->ptrace & PT_PTRACED));" [1]. The BUG_ON had never triggered but examination of the code showed that the BUG_ON could actually trigger. To complement removing the BUG_ON an attempt to better handle the race was added. The code detected the tracer had gone away and did not call do_notify_parent_cldstop. The code also attempted to prevent ptrace_report_syscall from sending spurious SIGTRAPs when the tracer went away. The code to detect when the tracer had gone away before sending a signal to tracer was a legitimate fix and continues to work to this date. The code to prevent sending spurious SIGTRAPs is a failure. At the time and until today the code only catches it when the tracer goes away after siglock is dropped and before read_lock is acquired. If the tracer goes away after read_lock is dropped a spurious SIGTRAP can still be sent to the tracee. The tracer going away after read_lock is dropped is the far likelier case as it is the bigger window. Given that the attempt to prevent the generation of a SIGTRAP was a failure and continues to be a failure remove the code that attempts to do that. This simplifies the code in ptrace_stop and makes ptrace_stop much easier to reason about. To successfully deal with the tracer going away, all of the tracer's instrumentation of the child would need to be removed, and reliably detecting when the tracer has set a signal to continue with would need to be implemented. [1] 66519f549ae5 ("[PATCH] fix ptracer death race yielding bogus BUG_ON") History-Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-9-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-05-04 18:39:58 +00:00
/*
* Notify parents of the stop.
*
* While ptraced, there are two parents - the ptracer and
* the real_parent of the group_leader. The ptracer should
* know about every stop while the real parent is only
* interested in the completion of group stop. The states
* for the two don't interact with each other. Notify
* separately unless they're gonna be duplicates.
*/
if (current->ptrace)
job control: Notify the real parent of job control events regardless of ptrace With recent changes, job control and ptrace stopped states are properly separated and accessible to the real parent and the ptracer respectively; however, notifications of job control stopped/continued events to the real parent while ptraced are still missing. A ptracee participates in group stop in ptrace_stop() but the completion isn't notified. If participation results in completion of group stop, notify the real parent of the event. The ptrace and group stops are separate and can be handled as such. However, when the real parent and the ptracer are in the same thread group, only the ptrace stop event is visible through wait(2) and the duplicate notifications are different from the current behavior and are confusing. Suppress group stop notification in such cases. The continued state is shared between the real parent and the ptracer but is only meaningful to the real parent. Always notify the real parent and notify the ptracer too for backward compatibility. Similar to stop notification, if the real parent is the ptracer, suppress a duplicate notification. Test case follows. #include <stdio.h> #include <unistd.h> #include <time.h> #include <errno.h> #include <sys/types.h> #include <sys/ptrace.h> #include <sys/wait.h> int main(void) { const struct timespec ts100ms = { .tv_nsec = 100000000 }; pid_t tracee, tracer; siginfo_t si; int i; tracee = fork(); if (tracee == 0) { while (1) { printf("tracee: SIGSTOP\n"); raise(SIGSTOP); nanosleep(&ts100ms, NULL); printf("tracee: SIGCONT\n"); raise(SIGCONT); nanosleep(&ts100ms, NULL); } } waitid(P_PID, tracee, &si, WSTOPPED | WNOHANG | WNOWAIT); tracer = fork(); if (tracer == 0) { nanosleep(&ts100ms, NULL); ptrace(PTRACE_ATTACH, tracee, NULL, NULL); for (i = 0; i < 11; i++) { si.si_pid = 0; waitid(P_PID, tracee, &si, WSTOPPED); if (si.si_pid && si.si_code == CLD_TRAPPED) ptrace(PTRACE_CONT, tracee, NULL, (void *)(long)si.si_status); } printf("tracer: EXITING\n"); return 0; } while (1) { si.si_pid = 0; waitid(P_PID, tracee, &si, WSTOPPED | WCONTINUED | WEXITED); if (si.si_pid) printf("mommy : WAIT status=%02d code=%02d\n", si.si_status, si.si_code); } return 0; } Before this patch, while ptraced, the real parent doesn't get notifications for job control events, so although it can access those events, the later waitid(2) call never wakes up. tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT tracee: SIGSTOP tracee: SIGCONT tracee: SIGSTOP tracee: SIGCONT tracee: SIGSTOP tracer: EXITING mommy : WAIT status=19 code=05 ^C After this patch, it works as expected. tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT mommy : WAIT status=18 code=06 tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT mommy : WAIT status=18 code=06 tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT mommy : WAIT status=18 code=06 tracee: SIGSTOP tracer: EXITING mommy : WAIT status=19 code=05 ^C -v2: Oleg pointed out that * Group stop notification to the real parent should also happen when ptracer detach races with ptrace_stop(). * real_parent_is_ptracer() should be testing thread group equality not the task itself as wait(2) and stop/cont notifications are normally thread-group wide. Both issues are fixed accordingly. -v3: real_parent_is_ptracer() updated to test child->real_parent instead of child->group_leader->real_parent per Oleg's suggestion. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com>
2011-03-23 09:37:01 +00:00
do_notify_parent_cldstop(current, true, why);
ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs Long ago and far away there was a BUG_ON at the start of ptrace_stop that did "BUG_ON(!(current->ptrace & PT_PTRACED));" [1]. The BUG_ON had never triggered but examination of the code showed that the BUG_ON could actually trigger. To complement removing the BUG_ON an attempt to better handle the race was added. The code detected the tracer had gone away and did not call do_notify_parent_cldstop. The code also attempted to prevent ptrace_report_syscall from sending spurious SIGTRAPs when the tracer went away. The code to detect when the tracer had gone away before sending a signal to tracer was a legitimate fix and continues to work to this date. The code to prevent sending spurious SIGTRAPs is a failure. At the time and until today the code only catches it when the tracer goes away after siglock is dropped and before read_lock is acquired. If the tracer goes away after read_lock is dropped a spurious SIGTRAP can still be sent to the tracee. The tracer going away after read_lock is dropped is the far likelier case as it is the bigger window. Given that the attempt to prevent the generation of a SIGTRAP was a failure and continues to be a failure remove the code that attempts to do that. This simplifies the code in ptrace_stop and makes ptrace_stop much easier to reason about. To successfully deal with the tracer going away, all of the tracer's instrumentation of the child would need to be removed, and reliably detecting when the tracer has set a signal to continue with would need to be implemented. [1] 66519f549ae5 ("[PATCH] fix ptracer death race yielding bogus BUG_ON") History-Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-9-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-05-04 18:39:58 +00:00
if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
do_notify_parent_cldstop(current, false, why);
job control: Notify the real parent of job control events regardless of ptrace With recent changes, job control and ptrace stopped states are properly separated and accessible to the real parent and the ptracer respectively; however, notifications of job control stopped/continued events to the real parent while ptraced are still missing. A ptracee participates in group stop in ptrace_stop() but the completion isn't notified. If participation results in completion of group stop, notify the real parent of the event. The ptrace and group stops are separate and can be handled as such. However, when the real parent and the ptracer are in the same thread group, only the ptrace stop event is visible through wait(2) and the duplicate notifications are different from the current behavior and are confusing. Suppress group stop notification in such cases. The continued state is shared between the real parent and the ptracer but is only meaningful to the real parent. Always notify the real parent and notify the ptracer too for backward compatibility. Similar to stop notification, if the real parent is the ptracer, suppress a duplicate notification. Test case follows. #include <stdio.h> #include <unistd.h> #include <time.h> #include <errno.h> #include <sys/types.h> #include <sys/ptrace.h> #include <sys/wait.h> int main(void) { const struct timespec ts100ms = { .tv_nsec = 100000000 }; pid_t tracee, tracer; siginfo_t si; int i; tracee = fork(); if (tracee == 0) { while (1) { printf("tracee: SIGSTOP\n"); raise(SIGSTOP); nanosleep(&ts100ms, NULL); printf("tracee: SIGCONT\n"); raise(SIGCONT); nanosleep(&ts100ms, NULL); } } waitid(P_PID, tracee, &si, WSTOPPED | WNOHANG | WNOWAIT); tracer = fork(); if (tracer == 0) { nanosleep(&ts100ms, NULL); ptrace(PTRACE_ATTACH, tracee, NULL, NULL); for (i = 0; i < 11; i++) { si.si_pid = 0; waitid(P_PID, tracee, &si, WSTOPPED); if (si.si_pid && si.si_code == CLD_TRAPPED) ptrace(PTRACE_CONT, tracee, NULL, (void *)(long)si.si_status); } printf("tracer: EXITING\n"); return 0; } while (1) { si.si_pid = 0; waitid(P_PID, tracee, &si, WSTOPPED | WCONTINUED | WEXITED); if (si.si_pid) printf("mommy : WAIT status=%02d code=%02d\n", si.si_status, si.si_code); } return 0; } Before this patch, while ptraced, the real parent doesn't get notifications for job control events, so although it can access those events, the later waitid(2) call never wakes up. tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT tracee: SIGSTOP tracee: SIGCONT tracee: SIGSTOP tracee: SIGCONT tracee: SIGSTOP tracer: EXITING mommy : WAIT status=19 code=05 ^C After this patch, it works as expected. tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT mommy : WAIT status=18 code=06 tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT mommy : WAIT status=18 code=06 tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT mommy : WAIT status=18 code=06 tracee: SIGSTOP tracer: EXITING mommy : WAIT status=19 code=05 ^C -v2: Oleg pointed out that * Group stop notification to the real parent should also happen when ptracer detach races with ptrace_stop(). * real_parent_is_ptracer() should be testing thread group equality not the task itself as wait(2) and stop/cont notifications are normally thread-group wide. Both issues are fixed accordingly. -v3: real_parent_is_ptracer() updated to test child->real_parent instead of child->group_leader->real_parent per Oleg's suggestion. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com>
2011-03-23 09:37:01 +00:00
ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs Long ago and far away there was a BUG_ON at the start of ptrace_stop that did "BUG_ON(!(current->ptrace & PT_PTRACED));" [1]. The BUG_ON had never triggered but examination of the code showed that the BUG_ON could actually trigger. To complement removing the BUG_ON an attempt to better handle the race was added. The code detected the tracer had gone away and did not call do_notify_parent_cldstop. The code also attempted to prevent ptrace_report_syscall from sending spurious SIGTRAPs when the tracer went away. The code to detect when the tracer had gone away before sending a signal to tracer was a legitimate fix and continues to work to this date. The code to prevent sending spurious SIGTRAPs is a failure. At the time and until today the code only catches it when the tracer goes away after siglock is dropped and before read_lock is acquired. If the tracer goes away after read_lock is dropped a spurious SIGTRAP can still be sent to the tracee. The tracer going away after read_lock is dropped is the far likelier case as it is the bigger window. Given that the attempt to prevent the generation of a SIGTRAP was a failure and continues to be a failure remove the code that attempts to do that. This simplifies the code in ptrace_stop and makes ptrace_stop much easier to reason about. To successfully deal with the tracer going away, all of the tracer's instrumentation of the child would need to be removed, and reliably detecting when the tracer has set a signal to continue with would need to be implemented. [1] 66519f549ae5 ("[PATCH] fix ptracer death race yielding bogus BUG_ON") History-Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-9-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-05-04 18:39:58 +00:00
/*
* Don't want to allow preemption here, because
* sys_ptrace() needs this task to be inactive.
*
* XXX: implement read_unlock_no_resched().
*/
preempt_disable();
read_unlock(&tasklist_lock);
cgroup_enter_frozen();
preempt_enable_no_resched();
freezer,sched: Rewrite core freezer logic Rewrite the core freezer to behave better wrt thawing and be simpler in general. By replacing PF_FROZEN with TASK_FROZEN, a special block state, it is ensured frozen tasks stay frozen until thawed and don't randomly wake up early, as is currently possible. As such, it does away with PF_FROZEN and PF_FREEZER_SKIP, freeing up two PF_flags (yay!). Specifically; the current scheme works a little like: freezer_do_not_count(); schedule(); freezer_count(); And either the task is blocked, or it lands in try_to_freezer() through freezer_count(). Now, when it is blocked, the freezer considers it frozen and continues. However, on thawing, once pm_freezing is cleared, freezer_count() stops working, and any random/spurious wakeup will let a task run before its time. That is, thawing tries to thaw things in explicit order; kernel threads and workqueues before doing bringing SMP back before userspace etc.. However due to the above mentioned races it is entirely possible for userspace tasks to thaw (by accident) before SMP is back. This can be a fatal problem in asymmetric ISA architectures (eg ARMv9) where the userspace task requires a special CPU to run. As said; replace this with a special task state TASK_FROZEN and add the following state transitions: TASK_FREEZABLE -> TASK_FROZEN __TASK_STOPPED -> TASK_FROZEN __TASK_TRACED -> TASK_FROZEN The new TASK_FREEZABLE can be set on any state part of TASK_NORMAL (IOW. TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE) -- any such state is already required to deal with spurious wakeups and the freezer causes one such when thawing the task (since the original state is lost). The special __TASK_{STOPPED,TRACED} states *can* be restored since their canonical state is in ->jobctl. With this, frozen tasks need an explicit TASK_FROZEN wakeup and are free of undue (early / spurious) wakeups. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lore.kernel.org/r/20220822114649.055452969@infradead.org
2022-08-22 11:18:22 +00:00
schedule();
ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs Long ago and far away there was a BUG_ON at the start of ptrace_stop that did "BUG_ON(!(current->ptrace & PT_PTRACED));" [1]. The BUG_ON had never triggered but examination of the code showed that the BUG_ON could actually trigger. To complement removing the BUG_ON an attempt to better handle the race was added. The code detected the tracer had gone away and did not call do_notify_parent_cldstop. The code also attempted to prevent ptrace_report_syscall from sending spurious SIGTRAPs when the tracer went away. The code to detect when the tracer had gone away before sending a signal to tracer was a legitimate fix and continues to work to this date. The code to prevent sending spurious SIGTRAPs is a failure. At the time and until today the code only catches it when the tracer goes away after siglock is dropped and before read_lock is acquired. If the tracer goes away after read_lock is dropped a spurious SIGTRAP can still be sent to the tracee. The tracer going away after read_lock is dropped is the far likelier case as it is the bigger window. Given that the attempt to prevent the generation of a SIGTRAP was a failure and continues to be a failure remove the code that attempts to do that. This simplifies the code in ptrace_stop and makes ptrace_stop much easier to reason about. To successfully deal with the tracer going away, all of the tracer's instrumentation of the child would need to be removed, and reliably detecting when the tracer has set a signal to continue with would need to be implemented. [1] 66519f549ae5 ("[PATCH] fix ptracer death race yielding bogus BUG_ON") History-Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-9-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-05-04 18:39:58 +00:00
cgroup_leave_frozen(true);
/*
* We are back. Now reacquire the siglock before touching
* last_siginfo, so that we are sure to have synchronized with
* any signal-sending on another CPU that wants to examine it.
*/
spin_lock_irq(&current->sighand->siglock);
ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs Long ago and far away there was a BUG_ON at the start of ptrace_stop that did "BUG_ON(!(current->ptrace & PT_PTRACED));" [1]. The BUG_ON had never triggered but examination of the code showed that the BUG_ON could actually trigger. To complement removing the BUG_ON an attempt to better handle the race was added. The code detected the tracer had gone away and did not call do_notify_parent_cldstop. The code also attempted to prevent ptrace_report_syscall from sending spurious SIGTRAPs when the tracer went away. The code to detect when the tracer had gone away before sending a signal to tracer was a legitimate fix and continues to work to this date. The code to prevent sending spurious SIGTRAPs is a failure. At the time and until today the code only catches it when the tracer goes away after siglock is dropped and before read_lock is acquired. If the tracer goes away after read_lock is dropped a spurious SIGTRAP can still be sent to the tracee. The tracer going away after read_lock is dropped is the far likelier case as it is the bigger window. Given that the attempt to prevent the generation of a SIGTRAP was a failure and continues to be a failure remove the code that attempts to do that. This simplifies the code in ptrace_stop and makes ptrace_stop much easier to reason about. To successfully deal with the tracer going away, all of the tracer's instrumentation of the child would need to be removed, and reliably detecting when the tracer has set a signal to continue with would need to be implemented. [1] 66519f549ae5 ("[PATCH] fix ptracer death race yielding bogus BUG_ON") History-Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-9-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-05-04 18:39:58 +00:00
exit_code = current->exit_code;
current->last_siginfo = NULL;
current->ptrace_message = 0;
current->exit_code = 0;
ptrace: implement PTRACE_LISTEN The previous patch implemented async notification for ptrace but it only worked while trace is running. This patch introduces PTRACE_LISTEN which is suggested by Oleg Nestrov. It's allowed iff tracee is in STOP trap and puts tracee into quasi-running state - tracee never really runs but wait(2) and ptrace(2) consider it to be running. While ptracer is listening, tracee is allowed to re-enter STOP to notify an async event. Listening state is cleared on the first notification. Ptracer can also clear it by issuing INTERRUPT - tracee will re-trap into STOP with listening state cleared. This allows ptracer to monitor group stop state without running tracee - use INTERRUPT to put tracee into STOP trap, issue LISTEN and then wait(2) to wait for the next group stop event. When it happens, PTRACE_GETSIGINFO provides information to determine the current state. Test program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_INTERRUPT 0x4207 #define PTRACE_LISTEN 0x4208 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts1s = { .tv_sec = 1 }; int main(int argc, char **argv) { pid_t tracee, tracer; int i; tracee = fork(); if (!tracee) while (1) pause(); tracer = fork(); if (!tracer) { siginfo_t si; ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL); repeat: waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_GETSIGINFO, tracee, NULL, &si); if (!si.si_code) { printf("tracer: SIG %d\n", si.si_signo); ptrace(PTRACE_CONT, tracee, NULL, (void *)(unsigned long)si.si_signo); goto repeat; } printf("tracer: stopped=%d signo=%d\n", si.si_signo != SIGTRAP, si.si_signo); if (si.si_signo != SIGTRAP) ptrace(PTRACE_LISTEN, tracee, NULL, NULL); else ptrace(PTRACE_CONT, tracee, NULL, NULL); goto repeat; } for (i = 0; i < 3; i++) { nanosleep(&ts1s, NULL); printf("mother: SIGSTOP\n"); kill(tracee, SIGSTOP); nanosleep(&ts1s, NULL); printf("mother: SIGCONT\n"); kill(tracee, SIGCONT); } nanosleep(&ts1s, NULL); kill(tracer, SIGKILL); kill(tracee, SIGKILL); return 0; } This is identical to the program to test TRAP_NOTIFY except that tracee is PTRACE_LISTEN'd instead of PTRACE_CONT'd when group stopped. This allows ptracer to monitor when group stop ends without running tracee. # ./test-listen tracer: stopped=0 signo=5 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 -v2: Moved JOBCTL_LISTENING check in wait_task_stopped() into task_stopped_code() as suggested by Oleg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:18 +00:00
/* LISTENING can be set only during STOP traps, clear it */
ptrace: Don't change __state Stop playing with tsk->__state to remove TASK_WAKEKILL while a ptrace command is executing. Instead remove TASK_WAKEKILL from the definition of TASK_TRACED, and implement a new jobctl flag TASK_PTRACE_FROZEN. This new flag is set in jobctl_freeze_task and cleared when ptrace_stop is awoken or in jobctl_unfreeze_task (when ptrace_stop remains asleep). In signal_wake_up add __TASK_TRACED to state along with TASK_WAKEKILL when the wake up is for a fatal signal. Skip adding __TASK_TRACED when TASK_PTRACE_FROZEN is not set. This has the same effect as changing TASK_TRACED to __TASK_TRACED as all of the wake_ups that use TASK_KILLABLE go through signal_wake_up. Handle a ptrace_stop being called with a pending fatal signal. Previously it would have been handled by schedule simply failing to sleep. As TASK_WAKEKILL is no longer part of TASK_TRACED schedule will sleep with a fatal_signal_pending. The code in signal_wake_up guarantees that the code will be awaked by any fatal signal that codes after TASK_TRACED is set. Previously the __state value of __TASK_TRACED was changed to TASK_RUNNING when woken up or back to TASK_TRACED when the code was left in ptrace_stop. Now when woken up ptrace_stop now clears JOBCTL_PTRACE_FROZEN and when left sleeping ptrace_unfreezed_traced clears JOBCTL_PTRACE_FROZEN. Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-10-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-04-29 13:43:34 +00:00
current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
ptrace: implement PTRACE_LISTEN The previous patch implemented async notification for ptrace but it only worked while trace is running. This patch introduces PTRACE_LISTEN which is suggested by Oleg Nestrov. It's allowed iff tracee is in STOP trap and puts tracee into quasi-running state - tracee never really runs but wait(2) and ptrace(2) consider it to be running. While ptracer is listening, tracee is allowed to re-enter STOP to notify an async event. Listening state is cleared on the first notification. Ptracer can also clear it by issuing INTERRUPT - tracee will re-trap into STOP with listening state cleared. This allows ptracer to monitor group stop state without running tracee - use INTERRUPT to put tracee into STOP trap, issue LISTEN and then wait(2) to wait for the next group stop event. When it happens, PTRACE_GETSIGINFO provides information to determine the current state. Test program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_INTERRUPT 0x4207 #define PTRACE_LISTEN 0x4208 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts1s = { .tv_sec = 1 }; int main(int argc, char **argv) { pid_t tracee, tracer; int i; tracee = fork(); if (!tracee) while (1) pause(); tracer = fork(); if (!tracer) { siginfo_t si; ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL); repeat: waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_GETSIGINFO, tracee, NULL, &si); if (!si.si_code) { printf("tracer: SIG %d\n", si.si_signo); ptrace(PTRACE_CONT, tracee, NULL, (void *)(unsigned long)si.si_signo); goto repeat; } printf("tracer: stopped=%d signo=%d\n", si.si_signo != SIGTRAP, si.si_signo); if (si.si_signo != SIGTRAP) ptrace(PTRACE_LISTEN, tracee, NULL, NULL); else ptrace(PTRACE_CONT, tracee, NULL, NULL); goto repeat; } for (i = 0; i < 3; i++) { nanosleep(&ts1s, NULL); printf("mother: SIGSTOP\n"); kill(tracee, SIGSTOP); nanosleep(&ts1s, NULL); printf("mother: SIGCONT\n"); kill(tracee, SIGCONT); } nanosleep(&ts1s, NULL); kill(tracer, SIGKILL); kill(tracee, SIGKILL); return 0; } This is identical to the program to test TRAP_NOTIFY except that tracee is PTRACE_LISTEN'd instead of PTRACE_CONT'd when group stopped. This allows ptracer to monitor when group stop ends without running tracee. # ./test-listen tracer: stopped=0 signo=5 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 -v2: Moved JOBCTL_LISTENING check in wait_task_stopped() into task_stopped_code() as suggested by Oleg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:18 +00:00
/*
* Queued signals ignored us while we were stopped for tracing.
* So check for any that we should take before resuming user mode.
* This sets TIF_SIGPENDING, but never clears it.
*/
recalc_sigpending_tsk(current);
return exit_code;
}
static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
{
kernel_siginfo_t info;
clear_siginfo(&info);
ptrace: implement PTRACE_SEIZE PTRACE_ATTACH implicitly issues SIGSTOP on attach which has side effects on tracee signal and job control states. This patch implements a new ptrace request PTRACE_SEIZE which attaches a tracee without trapping it or affecting its signal and job control states. The usage is the same with PTRACE_ATTACH but it takes PTRACE_SEIZE_* flags in @data. Currently, the only defined flag is PTRACE_SEIZE_DEVEL which is a temporary flag to enable PTRACE_SEIZE. PTRACE_SEIZE will change ptrace behaviors outside of attach itself. The changes will be implemented gradually and the DEVEL flag is to prevent programs which expect full SEIZE behavior from using it before all the behavior modifications are complete while allowing unit testing. The flag will be removed once SEIZE behaviors are completely implemented. * PTRACE_SEIZE, unlike ATTACH, doesn't force tracee to trap. After attaching tracee continues to run unless a trap condition occurs. * PTRACE_SEIZE doesn't affect signal or group stop state. * If PTRACE_SEIZE'd, group stop uses PTRACE_EVENT_STOP trap which uses exit_code of (signr | PTRACE_EVENT_STOP << 8) where signr is one of the stopping signals if group stop is in effect or SIGTRAP otherwise, and returns usual trap siginfo on PTRACE_GETSIGINFO instead of NULL. Seizing sets PT_SEIZED in ->ptrace of the tracee. This flag will be used to determine whether new SEIZE behaviors should be enabled. Test program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts100ms = { .tv_nsec = 100000000 }; static const struct timespec ts1s = { .tv_sec = 1 }; static const struct timespec ts3s = { .tv_sec = 3 }; int main(int argc, char **argv) { pid_t tracee; tracee = fork(); if (tracee == 0) { nanosleep(&ts100ms, NULL); while (1) { printf("tracee: alive\n"); nanosleep(&ts1s, NULL); } } if (argc > 1) kill(tracee, SIGSTOP); nanosleep(&ts100ms, NULL); ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); if (argc > 1) { waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_CONT, tracee, NULL, NULL); } nanosleep(&ts3s, NULL); printf("tracer: exiting\n"); return 0; } When the above program is called w/o argument, tracee is seized while running and remains running. When tracer exits, tracee continues to run and print out messages. # ./test-seize-simple tracee: alive tracee: alive tracee: alive tracer: exiting tracee: alive tracee: alive When called with an argument, tracee is seized from stopped state and continued, and returns to stopped state when tracer exits. # ./test-seize tracee: alive tracee: alive tracee: alive tracer: exiting # ps -el|grep test-seize 1 T 0 4720 1 0 80 0 - 941 signal ttyS0 00:00:00 test-seize -v2: SEIZE doesn't schedule TRAP_STOP and leaves tracee running as Jan suggested. -v3: PTRACE_EVENT_STOP traps now report group stop state by signr. If group stop is in effect the stop signal number is returned as part of exit_code; otherwise, SIGTRAP. This was suggested by Denys and Oleg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jan Kratochvil <jan.kratochvil@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:15 +00:00
info.si_signo = signr;
info.si_code = exit_code;
info.si_pid = task_pid_vnr(current);
info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
/* Let the debugger run. */
ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs Long ago and far away there was a BUG_ON at the start of ptrace_stop that did "BUG_ON(!(current->ptrace & PT_PTRACED));" [1]. The BUG_ON had never triggered but examination of the code showed that the BUG_ON could actually trigger. To complement removing the BUG_ON an attempt to better handle the race was added. The code detected the tracer had gone away and did not call do_notify_parent_cldstop. The code also attempted to prevent ptrace_report_syscall from sending spurious SIGTRAPs when the tracer went away. The code to detect when the tracer had gone away before sending a signal to tracer was a legitimate fix and continues to work to this date. The code to prevent sending spurious SIGTRAPs is a failure. At the time and until today the code only catches it when the tracer goes away after siglock is dropped and before read_lock is acquired. If the tracer goes away after read_lock is dropped a spurious SIGTRAP can still be sent to the tracee. The tracer going away after read_lock is dropped is the far likelier case as it is the bigger window. Given that the attempt to prevent the generation of a SIGTRAP was a failure and continues to be a failure remove the code that attempts to do that. This simplifies the code in ptrace_stop and makes ptrace_stop much easier to reason about. To successfully deal with the tracer going away, all of the tracer's instrumentation of the child would need to be removed, and reliably detecting when the tracer has set a signal to continue with would need to be implemented. [1] 66519f549ae5 ("[PATCH] fix ptracer death race yielding bogus BUG_ON") History-Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-9-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-05-04 18:39:58 +00:00
return ptrace_stop(exit_code, why, message, &info);
ptrace: implement PTRACE_SEIZE PTRACE_ATTACH implicitly issues SIGSTOP on attach which has side effects on tracee signal and job control states. This patch implements a new ptrace request PTRACE_SEIZE which attaches a tracee without trapping it or affecting its signal and job control states. The usage is the same with PTRACE_ATTACH but it takes PTRACE_SEIZE_* flags in @data. Currently, the only defined flag is PTRACE_SEIZE_DEVEL which is a temporary flag to enable PTRACE_SEIZE. PTRACE_SEIZE will change ptrace behaviors outside of attach itself. The changes will be implemented gradually and the DEVEL flag is to prevent programs which expect full SEIZE behavior from using it before all the behavior modifications are complete while allowing unit testing. The flag will be removed once SEIZE behaviors are completely implemented. * PTRACE_SEIZE, unlike ATTACH, doesn't force tracee to trap. After attaching tracee continues to run unless a trap condition occurs. * PTRACE_SEIZE doesn't affect signal or group stop state. * If PTRACE_SEIZE'd, group stop uses PTRACE_EVENT_STOP trap which uses exit_code of (signr | PTRACE_EVENT_STOP << 8) where signr is one of the stopping signals if group stop is in effect or SIGTRAP otherwise, and returns usual trap siginfo on PTRACE_GETSIGINFO instead of NULL. Seizing sets PT_SEIZED in ->ptrace of the tracee. This flag will be used to determine whether new SEIZE behaviors should be enabled. Test program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts100ms = { .tv_nsec = 100000000 }; static const struct timespec ts1s = { .tv_sec = 1 }; static const struct timespec ts3s = { .tv_sec = 3 }; int main(int argc, char **argv) { pid_t tracee; tracee = fork(); if (tracee == 0) { nanosleep(&ts100ms, NULL); while (1) { printf("tracee: alive\n"); nanosleep(&ts1s, NULL); } } if (argc > 1) kill(tracee, SIGSTOP); nanosleep(&ts100ms, NULL); ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); if (argc > 1) { waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_CONT, tracee, NULL, NULL); } nanosleep(&ts3s, NULL); printf("tracer: exiting\n"); return 0; } When the above program is called w/o argument, tracee is seized while running and remains running. When tracer exits, tracee continues to run and print out messages. # ./test-seize-simple tracee: alive tracee: alive tracee: alive tracer: exiting tracee: alive tracee: alive When called with an argument, tracee is seized from stopped state and continued, and returns to stopped state when tracer exits. # ./test-seize tracee: alive tracee: alive tracee: alive tracer: exiting # ps -el|grep test-seize 1 T 0 4720 1 0 80 0 - 941 signal ttyS0 00:00:00 test-seize -v2: SEIZE doesn't schedule TRAP_STOP and leaves tracee running as Jan suggested. -v3: PTRACE_EVENT_STOP traps now report group stop state by signr. If group stop is in effect the stop signal number is returned as part of exit_code; otherwise, SIGTRAP. This was suggested by Denys and Oleg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jan Kratochvil <jan.kratochvil@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:15 +00:00
}
int ptrace_notify(int exit_code, unsigned long message)
ptrace: implement PTRACE_SEIZE PTRACE_ATTACH implicitly issues SIGSTOP on attach which has side effects on tracee signal and job control states. This patch implements a new ptrace request PTRACE_SEIZE which attaches a tracee without trapping it or affecting its signal and job control states. The usage is the same with PTRACE_ATTACH but it takes PTRACE_SEIZE_* flags in @data. Currently, the only defined flag is PTRACE_SEIZE_DEVEL which is a temporary flag to enable PTRACE_SEIZE. PTRACE_SEIZE will change ptrace behaviors outside of attach itself. The changes will be implemented gradually and the DEVEL flag is to prevent programs which expect full SEIZE behavior from using it before all the behavior modifications are complete while allowing unit testing. The flag will be removed once SEIZE behaviors are completely implemented. * PTRACE_SEIZE, unlike ATTACH, doesn't force tracee to trap. After attaching tracee continues to run unless a trap condition occurs. * PTRACE_SEIZE doesn't affect signal or group stop state. * If PTRACE_SEIZE'd, group stop uses PTRACE_EVENT_STOP trap which uses exit_code of (signr | PTRACE_EVENT_STOP << 8) where signr is one of the stopping signals if group stop is in effect or SIGTRAP otherwise, and returns usual trap siginfo on PTRACE_GETSIGINFO instead of NULL. Seizing sets PT_SEIZED in ->ptrace of the tracee. This flag will be used to determine whether new SEIZE behaviors should be enabled. Test program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts100ms = { .tv_nsec = 100000000 }; static const struct timespec ts1s = { .tv_sec = 1 }; static const struct timespec ts3s = { .tv_sec = 3 }; int main(int argc, char **argv) { pid_t tracee; tracee = fork(); if (tracee == 0) { nanosleep(&ts100ms, NULL); while (1) { printf("tracee: alive\n"); nanosleep(&ts1s, NULL); } } if (argc > 1) kill(tracee, SIGSTOP); nanosleep(&ts100ms, NULL); ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); if (argc > 1) { waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_CONT, tracee, NULL, NULL); } nanosleep(&ts3s, NULL); printf("tracer: exiting\n"); return 0; } When the above program is called w/o argument, tracee is seized while running and remains running. When tracer exits, tracee continues to run and print out messages. # ./test-seize-simple tracee: alive tracee: alive tracee: alive tracer: exiting tracee: alive tracee: alive When called with an argument, tracee is seized from stopped state and continued, and returns to stopped state when tracer exits. # ./test-seize tracee: alive tracee: alive tracee: alive tracer: exiting # ps -el|grep test-seize 1 T 0 4720 1 0 80 0 - 941 signal ttyS0 00:00:00 test-seize -v2: SEIZE doesn't schedule TRAP_STOP and leaves tracee running as Jan suggested. -v3: PTRACE_EVENT_STOP traps now report group stop state by signr. If group stop is in effect the stop signal number is returned as part of exit_code; otherwise, SIGTRAP. This was suggested by Denys and Oleg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jan Kratochvil <jan.kratochvil@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:15 +00:00
{
int signr;
ptrace: implement PTRACE_SEIZE PTRACE_ATTACH implicitly issues SIGSTOP on attach which has side effects on tracee signal and job control states. This patch implements a new ptrace request PTRACE_SEIZE which attaches a tracee without trapping it or affecting its signal and job control states. The usage is the same with PTRACE_ATTACH but it takes PTRACE_SEIZE_* flags in @data. Currently, the only defined flag is PTRACE_SEIZE_DEVEL which is a temporary flag to enable PTRACE_SEIZE. PTRACE_SEIZE will change ptrace behaviors outside of attach itself. The changes will be implemented gradually and the DEVEL flag is to prevent programs which expect full SEIZE behavior from using it before all the behavior modifications are complete while allowing unit testing. The flag will be removed once SEIZE behaviors are completely implemented. * PTRACE_SEIZE, unlike ATTACH, doesn't force tracee to trap. After attaching tracee continues to run unless a trap condition occurs. * PTRACE_SEIZE doesn't affect signal or group stop state. * If PTRACE_SEIZE'd, group stop uses PTRACE_EVENT_STOP trap which uses exit_code of (signr | PTRACE_EVENT_STOP << 8) where signr is one of the stopping signals if group stop is in effect or SIGTRAP otherwise, and returns usual trap siginfo on PTRACE_GETSIGINFO instead of NULL. Seizing sets PT_SEIZED in ->ptrace of the tracee. This flag will be used to determine whether new SEIZE behaviors should be enabled. Test program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts100ms = { .tv_nsec = 100000000 }; static const struct timespec ts1s = { .tv_sec = 1 }; static const struct timespec ts3s = { .tv_sec = 3 }; int main(int argc, char **argv) { pid_t tracee; tracee = fork(); if (tracee == 0) { nanosleep(&ts100ms, NULL); while (1) { printf("tracee: alive\n"); nanosleep(&ts1s, NULL); } } if (argc > 1) kill(tracee, SIGSTOP); nanosleep(&ts100ms, NULL); ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); if (argc > 1) { waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_CONT, tracee, NULL, NULL); } nanosleep(&ts3s, NULL); printf("tracer: exiting\n"); return 0; } When the above program is called w/o argument, tracee is seized while running and remains running. When tracer exits, tracee continues to run and print out messages. # ./test-seize-simple tracee: alive tracee: alive tracee: alive tracer: exiting tracee: alive tracee: alive When called with an argument, tracee is seized from stopped state and continued, and returns to stopped state when tracer exits. # ./test-seize tracee: alive tracee: alive tracee: alive tracer: exiting # ps -el|grep test-seize 1 T 0 4720 1 0 80 0 - 941 signal ttyS0 00:00:00 test-seize -v2: SEIZE doesn't schedule TRAP_STOP and leaves tracee running as Jan suggested. -v3: PTRACE_EVENT_STOP traps now report group stop state by signr. If group stop is in effect the stop signal number is returned as part of exit_code; otherwise, SIGTRAP. This was suggested by Denys and Oleg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jan Kratochvil <jan.kratochvil@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:15 +00:00
BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
if (unlikely(task_work_pending(current)))
task_work_run();
ptrace: implement PTRACE_SEIZE PTRACE_ATTACH implicitly issues SIGSTOP on attach which has side effects on tracee signal and job control states. This patch implements a new ptrace request PTRACE_SEIZE which attaches a tracee without trapping it or affecting its signal and job control states. The usage is the same with PTRACE_ATTACH but it takes PTRACE_SEIZE_* flags in @data. Currently, the only defined flag is PTRACE_SEIZE_DEVEL which is a temporary flag to enable PTRACE_SEIZE. PTRACE_SEIZE will change ptrace behaviors outside of attach itself. The changes will be implemented gradually and the DEVEL flag is to prevent programs which expect full SEIZE behavior from using it before all the behavior modifications are complete while allowing unit testing. The flag will be removed once SEIZE behaviors are completely implemented. * PTRACE_SEIZE, unlike ATTACH, doesn't force tracee to trap. After attaching tracee continues to run unless a trap condition occurs. * PTRACE_SEIZE doesn't affect signal or group stop state. * If PTRACE_SEIZE'd, group stop uses PTRACE_EVENT_STOP trap which uses exit_code of (signr | PTRACE_EVENT_STOP << 8) where signr is one of the stopping signals if group stop is in effect or SIGTRAP otherwise, and returns usual trap siginfo on PTRACE_GETSIGINFO instead of NULL. Seizing sets PT_SEIZED in ->ptrace of the tracee. This flag will be used to determine whether new SEIZE behaviors should be enabled. Test program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts100ms = { .tv_nsec = 100000000 }; static const struct timespec ts1s = { .tv_sec = 1 }; static const struct timespec ts3s = { .tv_sec = 3 }; int main(int argc, char **argv) { pid_t tracee; tracee = fork(); if (tracee == 0) { nanosleep(&ts100ms, NULL); while (1) { printf("tracee: alive\n"); nanosleep(&ts1s, NULL); } } if (argc > 1) kill(tracee, SIGSTOP); nanosleep(&ts100ms, NULL); ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); if (argc > 1) { waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_CONT, tracee, NULL, NULL); } nanosleep(&ts3s, NULL); printf("tracer: exiting\n"); return 0; } When the above program is called w/o argument, tracee is seized while running and remains running. When tracer exits, tracee continues to run and print out messages. # ./test-seize-simple tracee: alive tracee: alive tracee: alive tracer: exiting tracee: alive tracee: alive When called with an argument, tracee is seized from stopped state and continued, and returns to stopped state when tracer exits. # ./test-seize tracee: alive tracee: alive tracee: alive tracer: exiting # ps -el|grep test-seize 1 T 0 4720 1 0 80 0 - 941 signal ttyS0 00:00:00 test-seize -v2: SEIZE doesn't schedule TRAP_STOP and leaves tracee running as Jan suggested. -v3: PTRACE_EVENT_STOP traps now report group stop state by signr. If group stop is in effect the stop signal number is returned as part of exit_code; otherwise, SIGTRAP. This was suggested by Denys and Oleg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jan Kratochvil <jan.kratochvil@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:15 +00:00
spin_lock_irq(&current->sighand->siglock);
signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
spin_unlock_irq(&current->sighand->siglock);
return signr;
}
job control: introduce JOBCTL_TRAP_STOP and use it for group stop trap do_signal_stop() implemented both normal group stop and trap for group stop while ptraced. This approach has been enough but scheduled changes require trap mechanism which can be used in more generic manner and using group stop trap for generic trap site simplifies both userland visible interface and implementation. This patch adds a new jobctl flag - JOBCTL_TRAP_STOP. When set, it triggers a trap site, which behaves like group stop trap, in get_signal_to_deliver() after checking for pending signals. While ptraced, do_signal_stop() doesn't stop itself. It initiates group stop if requested and schedules JOBCTL_TRAP_STOP and returns. The caller - get_signal_to_deliver() - is responsible for checking whether TRAP_STOP is pending afterwards and handling it. ptrace_attach() is updated to use JOBCTL_TRAP_STOP instead of JOBCTL_STOP_PENDING and __ptrace_unlink() to clear all pending trap bits and TRAPPING so that TRAP_STOP and future trap bits don't linger after detach. While at it, add proper function comment to do_signal_stop() and make it return bool. -v2: __ptrace_unlink() updated to clear JOBCTL_TRAP_MASK and TRAPPING instead of JOBCTL_PENDING_MASK. This avoids accidentally clearing JOBCTL_STOP_CONSUME. Spotted by Oleg. -v3: do_signal_stop() updated to return %false without dropping siglock while ptraced and TRAP_STOP check moved inside for(;;) loop after group stop participation. This avoids unnecessary relocking and also will help avoiding unnecessary traps by consuming group stop before handling pending traps. -v4: Jobctl trap handling moved into a separate function - do_jobctl_trap(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:14 +00:00
/**
* do_signal_stop - handle group stop for SIGSTOP and other stop signals
* @signr: signr causing group stop if initiating
*
* If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
* and participate in it. If already set, participate in the existing
* group stop. If participated in a group stop (and thus slept), %true is
* returned with siglock released.
*
* If ptraced, this function doesn't handle stop itself. Instead,
* %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
* untouched. The caller must ensure that INTERRUPT trap handling takes
* places afterwards.
*
* CONTEXT:
* Must be called with @current->sighand->siglock held, which is released
* on %true return.
*
* RETURNS:
* %false if group stop is already cancelled or ptrace trap is scheduled.
* %true if participated in group stop.
*/
job control: introduce JOBCTL_TRAP_STOP and use it for group stop trap do_signal_stop() implemented both normal group stop and trap for group stop while ptraced. This approach has been enough but scheduled changes require trap mechanism which can be used in more generic manner and using group stop trap for generic trap site simplifies both userland visible interface and implementation. This patch adds a new jobctl flag - JOBCTL_TRAP_STOP. When set, it triggers a trap site, which behaves like group stop trap, in get_signal_to_deliver() after checking for pending signals. While ptraced, do_signal_stop() doesn't stop itself. It initiates group stop if requested and schedules JOBCTL_TRAP_STOP and returns. The caller - get_signal_to_deliver() - is responsible for checking whether TRAP_STOP is pending afterwards and handling it. ptrace_attach() is updated to use JOBCTL_TRAP_STOP instead of JOBCTL_STOP_PENDING and __ptrace_unlink() to clear all pending trap bits and TRAPPING so that TRAP_STOP and future trap bits don't linger after detach. While at it, add proper function comment to do_signal_stop() and make it return bool. -v2: __ptrace_unlink() updated to clear JOBCTL_TRAP_MASK and TRAPPING instead of JOBCTL_PENDING_MASK. This avoids accidentally clearing JOBCTL_STOP_CONSUME. Spotted by Oleg. -v3: do_signal_stop() updated to return %false without dropping siglock while ptraced and TRAP_STOP check moved inside for(;;) loop after group stop participation. This avoids unnecessary relocking and also will help avoiding unnecessary traps by consuming group stop before handling pending traps. -v4: Jobctl trap handling moved into a separate function - do_jobctl_trap(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:14 +00:00
static bool do_signal_stop(int signr)
__releases(&current->sighand->siglock)
{
struct signal_struct *sig = current->signal;
if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
struct task_struct *t;
/* signr will be recorded in task->jobctl for retries */
WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
ptrace: Clean transitions between TASK_STOPPED and TRACED Currently, if the task is STOPPED on ptrace attach, it's left alone and the state is silently changed to TRACED on the next ptrace call. The behavior breaks the assumption that arch_ptrace_stop() is called before any task is poked by ptrace and is ugly in that a task manipulates the state of another task directly. With GROUP_STOP_PENDING, the transitions between TASK_STOPPED and TRACED can be made clean. The tracer can use the flag to tell the tracee to retry stop on attach and detach. On retry, the tracee will enter the desired state in the correct way. The lower 16bits of task->group_stop is used to remember the signal number which caused the last group stop. This is used while retrying for ptrace attach as the original group_exit_code could have been consumed with wait(2) by then. As the real parent may wait(2) and consume the group_exit_code anytime, the group_exit_code needs to be saved separately so that it can be used when switching from regular sleep to ptrace_stop(). This is recorded in the lower 16bits of task->group_stop. If a task is already stopped and there's no intervening SIGCONT, a ptrace request immediately following a successful PTRACE_ATTACH should always succeed even if the tracer doesn't wait(2) for attach completion; however, with this change, the tracee might still be TASK_RUNNING trying to enter TASK_TRACED which would cause the following request to fail with -ESRCH. This intermediate state is hidden from the ptracer by setting GROUP_STOP_TRAPPING on attach and making ptrace_check_attach() wait for it to clear on its signal->wait_chldexit. Completing the transition or getting killed clears TRAPPING and wakes up the tracer. Note that the STOPPED -> RUNNING -> TRACED transition is still visible to other threads which are in the same group as the ptracer and the reverse transition is visible to all. Please read the comments for details. Oleg: * Spotted a race condition where a task may retry group stop without proper bookkeeping. Fixed by redoing bookkeeping on retry. * Spotted that the transition is visible to userland in several different ways. Most are fixed with GROUP_STOP_TRAPPING. Unhandled corner case is documented. * Pointed out not setting GROUP_STOP_SIGMASK on an already stopped task would result in more consistent behavior. * Pointed out that calling ptrace_stop() from do_signal_stop() in TASK_STOPPED can race with group stop start logic and then confuse the TRAPPING wait in ptrace_check_attach(). ptrace_stop() is now called with TASK_RUNNING. * Suggested using signal->wait_chldexit instead of bit wait. * Spotted a race condition between TRACED transition and clearing of TRAPPING. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
2011-03-23 09:37:00 +00:00
if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
unlikely(sig->group_exec_task))
job control: introduce JOBCTL_TRAP_STOP and use it for group stop trap do_signal_stop() implemented both normal group stop and trap for group stop while ptraced. This approach has been enough but scheduled changes require trap mechanism which can be used in more generic manner and using group stop trap for generic trap site simplifies both userland visible interface and implementation. This patch adds a new jobctl flag - JOBCTL_TRAP_STOP. When set, it triggers a trap site, which behaves like group stop trap, in get_signal_to_deliver() after checking for pending signals. While ptraced, do_signal_stop() doesn't stop itself. It initiates group stop if requested and schedules JOBCTL_TRAP_STOP and returns. The caller - get_signal_to_deliver() - is responsible for checking whether TRAP_STOP is pending afterwards and handling it. ptrace_attach() is updated to use JOBCTL_TRAP_STOP instead of JOBCTL_STOP_PENDING and __ptrace_unlink() to clear all pending trap bits and TRAPPING so that TRAP_STOP and future trap bits don't linger after detach. While at it, add proper function comment to do_signal_stop() and make it return bool. -v2: __ptrace_unlink() updated to clear JOBCTL_TRAP_MASK and TRAPPING instead of JOBCTL_PENDING_MASK. This avoids accidentally clearing JOBCTL_STOP_CONSUME. Spotted by Oleg. -v3: do_signal_stop() updated to return %false without dropping siglock while ptraced and TRAP_STOP check moved inside for(;;) loop after group stop participation. This avoids unnecessary relocking and also will help avoiding unnecessary traps by consuming group stop before handling pending traps. -v4: Jobctl trap handling moved into a separate function - do_jobctl_trap(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:14 +00:00
return false;
/*
job control: Don't set group_stop exit_code if re-entering job control stop While ptraced, a task may be resumed while the containing process is still job control stopped. If the task receives another stop signal in this state, it will still initiate group stop, which generates group_exit_code, which the real parent would be able to see once the ptracer detaches. In this scenario, the real parent may see two consecutive CLD_STOPPED events from two stop signals without intervening SIGCONT, which normally is impossible. Test case follows. #include <stdio.h> #include <unistd.h> #include <sys/ptrace.h> #include <sys/wait.h> int main(void) { pid_t tracee; siginfo_t si; tracee = fork(); if (!tracee) while (1) pause(); kill(tracee, SIGSTOP); waitid(P_PID, tracee, &si, WSTOPPED); if (!fork()) { ptrace(PTRACE_ATTACH, tracee, NULL, NULL); waitid(P_PID, tracee, &si, WSTOPPED); ptrace(PTRACE_CONT, tracee, NULL, (void *)(long)si.si_status); waitid(P_PID, tracee, &si, WSTOPPED); ptrace(PTRACE_CONT, tracee, NULL, (void *)(long)si.si_status); waitid(P_PID, tracee, &si, WSTOPPED); ptrace(PTRACE_DETACH, tracee, NULL, NULL); return 0; } while (1) { si.si_pid = 0; waitid(P_PID, tracee, &si, WSTOPPED | WNOHANG); if (si.si_pid) printf("st=%02d c=%02d\n", si.si_status, si.si_code); } return 0; } Before the patch, the latter waitid() in polling mode reports the second stopped event generated by the implied SIGSTOP of PTRACE_ATTACH. st=19 c=05 ^C After the patch, the second event is not reported. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com>
2011-03-23 09:37:01 +00:00
* There is no group stop already in progress. We must
* initiate one now.
*
* While ptraced, a task may be resumed while group stop is
* still in effect and then receive a stop signal and
* initiate another group stop. This deviates from the
* usual behavior as two consecutive stop signals can't
* cause two group stops when !ptraced. That is why we
* also check !task_is_stopped(t) below.
job control: Don't set group_stop exit_code if re-entering job control stop While ptraced, a task may be resumed while the containing process is still job control stopped. If the task receives another stop signal in this state, it will still initiate group stop, which generates group_exit_code, which the real parent would be able to see once the ptracer detaches. In this scenario, the real parent may see two consecutive CLD_STOPPED events from two stop signals without intervening SIGCONT, which normally is impossible. Test case follows. #include <stdio.h> #include <unistd.h> #include <sys/ptrace.h> #include <sys/wait.h> int main(void) { pid_t tracee; siginfo_t si; tracee = fork(); if (!tracee) while (1) pause(); kill(tracee, SIGSTOP); waitid(P_PID, tracee, &si, WSTOPPED); if (!fork()) { ptrace(PTRACE_ATTACH, tracee, NULL, NULL); waitid(P_PID, tracee, &si, WSTOPPED); ptrace(PTRACE_CONT, tracee, NULL, (void *)(long)si.si_status); waitid(P_PID, tracee, &si, WSTOPPED); ptrace(PTRACE_CONT, tracee, NULL, (void *)(long)si.si_status); waitid(P_PID, tracee, &si, WSTOPPED); ptrace(PTRACE_DETACH, tracee, NULL, NULL); return 0; } while (1) { si.si_pid = 0; waitid(P_PID, tracee, &si, WSTOPPED | WNOHANG); if (si.si_pid) printf("st=%02d c=%02d\n", si.si_status, si.si_code); } return 0; } Before the patch, the latter waitid() in polling mode reports the second stopped event generated by the implied SIGSTOP of PTRACE_ATTACH. st=19 c=05 ^C After the patch, the second event is not reported. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com>
2011-03-23 09:37:01 +00:00
*
* The condition can be distinguished by testing whether
* SIGNAL_STOP_STOPPED is already set. Don't generate
* group_exit_code in such case.
*
* This is not necessary for SIGNAL_STOP_CONTINUED because
* an intervening stop signal is required to cause two
* continued events regardless of ptrace.
*/
job control: Don't set group_stop exit_code if re-entering job control stop While ptraced, a task may be resumed while the containing process is still job control stopped. If the task receives another stop signal in this state, it will still initiate group stop, which generates group_exit_code, which the real parent would be able to see once the ptracer detaches. In this scenario, the real parent may see two consecutive CLD_STOPPED events from two stop signals without intervening SIGCONT, which normally is impossible. Test case follows. #include <stdio.h> #include <unistd.h> #include <sys/ptrace.h> #include <sys/wait.h> int main(void) { pid_t tracee; siginfo_t si; tracee = fork(); if (!tracee) while (1) pause(); kill(tracee, SIGSTOP); waitid(P_PID, tracee, &si, WSTOPPED); if (!fork()) { ptrace(PTRACE_ATTACH, tracee, NULL, NULL); waitid(P_PID, tracee, &si, WSTOPPED); ptrace(PTRACE_CONT, tracee, NULL, (void *)(long)si.si_status); waitid(P_PID, tracee, &si, WSTOPPED); ptrace(PTRACE_CONT, tracee, NULL, (void *)(long)si.si_status); waitid(P_PID, tracee, &si, WSTOPPED); ptrace(PTRACE_DETACH, tracee, NULL, NULL); return 0; } while (1) { si.si_pid = 0; waitid(P_PID, tracee, &si, WSTOPPED | WNOHANG); if (si.si_pid) printf("st=%02d c=%02d\n", si.si_status, si.si_code); } return 0; } Before the patch, the latter waitid() in polling mode reports the second stopped event generated by the implied SIGSTOP of PTRACE_ATTACH. st=19 c=05 ^C After the patch, the second event is not reported. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com>
2011-03-23 09:37:01 +00:00
if (!(sig->flags & SIGNAL_STOP_STOPPED))
sig->group_exit_code = signr;
sig->group_stop_count = 0;
if (task_set_jobctl_pending(current, signr | gstop))
sig->group_stop_count++;
t = current;
while_each_thread(current, t) {
/*
* Setting state to TASK_STOPPED for a group
* stop is always done with the siglock held,
* so this check has no races.
*/
if (!task_is_stopped(t) &&
task_set_jobctl_pending(t, signr | gstop)) {
sig->group_stop_count++;
ptrace: implement TRAP_NOTIFY and use it for group stop events Currently there's no way for ptracer to find out whether group stop finished other than polling with INTERRUPT - GETSIGINFO - CONT sequence. This patch implements group stop notification for ptracer using STOP traps. When group stop state of a seized tracee changes, JOBCTL_TRAP_NOTIFY is set, which schedules a STOP trap which is sticky - it isn't cleared by other traps and at least one STOP trap will happen eventually. STOP trap is synchronization point for event notification and the tracer can determine the current group stop state by looking at the signal number portion of exit code (si_status from waitid(2) or si_code from PTRACE_GETSIGINFO). Notifications are generated both on start and end of group stops but, because group stop participation always happens before STOP trap, this doesn't cause an extra trap while tracee is participating in group stop. The symmetry will be useful later. Note that this notification works iff tracee is not trapped. Currently there is no way to be notified of group stop state changes while tracee is trapped. This will be addressed by a later patch. An example program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_INTERRUPT 0x4207 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts1s = { .tv_sec = 1 }; int main(int argc, char **argv) { pid_t tracee, tracer; int i; tracee = fork(); if (!tracee) while (1) pause(); tracer = fork(); if (!tracer) { siginfo_t si; ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL); repeat: waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_GETSIGINFO, tracee, NULL, &si); if (!si.si_code) { printf("tracer: SIG %d\n", si.si_signo); ptrace(PTRACE_CONT, tracee, NULL, (void *)(unsigned long)si.si_signo); goto repeat; } printf("tracer: stopped=%d signo=%d\n", si.si_signo != SIGTRAP, si.si_signo); ptrace(PTRACE_CONT, tracee, NULL, NULL); goto repeat; } for (i = 0; i < 3; i++) { nanosleep(&ts1s, NULL); printf("mother: SIGSTOP\n"); kill(tracee, SIGSTOP); nanosleep(&ts1s, NULL); printf("mother: SIGCONT\n"); kill(tracee, SIGCONT); } nanosleep(&ts1s, NULL); kill(tracer, SIGKILL); kill(tracee, SIGKILL); return 0; } In the above program, tracer keeps tracee running and gets notification of each group stop state changes. # ./test-notify tracer: stopped=0 signo=5 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 mother: SIGSTOP tracer: SIG 19 tracer: stopped=1 signo=19 mother: SIGCONT tracer: stopped=0 signo=5 tracer: SIG 18 Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:17 +00:00
if (likely(!(t->ptrace & PT_SEIZED)))
signal_wake_up(t, 0);
else
ptrace_trap_notify(t);
}
ptrace: Clean transitions between TASK_STOPPED and TRACED Currently, if the task is STOPPED on ptrace attach, it's left alone and the state is silently changed to TRACED on the next ptrace call. The behavior breaks the assumption that arch_ptrace_stop() is called before any task is poked by ptrace and is ugly in that a task manipulates the state of another task directly. With GROUP_STOP_PENDING, the transitions between TASK_STOPPED and TRACED can be made clean. The tracer can use the flag to tell the tracee to retry stop on attach and detach. On retry, the tracee will enter the desired state in the correct way. The lower 16bits of task->group_stop is used to remember the signal number which caused the last group stop. This is used while retrying for ptrace attach as the original group_exit_code could have been consumed with wait(2) by then. As the real parent may wait(2) and consume the group_exit_code anytime, the group_exit_code needs to be saved separately so that it can be used when switching from regular sleep to ptrace_stop(). This is recorded in the lower 16bits of task->group_stop. If a task is already stopped and there's no intervening SIGCONT, a ptrace request immediately following a successful PTRACE_ATTACH should always succeed even if the tracer doesn't wait(2) for attach completion; however, with this change, the tracee might still be TASK_RUNNING trying to enter TASK_TRACED which would cause the following request to fail with -ESRCH. This intermediate state is hidden from the ptracer by setting GROUP_STOP_TRAPPING on attach and making ptrace_check_attach() wait for it to clear on its signal->wait_chldexit. Completing the transition or getting killed clears TRAPPING and wakes up the tracer. Note that the STOPPED -> RUNNING -> TRACED transition is still visible to other threads which are in the same group as the ptracer and the reverse transition is visible to all. Please read the comments for details. Oleg: * Spotted a race condition where a task may retry group stop without proper bookkeeping. Fixed by redoing bookkeeping on retry. * Spotted that the transition is visible to userland in several different ways. Most are fixed with GROUP_STOP_TRAPPING. Unhandled corner case is documented. * Pointed out not setting GROUP_STOP_SIGMASK on an already stopped task would result in more consistent behavior. * Pointed out that calling ptrace_stop() from do_signal_stop() in TASK_STOPPED can race with group stop start logic and then confuse the TRAPPING wait in ptrace_check_attach(). ptrace_stop() is now called with TASK_RUNNING. * Suggested using signal->wait_chldexit instead of bit wait. * Spotted a race condition between TRACED transition and clearing of TRAPPING. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
2011-03-23 09:37:00 +00:00
}
}
job control: introduce JOBCTL_TRAP_STOP and use it for group stop trap do_signal_stop() implemented both normal group stop and trap for group stop while ptraced. This approach has been enough but scheduled changes require trap mechanism which can be used in more generic manner and using group stop trap for generic trap site simplifies both userland visible interface and implementation. This patch adds a new jobctl flag - JOBCTL_TRAP_STOP. When set, it triggers a trap site, which behaves like group stop trap, in get_signal_to_deliver() after checking for pending signals. While ptraced, do_signal_stop() doesn't stop itself. It initiates group stop if requested and schedules JOBCTL_TRAP_STOP and returns. The caller - get_signal_to_deliver() - is responsible for checking whether TRAP_STOP is pending afterwards and handling it. ptrace_attach() is updated to use JOBCTL_TRAP_STOP instead of JOBCTL_STOP_PENDING and __ptrace_unlink() to clear all pending trap bits and TRAPPING so that TRAP_STOP and future trap bits don't linger after detach. While at it, add proper function comment to do_signal_stop() and make it return bool. -v2: __ptrace_unlink() updated to clear JOBCTL_TRAP_MASK and TRAPPING instead of JOBCTL_PENDING_MASK. This avoids accidentally clearing JOBCTL_STOP_CONSUME. Spotted by Oleg. -v3: do_signal_stop() updated to return %false without dropping siglock while ptraced and TRAP_STOP check moved inside for(;;) loop after group stop participation. This avoids unnecessary relocking and also will help avoiding unnecessary traps by consuming group stop before handling pending traps. -v4: Jobctl trap handling moved into a separate function - do_jobctl_trap(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:14 +00:00
if (likely(!current->ptrace)) {
ptrace: Make do_signal_stop() use ptrace_stop() if the task is being ptraced A ptraced task would still stop at do_signal_stop() when it's stopping for stop signals and do_signal_stop() behaves the same whether the task is ptraced or not. However, in addition to stopping, ptrace_stop() also does ptrace specific stuff like calling architecture specific callbacks, so this behavior makes the code more fragile and difficult to understand. This patch makes do_signal_stop() test whether the task is ptraced and use ptrace_stop() if so. This renders tracehook_notify_jctl() rather pointless as the ptrace notification is now handled by ptrace_stop() regardless of the return value from the tracehook. It probably is a good idea to update it. This doesn't solve the whole problem as tasks already in stopped state would stay in the regular stop when ptrace attached. That part will be handled by the next patch. Oleg pointed out that this makes a userland-visible change. Before, SIGCONT would be able to wake up a task in group stop even if the task is ptraced if the tracer hasn't issued another ptrace command afterwards (as the next ptrace commands transitions the state into TASK_TRACED which ignores SIGCONT wakeups). With this and the next patch, SIGCONT may race with the transition into TASK_TRACED and is ignored if the tracee already entered TASK_TRACED. Another userland visible change of this and the next patch is that the ptracee's state would now be TASK_TRACED where it used to be TASK_STOPPED, which is visible via fs/proc. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
2011-03-23 09:37:00 +00:00
int notify = 0;
ptrace: Make do_signal_stop() use ptrace_stop() if the task is being ptraced A ptraced task would still stop at do_signal_stop() when it's stopping for stop signals and do_signal_stop() behaves the same whether the task is ptraced or not. However, in addition to stopping, ptrace_stop() also does ptrace specific stuff like calling architecture specific callbacks, so this behavior makes the code more fragile and difficult to understand. This patch makes do_signal_stop() test whether the task is ptraced and use ptrace_stop() if so. This renders tracehook_notify_jctl() rather pointless as the ptrace notification is now handled by ptrace_stop() regardless of the return value from the tracehook. It probably is a good idea to update it. This doesn't solve the whole problem as tasks already in stopped state would stay in the regular stop when ptrace attached. That part will be handled by the next patch. Oleg pointed out that this makes a userland-visible change. Before, SIGCONT would be able to wake up a task in group stop even if the task is ptraced if the tracer hasn't issued another ptrace command afterwards (as the next ptrace commands transitions the state into TASK_TRACED which ignores SIGCONT wakeups). With this and the next patch, SIGCONT may race with the transition into TASK_TRACED and is ignored if the tracee already entered TASK_TRACED. Another userland visible change of this and the next patch is that the ptracee's state would now be TASK_TRACED where it used to be TASK_STOPPED, which is visible via fs/proc. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
2011-03-23 09:37:00 +00:00
/*
* If there are no other threads in the group, or if there
* is a group stop in progress and we are the last to stop,
* report to the parent.
*/
if (task_participate_group_stop(current))
notify = CLD_STOPPED;
current->jobctl |= JOBCTL_STOPPED;
set_special_state(TASK_STOPPED);
ptrace: Make do_signal_stop() use ptrace_stop() if the task is being ptraced A ptraced task would still stop at do_signal_stop() when it's stopping for stop signals and do_signal_stop() behaves the same whether the task is ptraced or not. However, in addition to stopping, ptrace_stop() also does ptrace specific stuff like calling architecture specific callbacks, so this behavior makes the code more fragile and difficult to understand. This patch makes do_signal_stop() test whether the task is ptraced and use ptrace_stop() if so. This renders tracehook_notify_jctl() rather pointless as the ptrace notification is now handled by ptrace_stop() regardless of the return value from the tracehook. It probably is a good idea to update it. This doesn't solve the whole problem as tasks already in stopped state would stay in the regular stop when ptrace attached. That part will be handled by the next patch. Oleg pointed out that this makes a userland-visible change. Before, SIGCONT would be able to wake up a task in group stop even if the task is ptraced if the tracer hasn't issued another ptrace command afterwards (as the next ptrace commands transitions the state into TASK_TRACED which ignores SIGCONT wakeups). With this and the next patch, SIGCONT may race with the transition into TASK_TRACED and is ignored if the tracee already entered TASK_TRACED. Another userland visible change of this and the next patch is that the ptracee's state would now be TASK_TRACED where it used to be TASK_STOPPED, which is visible via fs/proc. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
2011-03-23 09:37:00 +00:00
spin_unlock_irq(&current->sighand->siglock);
/*
* Notify the parent of the group stop completion. Because
* we're not holding either the siglock or tasklist_lock
* here, ptracer may attach inbetween; however, this is for
* group stop and should always be delivered to the real
* parent of the group leader. The new ptracer will get
* its notification when this task transitions into
* TASK_TRACED.
*/
ptrace: Make do_signal_stop() use ptrace_stop() if the task is being ptraced A ptraced task would still stop at do_signal_stop() when it's stopping for stop signals and do_signal_stop() behaves the same whether the task is ptraced or not. However, in addition to stopping, ptrace_stop() also does ptrace specific stuff like calling architecture specific callbacks, so this behavior makes the code more fragile and difficult to understand. This patch makes do_signal_stop() test whether the task is ptraced and use ptrace_stop() if so. This renders tracehook_notify_jctl() rather pointless as the ptrace notification is now handled by ptrace_stop() regardless of the return value from the tracehook. It probably is a good idea to update it. This doesn't solve the whole problem as tasks already in stopped state would stay in the regular stop when ptrace attached. That part will be handled by the next patch. Oleg pointed out that this makes a userland-visible change. Before, SIGCONT would be able to wake up a task in group stop even if the task is ptraced if the tracer hasn't issued another ptrace command afterwards (as the next ptrace commands transitions the state into TASK_TRACED which ignores SIGCONT wakeups). With this and the next patch, SIGCONT may race with the transition into TASK_TRACED and is ignored if the tracee already entered TASK_TRACED. Another userland visible change of this and the next patch is that the ptracee's state would now be TASK_TRACED where it used to be TASK_STOPPED, which is visible via fs/proc. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
2011-03-23 09:37:00 +00:00
if (notify) {
read_lock(&tasklist_lock);
do_notify_parent_cldstop(current, false, notify);
ptrace: Make do_signal_stop() use ptrace_stop() if the task is being ptraced A ptraced task would still stop at do_signal_stop() when it's stopping for stop signals and do_signal_stop() behaves the same whether the task is ptraced or not. However, in addition to stopping, ptrace_stop() also does ptrace specific stuff like calling architecture specific callbacks, so this behavior makes the code more fragile and difficult to understand. This patch makes do_signal_stop() test whether the task is ptraced and use ptrace_stop() if so. This renders tracehook_notify_jctl() rather pointless as the ptrace notification is now handled by ptrace_stop() regardless of the return value from the tracehook. It probably is a good idea to update it. This doesn't solve the whole problem as tasks already in stopped state would stay in the regular stop when ptrace attached. That part will be handled by the next patch. Oleg pointed out that this makes a userland-visible change. Before, SIGCONT would be able to wake up a task in group stop even if the task is ptraced if the tracer hasn't issued another ptrace command afterwards (as the next ptrace commands transitions the state into TASK_TRACED which ignores SIGCONT wakeups). With this and the next patch, SIGCONT may race with the transition into TASK_TRACED and is ignored if the tracee already entered TASK_TRACED. Another userland visible change of this and the next patch is that the ptracee's state would now be TASK_TRACED where it used to be TASK_STOPPED, which is visible via fs/proc. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
2011-03-23 09:37:00 +00:00
read_unlock(&tasklist_lock);
}
/* Now we don't run again until woken by SIGCONT or SIGKILL */
cgroup: cgroup v2 freezer Cgroup v1 implements the freezer controller, which provides an ability to stop the workload in a cgroup and temporarily free up some resources (cpu, io, network bandwidth and, potentially, memory) for some other tasks. Cgroup v2 lacks this functionality. This patch implements freezer for cgroup v2. Cgroup v2 freezer tries to put tasks into a state similar to jobctl stop. This means that tasks can be killed, ptraced (using PTRACE_SEIZE*), and interrupted. It is possible to attach to a frozen task, get some information (e.g. read registers) and detach. It's also possible to migrate a frozen tasks to another cgroup. This differs cgroup v2 freezer from cgroup v1 freezer, which mostly tried to imitate the system-wide freezer. However uninterruptible sleep is fine when all tasks are going to be frozen (hibernation case), it's not the acceptable state for some subset of the system. Cgroup v2 freezer is not supporting freezing kthreads. If a non-root cgroup contains kthread, the cgroup still can be frozen, but the kthread will remain running, the cgroup will be shown as non-frozen, and the notification will not be delivered. * PTRACE_ATTACH is not working because non-fatal signal delivery is blocked in frozen state. There are some interface differences between cgroup v1 and cgroup v2 freezer too, which are required to conform the cgroup v2 interface design principles: 1) There is no separate controller, which has to be turned on: the functionality is always available and is represented by cgroup.freeze and cgroup.events cgroup control files. 2) The desired state is defined by the cgroup.freeze control file. Any hierarchical configuration is allowed. 3) The interface is asynchronous. The actual state is available using cgroup.events control file ("frozen" field). There are no dedicated transitional states. 4) It's allowed to make any changes with the cgroup hierarchy (create new cgroups, remove old cgroups, move tasks between cgroups) no matter if some cgroups are frozen. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Tejun Heo <tj@kernel.org> No-objection-from-me-by: Oleg Nesterov <oleg@redhat.com> Cc: kernel-team@fb.com
2019-04-19 17:03:04 +00:00
cgroup_enter_frozen();
freezer,sched: Rewrite core freezer logic Rewrite the core freezer to behave better wrt thawing and be simpler in general. By replacing PF_FROZEN with TASK_FROZEN, a special block state, it is ensured frozen tasks stay frozen until thawed and don't randomly wake up early, as is currently possible. As such, it does away with PF_FROZEN and PF_FREEZER_SKIP, freeing up two PF_flags (yay!). Specifically; the current scheme works a little like: freezer_do_not_count(); schedule(); freezer_count(); And either the task is blocked, or it lands in try_to_freezer() through freezer_count(). Now, when it is blocked, the freezer considers it frozen and continues. However, on thawing, once pm_freezing is cleared, freezer_count() stops working, and any random/spurious wakeup will let a task run before its time. That is, thawing tries to thaw things in explicit order; kernel threads and workqueues before doing bringing SMP back before userspace etc.. However due to the above mentioned races it is entirely possible for userspace tasks to thaw (by accident) before SMP is back. This can be a fatal problem in asymmetric ISA architectures (eg ARMv9) where the userspace task requires a special CPU to run. As said; replace this with a special task state TASK_FROZEN and add the following state transitions: TASK_FREEZABLE -> TASK_FROZEN __TASK_STOPPED -> TASK_FROZEN __TASK_TRACED -> TASK_FROZEN The new TASK_FREEZABLE can be set on any state part of TASK_NORMAL (IOW. TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE) -- any such state is already required to deal with spurious wakeups and the freezer causes one such when thawing the task (since the original state is lost). The special __TASK_{STOPPED,TRACED} states *can* be restored since their canonical state is in ->jobctl. With this, frozen tasks need an explicit TASK_FROZEN wakeup and are free of undue (early / spurious) wakeups. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lore.kernel.org/r/20220822114649.055452969@infradead.org
2022-08-22 11:18:22 +00:00
schedule();
job control: introduce JOBCTL_TRAP_STOP and use it for group stop trap do_signal_stop() implemented both normal group stop and trap for group stop while ptraced. This approach has been enough but scheduled changes require trap mechanism which can be used in more generic manner and using group stop trap for generic trap site simplifies both userland visible interface and implementation. This patch adds a new jobctl flag - JOBCTL_TRAP_STOP. When set, it triggers a trap site, which behaves like group stop trap, in get_signal_to_deliver() after checking for pending signals. While ptraced, do_signal_stop() doesn't stop itself. It initiates group stop if requested and schedules JOBCTL_TRAP_STOP and returns. The caller - get_signal_to_deliver() - is responsible for checking whether TRAP_STOP is pending afterwards and handling it. ptrace_attach() is updated to use JOBCTL_TRAP_STOP instead of JOBCTL_STOP_PENDING and __ptrace_unlink() to clear all pending trap bits and TRAPPING so that TRAP_STOP and future trap bits don't linger after detach. While at it, add proper function comment to do_signal_stop() and make it return bool. -v2: __ptrace_unlink() updated to clear JOBCTL_TRAP_MASK and TRAPPING instead of JOBCTL_PENDING_MASK. This avoids accidentally clearing JOBCTL_STOP_CONSUME. Spotted by Oleg. -v3: do_signal_stop() updated to return %false without dropping siglock while ptraced and TRAP_STOP check moved inside for(;;) loop after group stop participation. This avoids unnecessary relocking and also will help avoiding unnecessary traps by consuming group stop before handling pending traps. -v4: Jobctl trap handling moved into a separate function - do_jobctl_trap(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:14 +00:00
return true;
ptrace: Clean transitions between TASK_STOPPED and TRACED Currently, if the task is STOPPED on ptrace attach, it's left alone and the state is silently changed to TRACED on the next ptrace call. The behavior breaks the assumption that arch_ptrace_stop() is called before any task is poked by ptrace and is ugly in that a task manipulates the state of another task directly. With GROUP_STOP_PENDING, the transitions between TASK_STOPPED and TRACED can be made clean. The tracer can use the flag to tell the tracee to retry stop on attach and detach. On retry, the tracee will enter the desired state in the correct way. The lower 16bits of task->group_stop is used to remember the signal number which caused the last group stop. This is used while retrying for ptrace attach as the original group_exit_code could have been consumed with wait(2) by then. As the real parent may wait(2) and consume the group_exit_code anytime, the group_exit_code needs to be saved separately so that it can be used when switching from regular sleep to ptrace_stop(). This is recorded in the lower 16bits of task->group_stop. If a task is already stopped and there's no intervening SIGCONT, a ptrace request immediately following a successful PTRACE_ATTACH should always succeed even if the tracer doesn't wait(2) for attach completion; however, with this change, the tracee might still be TASK_RUNNING trying to enter TASK_TRACED which would cause the following request to fail with -ESRCH. This intermediate state is hidden from the ptracer by setting GROUP_STOP_TRAPPING on attach and making ptrace_check_attach() wait for it to clear on its signal->wait_chldexit. Completing the transition or getting killed clears TRAPPING and wakes up the tracer. Note that the STOPPED -> RUNNING -> TRACED transition is still visible to other threads which are in the same group as the ptracer and the reverse transition is visible to all. Please read the comments for details. Oleg: * Spotted a race condition where a task may retry group stop without proper bookkeeping. Fixed by redoing bookkeeping on retry. * Spotted that the transition is visible to userland in several different ways. Most are fixed with GROUP_STOP_TRAPPING. Unhandled corner case is documented. * Pointed out not setting GROUP_STOP_SIGMASK on an already stopped task would result in more consistent behavior. * Pointed out that calling ptrace_stop() from do_signal_stop() in TASK_STOPPED can race with group stop start logic and then confuse the TRAPPING wait in ptrace_check_attach(). ptrace_stop() is now called with TASK_RUNNING. * Suggested using signal->wait_chldexit instead of bit wait. * Spotted a race condition between TRACED transition and clearing of TRAPPING. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com> Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
2011-03-23 09:37:00 +00:00
} else {
job control: introduce JOBCTL_TRAP_STOP and use it for group stop trap do_signal_stop() implemented both normal group stop and trap for group stop while ptraced. This approach has been enough but scheduled changes require trap mechanism which can be used in more generic manner and using group stop trap for generic trap site simplifies both userland visible interface and implementation. This patch adds a new jobctl flag - JOBCTL_TRAP_STOP. When set, it triggers a trap site, which behaves like group stop trap, in get_signal_to_deliver() after checking for pending signals. While ptraced, do_signal_stop() doesn't stop itself. It initiates group stop if requested and schedules JOBCTL_TRAP_STOP and returns. The caller - get_signal_to_deliver() - is responsible for checking whether TRAP_STOP is pending afterwards and handling it. ptrace_attach() is updated to use JOBCTL_TRAP_STOP instead of JOBCTL_STOP_PENDING and __ptrace_unlink() to clear all pending trap bits and TRAPPING so that TRAP_STOP and future trap bits don't linger after detach. While at it, add proper function comment to do_signal_stop() and make it return bool. -v2: __ptrace_unlink() updated to clear JOBCTL_TRAP_MASK and TRAPPING instead of JOBCTL_PENDING_MASK. This avoids accidentally clearing JOBCTL_STOP_CONSUME. Spotted by Oleg. -v3: do_signal_stop() updated to return %false without dropping siglock while ptraced and TRAP_STOP check moved inside for(;;) loop after group stop participation. This avoids unnecessary relocking and also will help avoiding unnecessary traps by consuming group stop before handling pending traps. -v4: Jobctl trap handling moved into a separate function - do_jobctl_trap(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:14 +00:00
/*
* While ptraced, group stop is handled by STOP trap.
* Schedule it and let the caller deal with it.
*/
task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
return false;
}
job control: introduce JOBCTL_TRAP_STOP and use it for group stop trap do_signal_stop() implemented both normal group stop and trap for group stop while ptraced. This approach has been enough but scheduled changes require trap mechanism which can be used in more generic manner and using group stop trap for generic trap site simplifies both userland visible interface and implementation. This patch adds a new jobctl flag - JOBCTL_TRAP_STOP. When set, it triggers a trap site, which behaves like group stop trap, in get_signal_to_deliver() after checking for pending signals. While ptraced, do_signal_stop() doesn't stop itself. It initiates group stop if requested and schedules JOBCTL_TRAP_STOP and returns. The caller - get_signal_to_deliver() - is responsible for checking whether TRAP_STOP is pending afterwards and handling it. ptrace_attach() is updated to use JOBCTL_TRAP_STOP instead of JOBCTL_STOP_PENDING and __ptrace_unlink() to clear all pending trap bits and TRAPPING so that TRAP_STOP and future trap bits don't linger after detach. While at it, add proper function comment to do_signal_stop() and make it return bool. -v2: __ptrace_unlink() updated to clear JOBCTL_TRAP_MASK and TRAPPING instead of JOBCTL_PENDING_MASK. This avoids accidentally clearing JOBCTL_STOP_CONSUME. Spotted by Oleg. -v3: do_signal_stop() updated to return %false without dropping siglock while ptraced and TRAP_STOP check moved inside for(;;) loop after group stop participation. This avoids unnecessary relocking and also will help avoiding unnecessary traps by consuming group stop before handling pending traps. -v4: Jobctl trap handling moved into a separate function - do_jobctl_trap(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:14 +00:00
}
job control: introduce JOBCTL_TRAP_STOP and use it for group stop trap do_signal_stop() implemented both normal group stop and trap for group stop while ptraced. This approach has been enough but scheduled changes require trap mechanism which can be used in more generic manner and using group stop trap for generic trap site simplifies both userland visible interface and implementation. This patch adds a new jobctl flag - JOBCTL_TRAP_STOP. When set, it triggers a trap site, which behaves like group stop trap, in get_signal_to_deliver() after checking for pending signals. While ptraced, do_signal_stop() doesn't stop itself. It initiates group stop if requested and schedules JOBCTL_TRAP_STOP and returns. The caller - get_signal_to_deliver() - is responsible for checking whether TRAP_STOP is pending afterwards and handling it. ptrace_attach() is updated to use JOBCTL_TRAP_STOP instead of JOBCTL_STOP_PENDING and __ptrace_unlink() to clear all pending trap bits and TRAPPING so that TRAP_STOP and future trap bits don't linger after detach. While at it, add proper function comment to do_signal_stop() and make it return bool. -v2: __ptrace_unlink() updated to clear JOBCTL_TRAP_MASK and TRAPPING instead of JOBCTL_PENDING_MASK. This avoids accidentally clearing JOBCTL_STOP_CONSUME. Spotted by Oleg. -v3: do_signal_stop() updated to return %false without dropping siglock while ptraced and TRAP_STOP check moved inside for(;;) loop after group stop participation. This avoids unnecessary relocking and also will help avoiding unnecessary traps by consuming group stop before handling pending traps. -v4: Jobctl trap handling moved into a separate function - do_jobctl_trap(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:14 +00:00
/**
* do_jobctl_trap - take care of ptrace jobctl traps
*
ptrace: implement PTRACE_SEIZE PTRACE_ATTACH implicitly issues SIGSTOP on attach which has side effects on tracee signal and job control states. This patch implements a new ptrace request PTRACE_SEIZE which attaches a tracee without trapping it or affecting its signal and job control states. The usage is the same with PTRACE_ATTACH but it takes PTRACE_SEIZE_* flags in @data. Currently, the only defined flag is PTRACE_SEIZE_DEVEL which is a temporary flag to enable PTRACE_SEIZE. PTRACE_SEIZE will change ptrace behaviors outside of attach itself. The changes will be implemented gradually and the DEVEL flag is to prevent programs which expect full SEIZE behavior from using it before all the behavior modifications are complete while allowing unit testing. The flag will be removed once SEIZE behaviors are completely implemented. * PTRACE_SEIZE, unlike ATTACH, doesn't force tracee to trap. After attaching tracee continues to run unless a trap condition occurs. * PTRACE_SEIZE doesn't affect signal or group stop state. * If PTRACE_SEIZE'd, group stop uses PTRACE_EVENT_STOP trap which uses exit_code of (signr | PTRACE_EVENT_STOP << 8) where signr is one of the stopping signals if group stop is in effect or SIGTRAP otherwise, and returns usual trap siginfo on PTRACE_GETSIGINFO instead of NULL. Seizing sets PT_SEIZED in ->ptrace of the tracee. This flag will be used to determine whether new SEIZE behaviors should be enabled. Test program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts100ms = { .tv_nsec = 100000000 }; static const struct timespec ts1s = { .tv_sec = 1 }; static const struct timespec ts3s = { .tv_sec = 3 }; int main(int argc, char **argv) { pid_t tracee; tracee = fork(); if (tracee == 0) { nanosleep(&ts100ms, NULL); while (1) { printf("tracee: alive\n"); nanosleep(&ts1s, NULL); } } if (argc > 1) kill(tracee, SIGSTOP); nanosleep(&ts100ms, NULL); ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); if (argc > 1) { waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_CONT, tracee, NULL, NULL); } nanosleep(&ts3s, NULL); printf("tracer: exiting\n"); return 0; } When the above program is called w/o argument, tracee is seized while running and remains running. When tracer exits, tracee continues to run and print out messages. # ./test-seize-simple tracee: alive tracee: alive tracee: alive tracer: exiting tracee: alive tracee: alive When called with an argument, tracee is seized from stopped state and continued, and returns to stopped state when tracer exits. # ./test-seize tracee: alive tracee: alive tracee: alive tracer: exiting # ps -el|grep test-seize 1 T 0 4720 1 0 80 0 - 941 signal ttyS0 00:00:00 test-seize -v2: SEIZE doesn't schedule TRAP_STOP and leaves tracee running as Jan suggested. -v3: PTRACE_EVENT_STOP traps now report group stop state by signr. If group stop is in effect the stop signal number is returned as part of exit_code; otherwise, SIGTRAP. This was suggested by Denys and Oleg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jan Kratochvil <jan.kratochvil@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:15 +00:00
* When PT_SEIZED, it's used for both group stop and explicit
* SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
* accompanying siginfo. If stopped, lower eight bits of exit_code contain
* the stop signal; otherwise, %SIGTRAP.
*
* When !PT_SEIZED, it's used only for group stop trap with stop signal
* number as exit_code and no siginfo.
job control: introduce JOBCTL_TRAP_STOP and use it for group stop trap do_signal_stop() implemented both normal group stop and trap for group stop while ptraced. This approach has been enough but scheduled changes require trap mechanism which can be used in more generic manner and using group stop trap for generic trap site simplifies both userland visible interface and implementation. This patch adds a new jobctl flag - JOBCTL_TRAP_STOP. When set, it triggers a trap site, which behaves like group stop trap, in get_signal_to_deliver() after checking for pending signals. While ptraced, do_signal_stop() doesn't stop itself. It initiates group stop if requested and schedules JOBCTL_TRAP_STOP and returns. The caller - get_signal_to_deliver() - is responsible for checking whether TRAP_STOP is pending afterwards and handling it. ptrace_attach() is updated to use JOBCTL_TRAP_STOP instead of JOBCTL_STOP_PENDING and __ptrace_unlink() to clear all pending trap bits and TRAPPING so that TRAP_STOP and future trap bits don't linger after detach. While at it, add proper function comment to do_signal_stop() and make it return bool. -v2: __ptrace_unlink() updated to clear JOBCTL_TRAP_MASK and TRAPPING instead of JOBCTL_PENDING_MASK. This avoids accidentally clearing JOBCTL_STOP_CONSUME. Spotted by Oleg. -v3: do_signal_stop() updated to return %false without dropping siglock while ptraced and TRAP_STOP check moved inside for(;;) loop after group stop participation. This avoids unnecessary relocking and also will help avoiding unnecessary traps by consuming group stop before handling pending traps. -v4: Jobctl trap handling moved into a separate function - do_jobctl_trap(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:14 +00:00
*
* CONTEXT:
* Must be called with @current->sighand->siglock held, which may be
* released and re-acquired before returning with intervening sleep.
*/
static void do_jobctl_trap(void)
{
ptrace: implement PTRACE_SEIZE PTRACE_ATTACH implicitly issues SIGSTOP on attach which has side effects on tracee signal and job control states. This patch implements a new ptrace request PTRACE_SEIZE which attaches a tracee without trapping it or affecting its signal and job control states. The usage is the same with PTRACE_ATTACH but it takes PTRACE_SEIZE_* flags in @data. Currently, the only defined flag is PTRACE_SEIZE_DEVEL which is a temporary flag to enable PTRACE_SEIZE. PTRACE_SEIZE will change ptrace behaviors outside of attach itself. The changes will be implemented gradually and the DEVEL flag is to prevent programs which expect full SEIZE behavior from using it before all the behavior modifications are complete while allowing unit testing. The flag will be removed once SEIZE behaviors are completely implemented. * PTRACE_SEIZE, unlike ATTACH, doesn't force tracee to trap. After attaching tracee continues to run unless a trap condition occurs. * PTRACE_SEIZE doesn't affect signal or group stop state. * If PTRACE_SEIZE'd, group stop uses PTRACE_EVENT_STOP trap which uses exit_code of (signr | PTRACE_EVENT_STOP << 8) where signr is one of the stopping signals if group stop is in effect or SIGTRAP otherwise, and returns usual trap siginfo on PTRACE_GETSIGINFO instead of NULL. Seizing sets PT_SEIZED in ->ptrace of the tracee. This flag will be used to determine whether new SEIZE behaviors should be enabled. Test program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts100ms = { .tv_nsec = 100000000 }; static const struct timespec ts1s = { .tv_sec = 1 }; static const struct timespec ts3s = { .tv_sec = 3 }; int main(int argc, char **argv) { pid_t tracee; tracee = fork(); if (tracee == 0) { nanosleep(&ts100ms, NULL); while (1) { printf("tracee: alive\n"); nanosleep(&ts1s, NULL); } } if (argc > 1) kill(tracee, SIGSTOP); nanosleep(&ts100ms, NULL); ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); if (argc > 1) { waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_CONT, tracee, NULL, NULL); } nanosleep(&ts3s, NULL); printf("tracer: exiting\n"); return 0; } When the above program is called w/o argument, tracee is seized while running and remains running. When tracer exits, tracee continues to run and print out messages. # ./test-seize-simple tracee: alive tracee: alive tracee: alive tracer: exiting tracee: alive tracee: alive When called with an argument, tracee is seized from stopped state and continued, and returns to stopped state when tracer exits. # ./test-seize tracee: alive tracee: alive tracee: alive tracer: exiting # ps -el|grep test-seize 1 T 0 4720 1 0 80 0 - 941 signal ttyS0 00:00:00 test-seize -v2: SEIZE doesn't schedule TRAP_STOP and leaves tracee running as Jan suggested. -v3: PTRACE_EVENT_STOP traps now report group stop state by signr. If group stop is in effect the stop signal number is returned as part of exit_code; otherwise, SIGTRAP. This was suggested by Denys and Oleg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jan Kratochvil <jan.kratochvil@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:15 +00:00
struct signal_struct *signal = current->signal;
job control: introduce JOBCTL_TRAP_STOP and use it for group stop trap do_signal_stop() implemented both normal group stop and trap for group stop while ptraced. This approach has been enough but scheduled changes require trap mechanism which can be used in more generic manner and using group stop trap for generic trap site simplifies both userland visible interface and implementation. This patch adds a new jobctl flag - JOBCTL_TRAP_STOP. When set, it triggers a trap site, which behaves like group stop trap, in get_signal_to_deliver() after checking for pending signals. While ptraced, do_signal_stop() doesn't stop itself. It initiates group stop if requested and schedules JOBCTL_TRAP_STOP and returns. The caller - get_signal_to_deliver() - is responsible for checking whether TRAP_STOP is pending afterwards and handling it. ptrace_attach() is updated to use JOBCTL_TRAP_STOP instead of JOBCTL_STOP_PENDING and __ptrace_unlink() to clear all pending trap bits and TRAPPING so that TRAP_STOP and future trap bits don't linger after detach. While at it, add proper function comment to do_signal_stop() and make it return bool. -v2: __ptrace_unlink() updated to clear JOBCTL_TRAP_MASK and TRAPPING instead of JOBCTL_PENDING_MASK. This avoids accidentally clearing JOBCTL_STOP_CONSUME. Spotted by Oleg. -v3: do_signal_stop() updated to return %false without dropping siglock while ptraced and TRAP_STOP check moved inside for(;;) loop after group stop participation. This avoids unnecessary relocking and also will help avoiding unnecessary traps by consuming group stop before handling pending traps. -v4: Jobctl trap handling moved into a separate function - do_jobctl_trap(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:14 +00:00
int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
ptrace: implement PTRACE_SEIZE PTRACE_ATTACH implicitly issues SIGSTOP on attach which has side effects on tracee signal and job control states. This patch implements a new ptrace request PTRACE_SEIZE which attaches a tracee without trapping it or affecting its signal and job control states. The usage is the same with PTRACE_ATTACH but it takes PTRACE_SEIZE_* flags in @data. Currently, the only defined flag is PTRACE_SEIZE_DEVEL which is a temporary flag to enable PTRACE_SEIZE. PTRACE_SEIZE will change ptrace behaviors outside of attach itself. The changes will be implemented gradually and the DEVEL flag is to prevent programs which expect full SEIZE behavior from using it before all the behavior modifications are complete while allowing unit testing. The flag will be removed once SEIZE behaviors are completely implemented. * PTRACE_SEIZE, unlike ATTACH, doesn't force tracee to trap. After attaching tracee continues to run unless a trap condition occurs. * PTRACE_SEIZE doesn't affect signal or group stop state. * If PTRACE_SEIZE'd, group stop uses PTRACE_EVENT_STOP trap which uses exit_code of (signr | PTRACE_EVENT_STOP << 8) where signr is one of the stopping signals if group stop is in effect or SIGTRAP otherwise, and returns usual trap siginfo on PTRACE_GETSIGINFO instead of NULL. Seizing sets PT_SEIZED in ->ptrace of the tracee. This flag will be used to determine whether new SEIZE behaviors should be enabled. Test program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts100ms = { .tv_nsec = 100000000 }; static const struct timespec ts1s = { .tv_sec = 1 }; static const struct timespec ts3s = { .tv_sec = 3 }; int main(int argc, char **argv) { pid_t tracee; tracee = fork(); if (tracee == 0) { nanosleep(&ts100ms, NULL); while (1) { printf("tracee: alive\n"); nanosleep(&ts1s, NULL); } } if (argc > 1) kill(tracee, SIGSTOP); nanosleep(&ts100ms, NULL); ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); if (argc > 1) { waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_CONT, tracee, NULL, NULL); } nanosleep(&ts3s, NULL); printf("tracer: exiting\n"); return 0; } When the above program is called w/o argument, tracee is seized while running and remains running. When tracer exits, tracee continues to run and print out messages. # ./test-seize-simple tracee: alive tracee: alive tracee: alive tracer: exiting tracee: alive tracee: alive When called with an argument, tracee is seized from stopped state and continued, and returns to stopped state when tracer exits. # ./test-seize tracee: alive tracee: alive tracee: alive tracer: exiting # ps -el|grep test-seize 1 T 0 4720 1 0 80 0 - 941 signal ttyS0 00:00:00 test-seize -v2: SEIZE doesn't schedule TRAP_STOP and leaves tracee running as Jan suggested. -v3: PTRACE_EVENT_STOP traps now report group stop state by signr. If group stop is in effect the stop signal number is returned as part of exit_code; otherwise, SIGTRAP. This was suggested by Denys and Oleg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jan Kratochvil <jan.kratochvil@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:15 +00:00
if (current->ptrace & PT_SEIZED) {
if (!signal->group_stop_count &&
!(signal->flags & SIGNAL_STOP_STOPPED))
signr = SIGTRAP;
WARN_ON_ONCE(!signr);
ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
CLD_STOPPED, 0);
ptrace: implement PTRACE_SEIZE PTRACE_ATTACH implicitly issues SIGSTOP on attach which has side effects on tracee signal and job control states. This patch implements a new ptrace request PTRACE_SEIZE which attaches a tracee without trapping it or affecting its signal and job control states. The usage is the same with PTRACE_ATTACH but it takes PTRACE_SEIZE_* flags in @data. Currently, the only defined flag is PTRACE_SEIZE_DEVEL which is a temporary flag to enable PTRACE_SEIZE. PTRACE_SEIZE will change ptrace behaviors outside of attach itself. The changes will be implemented gradually and the DEVEL flag is to prevent programs which expect full SEIZE behavior from using it before all the behavior modifications are complete while allowing unit testing. The flag will be removed once SEIZE behaviors are completely implemented. * PTRACE_SEIZE, unlike ATTACH, doesn't force tracee to trap. After attaching tracee continues to run unless a trap condition occurs. * PTRACE_SEIZE doesn't affect signal or group stop state. * If PTRACE_SEIZE'd, group stop uses PTRACE_EVENT_STOP trap which uses exit_code of (signr | PTRACE_EVENT_STOP << 8) where signr is one of the stopping signals if group stop is in effect or SIGTRAP otherwise, and returns usual trap siginfo on PTRACE_GETSIGINFO instead of NULL. Seizing sets PT_SEIZED in ->ptrace of the tracee. This flag will be used to determine whether new SEIZE behaviors should be enabled. Test program follows. #define PTRACE_SEIZE 0x4206 #define PTRACE_SEIZE_DEVEL 0x80000000 static const struct timespec ts100ms = { .tv_nsec = 100000000 }; static const struct timespec ts1s = { .tv_sec = 1 }; static const struct timespec ts3s = { .tv_sec = 3 }; int main(int argc, char **argv) { pid_t tracee; tracee = fork(); if (tracee == 0) { nanosleep(&ts100ms, NULL); while (1) { printf("tracee: alive\n"); nanosleep(&ts1s, NULL); } } if (argc > 1) kill(tracee, SIGSTOP); nanosleep(&ts100ms, NULL); ptrace(PTRACE_SEIZE, tracee, NULL, (void *)(unsigned long)PTRACE_SEIZE_DEVEL); if (argc > 1) { waitid(P_PID, tracee, NULL, WSTOPPED); ptrace(PTRACE_CONT, tracee, NULL, NULL); } nanosleep(&ts3s, NULL); printf("tracer: exiting\n"); return 0; } When the above program is called w/o argument, tracee is seized while running and remains running. When tracer exits, tracee continues to run and print out messages. # ./test-seize-simple tracee: alive tracee: alive tracee: alive tracer: exiting tracee: alive tracee: alive When called with an argument, tracee is seized from stopped state and continued, and returns to stopped state when tracer exits. # ./test-seize tracee: alive tracee: alive tracee: alive tracer: exiting # ps -el|grep test-seize 1 T 0 4720 1 0 80 0 - 941 signal ttyS0 00:00:00 test-seize -v2: SEIZE doesn't schedule TRAP_STOP and leaves tracee running as Jan suggested. -v3: PTRACE_EVENT_STOP traps now report group stop state by signr. If group stop is in effect the stop signal number is returned as part of exit_code; otherwise, SIGTRAP. This was suggested by Denys and Oleg. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Jan Kratochvil <jan.kratochvil@redhat.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:15 +00:00
} else {
WARN_ON_ONCE(!signr);
ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs Long ago and far away there was a BUG_ON at the start of ptrace_stop that did "BUG_ON(!(current->ptrace & PT_PTRACED));" [1]. The BUG_ON had never triggered but examination of the code showed that the BUG_ON could actually trigger. To complement removing the BUG_ON an attempt to better handle the race was added. The code detected the tracer had gone away and did not call do_notify_parent_cldstop. The code also attempted to prevent ptrace_report_syscall from sending spurious SIGTRAPs when the tracer went away. The code to detect when the tracer had gone away before sending a signal to tracer was a legitimate fix and continues to work to this date. The code to prevent sending spurious SIGTRAPs is a failure. At the time and until today the code only catches it when the tracer goes away after siglock is dropped and before read_lock is acquired. If the tracer goes away after read_lock is dropped a spurious SIGTRAP can still be sent to the tracee. The tracer going away after read_lock is dropped is the far likelier case as it is the bigger window. Given that the attempt to prevent the generation of a SIGTRAP was a failure and continues to be a failure remove the code that attempts to do that. This simplifies the code in ptrace_stop and makes ptrace_stop much easier to reason about. To successfully deal with the tracer going away, all of the tracer's instrumentation of the child would need to be removed, and reliably detecting when the tracer has set a signal to continue with would need to be implemented. [1] 66519f549ae5 ("[PATCH] fix ptracer death race yielding bogus BUG_ON") History-Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-9-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-05-04 18:39:58 +00:00
ptrace_stop(signr, CLD_STOPPED, 0, NULL);
}
}
cgroup: cgroup v2 freezer Cgroup v1 implements the freezer controller, which provides an ability to stop the workload in a cgroup and temporarily free up some resources (cpu, io, network bandwidth and, potentially, memory) for some other tasks. Cgroup v2 lacks this functionality. This patch implements freezer for cgroup v2. Cgroup v2 freezer tries to put tasks into a state similar to jobctl stop. This means that tasks can be killed, ptraced (using PTRACE_SEIZE*), and interrupted. It is possible to attach to a frozen task, get some information (e.g. read registers) and detach. It's also possible to migrate a frozen tasks to another cgroup. This differs cgroup v2 freezer from cgroup v1 freezer, which mostly tried to imitate the system-wide freezer. However uninterruptible sleep is fine when all tasks are going to be frozen (hibernation case), it's not the acceptable state for some subset of the system. Cgroup v2 freezer is not supporting freezing kthreads. If a non-root cgroup contains kthread, the cgroup still can be frozen, but the kthread will remain running, the cgroup will be shown as non-frozen, and the notification will not be delivered. * PTRACE_ATTACH is not working because non-fatal signal delivery is blocked in frozen state. There are some interface differences between cgroup v1 and cgroup v2 freezer too, which are required to conform the cgroup v2 interface design principles: 1) There is no separate controller, which has to be turned on: the functionality is always available and is represented by cgroup.freeze and cgroup.events cgroup control files. 2) The desired state is defined by the cgroup.freeze control file. Any hierarchical configuration is allowed. 3) The interface is asynchronous. The actual state is available using cgroup.events control file ("frozen" field). There are no dedicated transitional states. 4) It's allowed to make any changes with the cgroup hierarchy (create new cgroups, remove old cgroups, move tasks between cgroups) no matter if some cgroups are frozen. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Tejun Heo <tj@kernel.org> No-objection-from-me-by: Oleg Nesterov <oleg@redhat.com> Cc: kernel-team@fb.com
2019-04-19 17:03:04 +00:00
/**
* do_freezer_trap - handle the freezer jobctl trap
*
* Puts the task into frozen state, if only the task is not about to quit.
* In this case it drops JOBCTL_TRAP_FREEZE.
*
* CONTEXT:
* Must be called with @current->sighand->siglock held,
* which is always released before returning.
*/
static void do_freezer_trap(void)
__releases(&current->sighand->siglock)
{
/*
* If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
* let's make another loop to give it a chance to be handled.
* In any case, we'll return back.
*/
if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
JOBCTL_TRAP_FREEZE) {
spin_unlock_irq(&current->sighand->siglock);
return;
}
/*
* Now we're sure that there is no pending fatal signal and no
* pending traps. Clear TIF_SIGPENDING to not get out of schedule()
* immediately (if there is a non-fatal signal pending), and
* put the task into sleep.
*/
freezer,sched: Rewrite core freezer logic Rewrite the core freezer to behave better wrt thawing and be simpler in general. By replacing PF_FROZEN with TASK_FROZEN, a special block state, it is ensured frozen tasks stay frozen until thawed and don't randomly wake up early, as is currently possible. As such, it does away with PF_FROZEN and PF_FREEZER_SKIP, freeing up two PF_flags (yay!). Specifically; the current scheme works a little like: freezer_do_not_count(); schedule(); freezer_count(); And either the task is blocked, or it lands in try_to_freezer() through freezer_count(). Now, when it is blocked, the freezer considers it frozen and continues. However, on thawing, once pm_freezing is cleared, freezer_count() stops working, and any random/spurious wakeup will let a task run before its time. That is, thawing tries to thaw things in explicit order; kernel threads and workqueues before doing bringing SMP back before userspace etc.. However due to the above mentioned races it is entirely possible for userspace tasks to thaw (by accident) before SMP is back. This can be a fatal problem in asymmetric ISA architectures (eg ARMv9) where the userspace task requires a special CPU to run. As said; replace this with a special task state TASK_FROZEN and add the following state transitions: TASK_FREEZABLE -> TASK_FROZEN __TASK_STOPPED -> TASK_FROZEN __TASK_TRACED -> TASK_FROZEN The new TASK_FREEZABLE can be set on any state part of TASK_NORMAL (IOW. TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE) -- any such state is already required to deal with spurious wakeups and the freezer causes one such when thawing the task (since the original state is lost). The special __TASK_{STOPPED,TRACED} states *can* be restored since their canonical state is in ->jobctl. With this, frozen tasks need an explicit TASK_FROZEN wakeup and are free of undue (early / spurious) wakeups. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lore.kernel.org/r/20220822114649.055452969@infradead.org
2022-08-22 11:18:22 +00:00
__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
cgroup: cgroup v2 freezer Cgroup v1 implements the freezer controller, which provides an ability to stop the workload in a cgroup and temporarily free up some resources (cpu, io, network bandwidth and, potentially, memory) for some other tasks. Cgroup v2 lacks this functionality. This patch implements freezer for cgroup v2. Cgroup v2 freezer tries to put tasks into a state similar to jobctl stop. This means that tasks can be killed, ptraced (using PTRACE_SEIZE*), and interrupted. It is possible to attach to a frozen task, get some information (e.g. read registers) and detach. It's also possible to migrate a frozen tasks to another cgroup. This differs cgroup v2 freezer from cgroup v1 freezer, which mostly tried to imitate the system-wide freezer. However uninterruptible sleep is fine when all tasks are going to be frozen (hibernation case), it's not the acceptable state for some subset of the system. Cgroup v2 freezer is not supporting freezing kthreads. If a non-root cgroup contains kthread, the cgroup still can be frozen, but the kthread will remain running, the cgroup will be shown as non-frozen, and the notification will not be delivered. * PTRACE_ATTACH is not working because non-fatal signal delivery is blocked in frozen state. There are some interface differences between cgroup v1 and cgroup v2 freezer too, which are required to conform the cgroup v2 interface design principles: 1) There is no separate controller, which has to be turned on: the functionality is always available and is represented by cgroup.freeze and cgroup.events cgroup control files. 2) The desired state is defined by the cgroup.freeze control file. Any hierarchical configuration is allowed. 3) The interface is asynchronous. The actual state is available using cgroup.events control file ("frozen" field). There are no dedicated transitional states. 4) It's allowed to make any changes with the cgroup hierarchy (create new cgroups, remove old cgroups, move tasks between cgroups) no matter if some cgroups are frozen. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Tejun Heo <tj@kernel.org> No-objection-from-me-by: Oleg Nesterov <oleg@redhat.com> Cc: kernel-team@fb.com
2019-04-19 17:03:04 +00:00
clear_thread_flag(TIF_SIGPENDING);
spin_unlock_irq(&current->sighand->siglock);
cgroup_enter_frozen();
freezer,sched: Rewrite core freezer logic Rewrite the core freezer to behave better wrt thawing and be simpler in general. By replacing PF_FROZEN with TASK_FROZEN, a special block state, it is ensured frozen tasks stay frozen until thawed and don't randomly wake up early, as is currently possible. As such, it does away with PF_FROZEN and PF_FREEZER_SKIP, freeing up two PF_flags (yay!). Specifically; the current scheme works a little like: freezer_do_not_count(); schedule(); freezer_count(); And either the task is blocked, or it lands in try_to_freezer() through freezer_count(). Now, when it is blocked, the freezer considers it frozen and continues. However, on thawing, once pm_freezing is cleared, freezer_count() stops working, and any random/spurious wakeup will let a task run before its time. That is, thawing tries to thaw things in explicit order; kernel threads and workqueues before doing bringing SMP back before userspace etc.. However due to the above mentioned races it is entirely possible for userspace tasks to thaw (by accident) before SMP is back. This can be a fatal problem in asymmetric ISA architectures (eg ARMv9) where the userspace task requires a special CPU to run. As said; replace this with a special task state TASK_FROZEN and add the following state transitions: TASK_FREEZABLE -> TASK_FROZEN __TASK_STOPPED -> TASK_FROZEN __TASK_TRACED -> TASK_FROZEN The new TASK_FREEZABLE can be set on any state part of TASK_NORMAL (IOW. TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE) -- any such state is already required to deal with spurious wakeups and the freezer causes one such when thawing the task (since the original state is lost). The special __TASK_{STOPPED,TRACED} states *can* be restored since their canonical state is in ->jobctl. With this, frozen tasks need an explicit TASK_FROZEN wakeup and are free of undue (early / spurious) wakeups. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lore.kernel.org/r/20220822114649.055452969@infradead.org
2022-08-22 11:18:22 +00:00
schedule();
cgroup: cgroup v2 freezer Cgroup v1 implements the freezer controller, which provides an ability to stop the workload in a cgroup and temporarily free up some resources (cpu, io, network bandwidth and, potentially, memory) for some other tasks. Cgroup v2 lacks this functionality. This patch implements freezer for cgroup v2. Cgroup v2 freezer tries to put tasks into a state similar to jobctl stop. This means that tasks can be killed, ptraced (using PTRACE_SEIZE*), and interrupted. It is possible to attach to a frozen task, get some information (e.g. read registers) and detach. It's also possible to migrate a frozen tasks to another cgroup. This differs cgroup v2 freezer from cgroup v1 freezer, which mostly tried to imitate the system-wide freezer. However uninterruptible sleep is fine when all tasks are going to be frozen (hibernation case), it's not the acceptable state for some subset of the system. Cgroup v2 freezer is not supporting freezing kthreads. If a non-root cgroup contains kthread, the cgroup still can be frozen, but the kthread will remain running, the cgroup will be shown as non-frozen, and the notification will not be delivered. * PTRACE_ATTACH is not working because non-fatal signal delivery is blocked in frozen state. There are some interface differences between cgroup v1 and cgroup v2 freezer too, which are required to conform the cgroup v2 interface design principles: 1) There is no separate controller, which has to be turned on: the functionality is always available and is represented by cgroup.freeze and cgroup.events cgroup control files. 2) The desired state is defined by the cgroup.freeze control file. Any hierarchical configuration is allowed. 3) The interface is asynchronous. The actual state is available using cgroup.events control file ("frozen" field). There are no dedicated transitional states. 4) It's allowed to make any changes with the cgroup hierarchy (create new cgroups, remove old cgroups, move tasks between cgroups) no matter if some cgroups are frozen. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Tejun Heo <tj@kernel.org> No-objection-from-me-by: Oleg Nesterov <oleg@redhat.com> Cc: kernel-team@fb.com
2019-04-19 17:03:04 +00:00
}
static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
{
ptrace: fix ptrace_signal() && STOP_DEQUEUED interaction Simple test-case, int main(void) { int pid, status; pid = fork(); if (!pid) { pause(); assert(0); return 0x23; } assert(ptrace(PTRACE_ATTACH, pid, 0,0) == 0); assert(wait(&status) == pid); assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP); kill(pid, SIGCONT); // <--- also clears STOP_DEQUEUD assert(ptrace(PTRACE_CONT, pid, 0,0) == 0); assert(wait(&status) == pid); assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGCONT); assert(ptrace(PTRACE_CONT, pid, 0, SIGSTOP) == 0); assert(wait(&status) == pid); assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP); kill(pid, SIGKILL); return 0; } Without the patch it hangs. After the patch SIGSTOP "injected" by the tracer is not ignored and stops the tracee. Note also that if this test-case uses, say, SIGWINCH instead of SIGCONT, everything works without the patch. This can't be right, and this is confusing. The problem is that SIGSTOP (or any other sig_kernel_stop() signal) has no effect without JOBCTL_STOP_DEQUEUED. This means it is simply ignored after PTRACE_CONT unless JOBCTL_STOP_DEQUEUED was set "by accident", say it wasn't cleared after initial SIGSTOP sent by PTRACE_ATTACH. At first glance we could change ptrace_signal() to add STOP_DEQUEUED after return from ptrace_stop(), but this is not right in case when the tracer does not change the reported SIGSTOP and SIGCONT comes in between. This is even more wrong with PT_SEIZED, SIGCONT adds JOBCTL_TRAP_NOTIFY which will be "lost" during the TRAP_STOP | TRAP_NOTIFY report. So lets add STOP_DEQUEUED _before_ we report the signal. It has no effect unless sig_kernel_stop() == T after the tracer resumes us, and in the latter case the pending STOP_DEQUEUED means no SIGCONT in between, we should stop. Note also that if SIGCONT was sent, PT_SEIZED tracee will correctly report PTRACE_EVENT_STOP/SIGTRAP and thus the tracer can notice the fact SIGSTOP was cancelled. Also, move the current->ptrace check from ptrace_signal() to its caller, get_signal_to_deliver(), this looks more natural. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Tejun Heo <tj@kernel.org>
2011-07-21 15:06:53 +00:00
/*
* We do not check sig_kernel_stop(signr) but set this marker
* unconditionally because we do not know whether debugger will
* change signr. This flag has no meaning unless we are going
* to stop after return from ptrace_stop(). In this case it will
* be checked in do_signal_stop(), we should only stop if it was
* not cleared by SIGCONT while we were sleeping. See also the
* comment in dequeue_signal().
*/
current->jobctl |= JOBCTL_STOP_DEQUEUED;
ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs Long ago and far away there was a BUG_ON at the start of ptrace_stop that did "BUG_ON(!(current->ptrace & PT_PTRACED));" [1]. The BUG_ON had never triggered but examination of the code showed that the BUG_ON could actually trigger. To complement removing the BUG_ON an attempt to better handle the race was added. The code detected the tracer had gone away and did not call do_notify_parent_cldstop. The code also attempted to prevent ptrace_report_syscall from sending spurious SIGTRAPs when the tracer went away. The code to detect when the tracer had gone away before sending a signal to tracer was a legitimate fix and continues to work to this date. The code to prevent sending spurious SIGTRAPs is a failure. At the time and until today the code only catches it when the tracer goes away after siglock is dropped and before read_lock is acquired. If the tracer goes away after read_lock is dropped a spurious SIGTRAP can still be sent to the tracee. The tracer going away after read_lock is dropped is the far likelier case as it is the bigger window. Given that the attempt to prevent the generation of a SIGTRAP was a failure and continues to be a failure remove the code that attempts to do that. This simplifies the code in ptrace_stop and makes ptrace_stop much easier to reason about. To successfully deal with the tracer going away, all of the tracer's instrumentation of the child would need to be removed, and reliably detecting when the tracer has set a signal to continue with would need to be implemented. [1] 66519f549ae5 ("[PATCH] fix ptracer death race yielding bogus BUG_ON") History-Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-9-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2022-05-04 18:39:58 +00:00
signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
/* We're back. Did the debugger cancel the sig? */
if (signr == 0)
return signr;
/*
* Update the siginfo structure if the signal has
* changed. If the debugger wanted something
* specific in the siginfo structure then it should
* have updated *info via PTRACE_SETSIGINFO.
*/
if (signr != info->si_signo) {
clear_siginfo(info);
info->si_signo = signr;
info->si_errno = 0;
info->si_code = SI_USER;
user namespace: make signal.c respect user namespaces ipc/mqueue.c: for __SI_MESQ, convert the uid being sent to recipient's user namespace. (new, thanks Oleg) __send_signal: convert current's uid to the recipient's user namespace for any siginfo which is not SI_FROMKERNEL (patch from Oleg, thanks again :) do_notify_parent and do_notify_parent_cldstop: map task's uid to parent's user namespace ptrace_signal maps parent's uid into current's user namespace before including in signal to current. IIUC Oleg has argued that this shouldn't matter as the debugger will play with it, but it seems like not converting the value currently being set is misleading. Changelog: Sep 20: Inspired by Oleg's suggestion, define map_cred_ns() helper to simplify callers and help make clear what we are translating (which uid into which namespace). Passing the target task would make callers even easier to read, but we pass in user_ns because current_user_ns() != task_cred_xxx(current, user_ns). Sep 20: As recommended by Oleg, also put task_pid_vnr() under rcu_read_lock in ptrace_signal(). Sep 23: In send_signal(), detect when (user) signal is coming from an ancestor or unrelated user namespace. Pass that on to __send_signal, which sets si_uid to 0 or overflowuid if needed. Oct 12: Base on Oleg's fixup_uid() patch. On top of that, handle all SI_FROMKERNEL cases at callers, because we can't assume sender is current in those cases. Nov 10: (mhelsley) rename fixup_uid to more meaningful usern_fixup_signal_uid Nov 10: (akpm) make the !CONFIG_USER_NS case clearer Signed-off-by: Serge Hallyn <serge.hallyn@canonical.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> From: Serge Hallyn <serge.hallyn@canonical.com> Subject: __send_signal: pass q->info, not info, to userns_fixup_signal_uid (v2) Eric Biederman pointed out that passing info is a bug and could lead to a NULL pointer deref to boot. A collection of signal, securebits, filecaps, cap_bounds, and a few other ltp tests passed with this kernel. Changelog: Nov 18: previous patch missed a leading '&' Signed-off-by: Serge Hallyn <serge.hallyn@canonical.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> From: Dan Carpenter <dan.carpenter@oracle.com> Subject: ipc/mqueue: lock() => unlock() typo There was a double lock typo introduced in b085f4bd6b21 "user namespace: make signal.c respect user namespaces" Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 23:11:37 +00:00
rcu_read_lock();
info->si_pid = task_pid_vnr(current->parent);
info->si_uid = from_kuid_munged(current_user_ns(),
task_uid(current->parent));
user namespace: make signal.c respect user namespaces ipc/mqueue.c: for __SI_MESQ, convert the uid being sent to recipient's user namespace. (new, thanks Oleg) __send_signal: convert current's uid to the recipient's user namespace for any siginfo which is not SI_FROMKERNEL (patch from Oleg, thanks again :) do_notify_parent and do_notify_parent_cldstop: map task's uid to parent's user namespace ptrace_signal maps parent's uid into current's user namespace before including in signal to current. IIUC Oleg has argued that this shouldn't matter as the debugger will play with it, but it seems like not converting the value currently being set is misleading. Changelog: Sep 20: Inspired by Oleg's suggestion, define map_cred_ns() helper to simplify callers and help make clear what we are translating (which uid into which namespace). Passing the target task would make callers even easier to read, but we pass in user_ns because current_user_ns() != task_cred_xxx(current, user_ns). Sep 20: As recommended by Oleg, also put task_pid_vnr() under rcu_read_lock in ptrace_signal(). Sep 23: In send_signal(), detect when (user) signal is coming from an ancestor or unrelated user namespace. Pass that on to __send_signal, which sets si_uid to 0 or overflowuid if needed. Oct 12: Base on Oleg's fixup_uid() patch. On top of that, handle all SI_FROMKERNEL cases at callers, because we can't assume sender is current in those cases. Nov 10: (mhelsley) rename fixup_uid to more meaningful usern_fixup_signal_uid Nov 10: (akpm) make the !CONFIG_USER_NS case clearer Signed-off-by: Serge Hallyn <serge.hallyn@canonical.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> From: Serge Hallyn <serge.hallyn@canonical.com> Subject: __send_signal: pass q->info, not info, to userns_fixup_signal_uid (v2) Eric Biederman pointed out that passing info is a bug and could lead to a NULL pointer deref to boot. A collection of signal, securebits, filecaps, cap_bounds, and a few other ltp tests passed with this kernel. Changelog: Nov 18: previous patch missed a leading '&' Signed-off-by: Serge Hallyn <serge.hallyn@canonical.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> From: Dan Carpenter <dan.carpenter@oracle.com> Subject: ipc/mqueue: lock() => unlock() typo There was a double lock typo introduced in b085f4bd6b21 "user namespace: make signal.c respect user namespaces" Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-10 23:11:37 +00:00
rcu_read_unlock();
}
/* If the (new) signal is now blocked, requeue it. */
signal: Requeue ptrace signals Kyle Huey <me@kylehuey.com> writes: > rr, a userspace record and replay debugger[0], uses the recorded register > state at PTRACE_EVENT_EXIT to find the point in time at which to cease > executing the program during replay. > > If a SIGKILL races with processing another signal in get_signal, it is > possible for the kernel to decline to notify the tracer of the original > signal. But if the original signal had a handler, the kernel proceeds > with setting up a signal handler frame as if the tracer had chosen to > deliver the signal unmodified to the tracee. When the kernel goes to > execute the signal handler that it has now modified the stack and registers > for, it will discover the pending SIGKILL, and terminate the tracee > without executing the handler. When PTRACE_EVENT_EXIT is delivered to > the tracer, however, the effects of handler setup will be visible to > the tracer. > > Because rr (the tracer) was never notified of the signal, it is not aware > that a signal handler frame was set up and expects the state of the program > at PTRACE_EVENT_EXIT to be a state that will be reconstructed naturally > by allowing the program to execute from the last event. When that fails > to happen during replay, rr will assert and die. > > The following patches add an explicit check for a newly pending SIGKILL > after the ptracer has been notified and the siglock has been reacquired. > If this happens, we stop processing the current signal and proceed > immediately to handling the SIGKILL. This makes the state reported at > PTRACE_EVENT_EXIT the unmodified state of the program, and also avoids the > work to set up a signal handler frame that will never be used. > > [0] https://rr-project.org/ The problem is that while the traced process makes it into ptrace_stop, the tracee is killed before the tracer manages to wait for the tracee and discover which signal was about to be delivered. More generally the problem is that while siglock was dropped a signal with process wide effect is short cirucit delivered to the entire process killing it, but the process continues to try and deliver another signal. In general it impossible to avoid all cases where work is performed after the process has been killed. In particular if the process is killed after get_signal returns the code will simply not know it has been killed until after delivering the signal frame to userspace. On the other hand when the code has already discovered the process has been killed and taken user space visible action that shows the kernel knows the process has been killed, it is just silly to then write the signal frame to the user space stack. Instead of being silly detect the process has been killed in ptrace_signal and requeue the signal so the code can pretend it was simply never dequeued for delivery. To test the process has been killed I use fatal_signal_pending rather than signal_group_exit to match the test in signal_pending_state which is used in schedule which is where ptrace_stop detects the process has been killed. Requeuing the signal so the code can pretend it was simply never dequeued improves the user space visible behavior that has been present since ebf5ebe31d2c ("[PATCH] signal-fixes-2.5.59-A4"). Kyle Huey verified that this change in behavior and makes rr happy. Reported-by: Kyle Huey <khuey@kylehuey.com> Reported-by: Marko Mäkelä <marko.makela@mariadb.com> History Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.gi Reviewed-by: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/87tugcd5p2.fsf_-_@email.froward.int.ebiederm.org Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-11-15 19:49:45 +00:00
if (sigismember(&current->blocked, signr) ||
fatal_signal_pending(current)) {
send_signal_locked(signr, info, current, type);
signr = 0;
}
return signr;
}
static void hide_si_addr_tag_bits(struct ksignal *ksig)
{
switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
case SIL_FAULT:
case SIL_FAULT_TRAPNO:
case SIL_FAULT_MCEERR:
case SIL_FAULT_BNDERR:
case SIL_FAULT_PKUERR:
case SIL_FAULT_PERF_EVENT:
ksig->info.si_addr = arch_untagged_si_addr(
ksig->info.si_addr, ksig->sig, ksig->info.si_code);
break;
case SIL_KILL:
case SIL_TIMER:
case SIL_POLL:
case SIL_CHLD:
case SIL_RT:
case SIL_SYS:
break;
}
}
bool get_signal(struct ksignal *ksig)
{
struct sighand_struct *sighand = current->sighand;
struct signal_struct *signal = current->signal;
int signr;
clear_notify_signal();
if (unlikely(task_work_pending(current)))
task_work_run();
if (!task_sigpending(current))
return false;
uprobes/core: Handle breakpoint and singlestep exceptions Uprobes uses exception notifiers to get to know if a thread hit a breakpoint or a singlestep exception. When a thread hits a uprobe or is singlestepping post a uprobe hit, the uprobe exception notifier sets its TIF_UPROBE bit, which will then be checked on its return to userspace path (do_notify_resume() ->uprobe_notify_resume()), where the consumers handlers are run (in task context) based on the defined filters. Uprobe hits are thread specific and hence we need to maintain information about if a task hit a uprobe, what uprobe was hit, the slot where the original instruction was copied for xol so that it can be singlestepped with appropriate fixups. In some cases, special care is needed for instructions that are executed out of line (xol). These are architecture specific artefacts, such as handling RIP relative instructions on x86_64. Since the instruction at which the uprobe was inserted is executed out of line, architecture specific fixups are added so that the thread continues normal execution in the presence of a uprobe. Postpone the signals until we execute the probed insn. post_xol() path does a recalc_sigpending() before return to user-mode, this ensures the signal can't be lost. Uprobes relies on DIE_DEBUG notification to notify if a singlestep is complete. Adds x86 specific uprobe exception notifiers and appropriate hooks needed to determine a uprobe hit and subsequent post processing. Add requisite x86 fixups for xol for uprobes. Specific cases needing fixups include relative jumps (x86_64), calls, etc. Where possible, we check and skip singlestepping the breakpointed instructions. For now we skip single byte as well as few multibyte nop instructions. However this can be extended to other instructions too. Credits to Oleg Nesterov for suggestions/patches related to signal, breakpoint, singlestep handling code. Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Jim Keniston <jkenisto@linux.vnet.ibm.com> Cc: Linux-mm <linux-mm@kvack.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20120313180011.29771.89027.sendpatchset@srdronam.in.ibm.com [ Performed various cleanliness edits ] Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-03-13 18:00:11 +00:00
if (unlikely(uprobe_deny_signal()))
return false;
uprobes/core: Handle breakpoint and singlestep exceptions Uprobes uses exception notifiers to get to know if a thread hit a breakpoint or a singlestep exception. When a thread hits a uprobe or is singlestepping post a uprobe hit, the uprobe exception notifier sets its TIF_UPROBE bit, which will then be checked on its return to userspace path (do_notify_resume() ->uprobe_notify_resume()), where the consumers handlers are run (in task context) based on the defined filters. Uprobe hits are thread specific and hence we need to maintain information about if a task hit a uprobe, what uprobe was hit, the slot where the original instruction was copied for xol so that it can be singlestepped with appropriate fixups. In some cases, special care is needed for instructions that are executed out of line (xol). These are architecture specific artefacts, such as handling RIP relative instructions on x86_64. Since the instruction at which the uprobe was inserted is executed out of line, architecture specific fixups are added so that the thread continues normal execution in the presence of a uprobe. Postpone the signals until we execute the probed insn. post_xol() path does a recalc_sigpending() before return to user-mode, this ensures the signal can't be lost. Uprobes relies on DIE_DEBUG notification to notify if a singlestep is complete. Adds x86 specific uprobe exception notifiers and appropriate hooks needed to determine a uprobe hit and subsequent post processing. Add requisite x86 fixups for xol for uprobes. Specific cases needing fixups include relative jumps (x86_64), calls, etc. Where possible, we check and skip singlestepping the breakpointed instructions. For now we skip single byte as well as few multibyte nop instructions. However this can be extended to other instructions too. Credits to Oleg Nesterov for suggestions/patches related to signal, breakpoint, singlestep handling code. Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Jim Keniston <jkenisto@linux.vnet.ibm.com> Cc: Linux-mm <linux-mm@kvack.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20120313180011.29771.89027.sendpatchset@srdronam.in.ibm.com [ Performed various cleanliness edits ] Signed-off-by: Ingo Molnar <mingo@elte.hu>
2012-03-13 18:00:11 +00:00
/*
* Do this once, we can't return to user-mode if freezing() == T.
* do_signal_stop() and ptrace_stop() do freezable_schedule() and
* thus do not need another check after return.
*/
try_to_freeze();
relock:
spin_lock_irq(&sighand->siglock);
/*
* Every stopped thread goes here after wakeup. Check to see if
* we should notify the parent, prepare_signal(SIGCONT) encodes
* the CLD_ si_code into SIGNAL_CLD_MASK bits.
*/
if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
int why;
if (signal->flags & SIGNAL_CLD_CONTINUED)
why = CLD_CONTINUED;
else
why = CLD_STOPPED;
signal->flags &= ~SIGNAL_CLD_MASK;
signals: re-assign CLD_CONTINUED notification from the sender to reciever Based on discussion with Jiri and Roland. In short: currently handle_stop_signal(SIGCONT, p) sends the notification to p->parent, with this patch p itself notifies its parent when it becomes running. handle_stop_signal(SIGCONT) has to drop ->siglock temporary in order to notify the parent with do_notify_parent_cldstop(). This leads to multiple problems: - as Jiri Kosina pointed out, the stopped task can resume without actually seeing SIGCONT which may have a handler. - we race with another sig_kernel_stop() signal which may come in that window. - we race with sig_fatal() signals which may set SIGNAL_GROUP_EXIT in that window. - we can't avoid taking tasklist_lock() while sending SIGCONT. With this patch handle_stop_signal() just sets the new SIGNAL_CLD_CONTINUED flag in p->signal->flags and returns. The notification is sent by the first task which returns from finish_stop() (there should be at least one) or any other signalled thread from get_signal_to_deliver(). This is a user-visible change. Say, currently kill(SIGCONT, stopped_child) can't return without seeing SIGCHLD, with this patch SIGCHLD can be delayed unpredictably. Another difference is that if the child is ptraced by another process, CLD_CONTINUED may be delivered to ->real_parent after ptrace_detach() while currently it always goes to the tracer which doesn't actually need this notification. Hopefully not a problem. The patch asks for the futher obvious cleanups, I'll send them separately. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: Roland McGrath <roland@redhat.com> Cc: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 07:52:44 +00:00
spin_unlock_irq(&sighand->siglock);
job control: Notify the real parent of job control events regardless of ptrace With recent changes, job control and ptrace stopped states are properly separated and accessible to the real parent and the ptracer respectively; however, notifications of job control stopped/continued events to the real parent while ptraced are still missing. A ptracee participates in group stop in ptrace_stop() but the completion isn't notified. If participation results in completion of group stop, notify the real parent of the event. The ptrace and group stops are separate and can be handled as such. However, when the real parent and the ptracer are in the same thread group, only the ptrace stop event is visible through wait(2) and the duplicate notifications are different from the current behavior and are confusing. Suppress group stop notification in such cases. The continued state is shared between the real parent and the ptracer but is only meaningful to the real parent. Always notify the real parent and notify the ptracer too for backward compatibility. Similar to stop notification, if the real parent is the ptracer, suppress a duplicate notification. Test case follows. #include <stdio.h> #include <unistd.h> #include <time.h> #include <errno.h> #include <sys/types.h> #include <sys/ptrace.h> #include <sys/wait.h> int main(void) { const struct timespec ts100ms = { .tv_nsec = 100000000 }; pid_t tracee, tracer; siginfo_t si; int i; tracee = fork(); if (tracee == 0) { while (1) { printf("tracee: SIGSTOP\n"); raise(SIGSTOP); nanosleep(&ts100ms, NULL); printf("tracee: SIGCONT\n"); raise(SIGCONT); nanosleep(&ts100ms, NULL); } } waitid(P_PID, tracee, &si, WSTOPPED | WNOHANG | WNOWAIT); tracer = fork(); if (tracer == 0) { nanosleep(&ts100ms, NULL); ptrace(PTRACE_ATTACH, tracee, NULL, NULL); for (i = 0; i < 11; i++) { si.si_pid = 0; waitid(P_PID, tracee, &si, WSTOPPED); if (si.si_pid && si.si_code == CLD_TRAPPED) ptrace(PTRACE_CONT, tracee, NULL, (void *)(long)si.si_status); } printf("tracer: EXITING\n"); return 0; } while (1) { si.si_pid = 0; waitid(P_PID, tracee, &si, WSTOPPED | WCONTINUED | WEXITED); if (si.si_pid) printf("mommy : WAIT status=%02d code=%02d\n", si.si_status, si.si_code); } return 0; } Before this patch, while ptraced, the real parent doesn't get notifications for job control events, so although it can access those events, the later waitid(2) call never wakes up. tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT tracee: SIGSTOP tracee: SIGCONT tracee: SIGSTOP tracee: SIGCONT tracee: SIGSTOP tracer: EXITING mommy : WAIT status=19 code=05 ^C After this patch, it works as expected. tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT mommy : WAIT status=18 code=06 tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT mommy : WAIT status=18 code=06 tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT mommy : WAIT status=18 code=06 tracee: SIGSTOP tracer: EXITING mommy : WAIT status=19 code=05 ^C -v2: Oleg pointed out that * Group stop notification to the real parent should also happen when ptracer detach races with ptrace_stop(). * real_parent_is_ptracer() should be testing thread group equality not the task itself as wait(2) and stop/cont notifications are normally thread-group wide. Both issues are fixed accordingly. -v3: real_parent_is_ptracer() updated to test child->real_parent instead of child->group_leader->real_parent per Oleg's suggestion. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com>
2011-03-23 09:37:01 +00:00
/*
* Notify the parent that we're continuing. This event is
* always per-process and doesn't make whole lot of sense
* for ptracers, who shouldn't consume the state via
* wait(2) either, but, for backward compatibility, notify
* the ptracer of the group leader too unless it's gonna be
* a duplicate.
*/
read_lock(&tasklist_lock);
job control: Notify the real parent of job control events regardless of ptrace With recent changes, job control and ptrace stopped states are properly separated and accessible to the real parent and the ptracer respectively; however, notifications of job control stopped/continued events to the real parent while ptraced are still missing. A ptracee participates in group stop in ptrace_stop() but the completion isn't notified. If participation results in completion of group stop, notify the real parent of the event. The ptrace and group stops are separate and can be handled as such. However, when the real parent and the ptracer are in the same thread group, only the ptrace stop event is visible through wait(2) and the duplicate notifications are different from the current behavior and are confusing. Suppress group stop notification in such cases. The continued state is shared between the real parent and the ptracer but is only meaningful to the real parent. Always notify the real parent and notify the ptracer too for backward compatibility. Similar to stop notification, if the real parent is the ptracer, suppress a duplicate notification. Test case follows. #include <stdio.h> #include <unistd.h> #include <time.h> #include <errno.h> #include <sys/types.h> #include <sys/ptrace.h> #include <sys/wait.h> int main(void) { const struct timespec ts100ms = { .tv_nsec = 100000000 }; pid_t tracee, tracer; siginfo_t si; int i; tracee = fork(); if (tracee == 0) { while (1) { printf("tracee: SIGSTOP\n"); raise(SIGSTOP); nanosleep(&ts100ms, NULL); printf("tracee: SIGCONT\n"); raise(SIGCONT); nanosleep(&ts100ms, NULL); } } waitid(P_PID, tracee, &si, WSTOPPED | WNOHANG | WNOWAIT); tracer = fork(); if (tracer == 0) { nanosleep(&ts100ms, NULL); ptrace(PTRACE_ATTACH, tracee, NULL, NULL); for (i = 0; i < 11; i++) { si.si_pid = 0; waitid(P_PID, tracee, &si, WSTOPPED); if (si.si_pid && si.si_code == CLD_TRAPPED) ptrace(PTRACE_CONT, tracee, NULL, (void *)(long)si.si_status); } printf("tracer: EXITING\n"); return 0; } while (1) { si.si_pid = 0; waitid(P_PID, tracee, &si, WSTOPPED | WCONTINUED | WEXITED); if (si.si_pid) printf("mommy : WAIT status=%02d code=%02d\n", si.si_status, si.si_code); } return 0; } Before this patch, while ptraced, the real parent doesn't get notifications for job control events, so although it can access those events, the later waitid(2) call never wakes up. tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT tracee: SIGSTOP tracee: SIGCONT tracee: SIGSTOP tracee: SIGCONT tracee: SIGSTOP tracer: EXITING mommy : WAIT status=19 code=05 ^C After this patch, it works as expected. tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT mommy : WAIT status=18 code=06 tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT mommy : WAIT status=18 code=06 tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT mommy : WAIT status=18 code=06 tracee: SIGSTOP tracer: EXITING mommy : WAIT status=19 code=05 ^C -v2: Oleg pointed out that * Group stop notification to the real parent should also happen when ptracer detach races with ptrace_stop(). * real_parent_is_ptracer() should be testing thread group equality not the task itself as wait(2) and stop/cont notifications are normally thread-group wide. Both issues are fixed accordingly. -v3: real_parent_is_ptracer() updated to test child->real_parent instead of child->group_leader->real_parent per Oleg's suggestion. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com>
2011-03-23 09:37:01 +00:00
do_notify_parent_cldstop(current, false, why);
if (ptrace_reparented(current->group_leader))
do_notify_parent_cldstop(current->group_leader,
true, why);
read_unlock(&tasklist_lock);
job control: Notify the real parent of job control events regardless of ptrace With recent changes, job control and ptrace stopped states are properly separated and accessible to the real parent and the ptracer respectively; however, notifications of job control stopped/continued events to the real parent while ptraced are still missing. A ptracee participates in group stop in ptrace_stop() but the completion isn't notified. If participation results in completion of group stop, notify the real parent of the event. The ptrace and group stops are separate and can be handled as such. However, when the real parent and the ptracer are in the same thread group, only the ptrace stop event is visible through wait(2) and the duplicate notifications are different from the current behavior and are confusing. Suppress group stop notification in such cases. The continued state is shared between the real parent and the ptracer but is only meaningful to the real parent. Always notify the real parent and notify the ptracer too for backward compatibility. Similar to stop notification, if the real parent is the ptracer, suppress a duplicate notification. Test case follows. #include <stdio.h> #include <unistd.h> #include <time.h> #include <errno.h> #include <sys/types.h> #include <sys/ptrace.h> #include <sys/wait.h> int main(void) { const struct timespec ts100ms = { .tv_nsec = 100000000 }; pid_t tracee, tracer; siginfo_t si; int i; tracee = fork(); if (tracee == 0) { while (1) { printf("tracee: SIGSTOP\n"); raise(SIGSTOP); nanosleep(&ts100ms, NULL); printf("tracee: SIGCONT\n"); raise(SIGCONT); nanosleep(&ts100ms, NULL); } } waitid(P_PID, tracee, &si, WSTOPPED | WNOHANG | WNOWAIT); tracer = fork(); if (tracer == 0) { nanosleep(&ts100ms, NULL); ptrace(PTRACE_ATTACH, tracee, NULL, NULL); for (i = 0; i < 11; i++) { si.si_pid = 0; waitid(P_PID, tracee, &si, WSTOPPED); if (si.si_pid && si.si_code == CLD_TRAPPED) ptrace(PTRACE_CONT, tracee, NULL, (void *)(long)si.si_status); } printf("tracer: EXITING\n"); return 0; } while (1) { si.si_pid = 0; waitid(P_PID, tracee, &si, WSTOPPED | WCONTINUED | WEXITED); if (si.si_pid) printf("mommy : WAIT status=%02d code=%02d\n", si.si_status, si.si_code); } return 0; } Before this patch, while ptraced, the real parent doesn't get notifications for job control events, so although it can access those events, the later waitid(2) call never wakes up. tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT tracee: SIGSTOP tracee: SIGCONT tracee: SIGSTOP tracee: SIGCONT tracee: SIGSTOP tracer: EXITING mommy : WAIT status=19 code=05 ^C After this patch, it works as expected. tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT mommy : WAIT status=18 code=06 tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT mommy : WAIT status=18 code=06 tracee: SIGSTOP mommy : WAIT status=19 code=05 tracee: SIGCONT mommy : WAIT status=18 code=06 tracee: SIGSTOP tracer: EXITING mommy : WAIT status=19 code=05 ^C -v2: Oleg pointed out that * Group stop notification to the real parent should also happen when ptracer detach races with ptrace_stop(). * real_parent_is_ptracer() should be testing thread group equality not the task itself as wait(2) and stop/cont notifications are normally thread-group wide. Both issues are fixed accordingly. -v3: real_parent_is_ptracer() updated to test child->real_parent instead of child->group_leader->real_parent per Oleg's suggestion. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com>
2011-03-23 09:37:01 +00:00
signals: re-assign CLD_CONTINUED notification from the sender to reciever Based on discussion with Jiri and Roland. In short: currently handle_stop_signal(SIGCONT, p) sends the notification to p->parent, with this patch p itself notifies its parent when it becomes running. handle_stop_signal(SIGCONT) has to drop ->siglock temporary in order to notify the parent with do_notify_parent_cldstop(). This leads to multiple problems: - as Jiri Kosina pointed out, the stopped task can resume without actually seeing SIGCONT which may have a handler. - we race with another sig_kernel_stop() signal which may come in that window. - we race with sig_fatal() signals which may set SIGNAL_GROUP_EXIT in that window. - we can't avoid taking tasklist_lock() while sending SIGCONT. With this patch handle_stop_signal() just sets the new SIGNAL_CLD_CONTINUED flag in p->signal->flags and returns. The notification is sent by the first task which returns from finish_stop() (there should be at least one) or any other signalled thread from get_signal_to_deliver(). This is a user-visible change. Say, currently kill(SIGCONT, stopped_child) can't return without seeing SIGCHLD, with this patch SIGCHLD can be delayed unpredictably. Another difference is that if the child is ptraced by another process, CLD_CONTINUED may be delivered to ->real_parent after ptrace_detach() while currently it always goes to the tracer which doesn't actually need this notification. Hopefully not a problem. The patch asks for the futher obvious cleanups, I'll send them separately. Signed-off-by: Oleg Nesterov <oleg@tv-sign.ru> Cc: Roland McGrath <roland@redhat.com> Cc: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-30 07:52:44 +00:00
goto relock;
}
for (;;) {
struct k_sigaction *ka;
enum pid_type type;
/* Has this task already been marked for death? */
if ((signal->flags & SIGNAL_GROUP_EXIT) ||
signal->group_exec_task) {
clear_siginfo(&ksig->info);
ksig->info.si_signo = signr = SIGKILL;
sigdelset(&current->pending.signal, SIGKILL);
trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
&sighand->action[SIGKILL - 1]);
recalc_sigpending();
goto fatal;
}
if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
do_signal_stop(0))
goto relock;
cgroup: cgroup v2 freezer Cgroup v1 implements the freezer controller, which provides an ability to stop the workload in a cgroup and temporarily free up some resources (cpu, io, network bandwidth and, potentially, memory) for some other tasks. Cgroup v2 lacks this functionality. This patch implements freezer for cgroup v2. Cgroup v2 freezer tries to put tasks into a state similar to jobctl stop. This means that tasks can be killed, ptraced (using PTRACE_SEIZE*), and interrupted. It is possible to attach to a frozen task, get some information (e.g. read registers) and detach. It's also possible to migrate a frozen tasks to another cgroup. This differs cgroup v2 freezer from cgroup v1 freezer, which mostly tried to imitate the system-wide freezer. However uninterruptible sleep is fine when all tasks are going to be frozen (hibernation case), it's not the acceptable state for some subset of the system. Cgroup v2 freezer is not supporting freezing kthreads. If a non-root cgroup contains kthread, the cgroup still can be frozen, but the kthread will remain running, the cgroup will be shown as non-frozen, and the notification will not be delivered. * PTRACE_ATTACH is not working because non-fatal signal delivery is blocked in frozen state. There are some interface differences between cgroup v1 and cgroup v2 freezer too, which are required to conform the cgroup v2 interface design principles: 1) There is no separate controller, which has to be turned on: the functionality is always available and is represented by cgroup.freeze and cgroup.events cgroup control files. 2) The desired state is defined by the cgroup.freeze control file. Any hierarchical configuration is allowed. 3) The interface is asynchronous. The actual state is available using cgroup.events control file ("frozen" field). There are no dedicated transitional states. 4) It's allowed to make any changes with the cgroup hierarchy (create new cgroups, remove old cgroups, move tasks between cgroups) no matter if some cgroups are frozen. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Tejun Heo <tj@kernel.org> No-objection-from-me-by: Oleg Nesterov <oleg@redhat.com> Cc: kernel-team@fb.com
2019-04-19 17:03:04 +00:00
if (unlikely(current->jobctl &
(JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
if (current->jobctl & JOBCTL_TRAP_MASK) {
do_jobctl_trap();
spin_unlock_irq(&sighand->siglock);
} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
do_freezer_trap();
goto relock;
}
/*
* If the task is leaving the frozen state, let's update
* cgroup counters and reset the frozen bit.
*/
if (unlikely(cgroup_task_frozen(current))) {
job control: introduce JOBCTL_TRAP_STOP and use it for group stop trap do_signal_stop() implemented both normal group stop and trap for group stop while ptraced. This approach has been enough but scheduled changes require trap mechanism which can be used in more generic manner and using group stop trap for generic trap site simplifies both userland visible interface and implementation. This patch adds a new jobctl flag - JOBCTL_TRAP_STOP. When set, it triggers a trap site, which behaves like group stop trap, in get_signal_to_deliver() after checking for pending signals. While ptraced, do_signal_stop() doesn't stop itself. It initiates group stop if requested and schedules JOBCTL_TRAP_STOP and returns. The caller - get_signal_to_deliver() - is responsible for checking whether TRAP_STOP is pending afterwards and handling it. ptrace_attach() is updated to use JOBCTL_TRAP_STOP instead of JOBCTL_STOP_PENDING and __ptrace_unlink() to clear all pending trap bits and TRAPPING so that TRAP_STOP and future trap bits don't linger after detach. While at it, add proper function comment to do_signal_stop() and make it return bool. -v2: __ptrace_unlink() updated to clear JOBCTL_TRAP_MASK and TRAPPING instead of JOBCTL_PENDING_MASK. This avoids accidentally clearing JOBCTL_STOP_CONSUME. Spotted by Oleg. -v3: do_signal_stop() updated to return %false without dropping siglock while ptraced and TRAP_STOP check moved inside for(;;) loop after group stop participation. This avoids unnecessary relocking and also will help avoiding unnecessary traps by consuming group stop before handling pending traps. -v4: Jobctl trap handling moved into a separate function - do_jobctl_trap(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:14 +00:00
spin_unlock_irq(&sighand->siglock);
cgroup_leave_frozen(false);
job control: introduce JOBCTL_TRAP_STOP and use it for group stop trap do_signal_stop() implemented both normal group stop and trap for group stop while ptraced. This approach has been enough but scheduled changes require trap mechanism which can be used in more generic manner and using group stop trap for generic trap site simplifies both userland visible interface and implementation. This patch adds a new jobctl flag - JOBCTL_TRAP_STOP. When set, it triggers a trap site, which behaves like group stop trap, in get_signal_to_deliver() after checking for pending signals. While ptraced, do_signal_stop() doesn't stop itself. It initiates group stop if requested and schedules JOBCTL_TRAP_STOP and returns. The caller - get_signal_to_deliver() - is responsible for checking whether TRAP_STOP is pending afterwards and handling it. ptrace_attach() is updated to use JOBCTL_TRAP_STOP instead of JOBCTL_STOP_PENDING and __ptrace_unlink() to clear all pending trap bits and TRAPPING so that TRAP_STOP and future trap bits don't linger after detach. While at it, add proper function comment to do_signal_stop() and make it return bool. -v2: __ptrace_unlink() updated to clear JOBCTL_TRAP_MASK and TRAPPING instead of JOBCTL_PENDING_MASK. This avoids accidentally clearing JOBCTL_STOP_CONSUME. Spotted by Oleg. -v3: do_signal_stop() updated to return %false without dropping siglock while ptraced and TRAP_STOP check moved inside for(;;) loop after group stop participation. This avoids unnecessary relocking and also will help avoiding unnecessary traps by consuming group stop before handling pending traps. -v4: Jobctl trap handling moved into a separate function - do_jobctl_trap(). Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com>
2011-06-14 09:20:14 +00:00
goto relock;
}
signal: Better detection of synchronous signals Recently syzkaller was able to create unkillablle processes by creating a timer that is delivered as a thread local signal on SIGHUP, and receiving SIGHUP SA_NODEFERER. Ultimately causing a loop failing to deliver SIGHUP but always trying. When the stack overflows delivery of SIGHUP fails and force_sigsegv is called. Unfortunately because SIGSEGV is numerically higher than SIGHUP next_signal tries again to deliver a SIGHUP. From a quality of implementation standpoint attempting to deliver the timer SIGHUP signal is wrong. We should attempt to deliver the synchronous SIGSEGV signal we just forced. We can make that happening in a fairly straight forward manner by instead of just looking at the signal number we also look at the si_code. In particular for exceptions (aka synchronous signals) the si_code is always greater than 0. That still has the potential to pick up a number of asynchronous signals as in a few cases the same si_codes that are used for synchronous signals are also used for asynchronous signals, and SI_KERNEL is also included in the list of possible si_codes. Still the heuristic is much better and timer signals are definitely excluded. Which is enough to prevent all known ways for someone sending a process signals fast enough to cause unexpected and arguably incorrect behavior. Cc: stable@vger.kernel.org Fixes: a27341cd5fcb ("Prioritize synchronous signals over 'normal' signals") Tested-by: Dmitry Vyukov <dvyukov@google.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2019-02-06 23:51:47 +00:00
/*
* Signals generated by the execution of an instruction
* need to be delivered before any other pending signals
* so that the instruction pointer in the signal stack
* frame points to the faulting instruction.
*/
type = PIDTYPE_PID;
signal: Better detection of synchronous signals Recently syzkaller was able to create unkillablle processes by creating a timer that is delivered as a thread local signal on SIGHUP, and receiving SIGHUP SA_NODEFERER. Ultimately causing a loop failing to deliver SIGHUP but always trying. When the stack overflows delivery of SIGHUP fails and force_sigsegv is called. Unfortunately because SIGSEGV is numerically higher than SIGHUP next_signal tries again to deliver a SIGHUP. From a quality of implementation standpoint attempting to deliver the timer SIGHUP signal is wrong. We should attempt to deliver the synchronous SIGSEGV signal we just forced. We can make that happening in a fairly straight forward manner by instead of just looking at the signal number we also look at the si_code. In particular for exceptions (aka synchronous signals) the si_code is always greater than 0. That still has the potential to pick up a number of asynchronous signals as in a few cases the same si_codes that are used for synchronous signals are also used for asynchronous signals, and SI_KERNEL is also included in the list of possible si_codes. Still the heuristic is much better and timer signals are definitely excluded. Which is enough to prevent all known ways for someone sending a process signals fast enough to cause unexpected and arguably incorrect behavior. Cc: stable@vger.kernel.org Fixes: a27341cd5fcb ("Prioritize synchronous signals over 'normal' signals") Tested-by: Dmitry Vyukov <dvyukov@google.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2019-02-06 23:51:47 +00:00
signr = dequeue_synchronous_signal(&ksig->info);
if (!signr)
signr = dequeue_signal(current, &current->blocked,
&ksig->info, &type);
if (!signr)
break; /* will return 0 */
if (unlikely(current->ptrace) && (signr != SIGKILL) &&
!(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
signr = ptrace_signal(signr, &ksig->info, type);
if (!signr)
continue;
}
ka = &sighand->action[signr-1];
/* Trace actually delivered signals. */
trace_signal_deliver(signr, &ksig->info, ka);
if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
continue;
if (ka->sa.sa_handler != SIG_DFL) {
/* Run the handler. */
ksig->ka = *ka;
if (ka->sa.sa_flags & SA_ONESHOT)
ka->sa.sa_handler = SIG_DFL;
break; /* will return non-zero "signr" value */
}
/*
* Now we are doing the default action for this signal.
*/
if (sig_kernel_ignore(signr)) /* Default is nothing. */
continue;
/*
* Global init gets no signals it doesn't want.
signals: protect cinit from blocked fatal signals Normally SIG_DFL signals to global and container-init are dropped early. But if a signal is blocked when it is posted, we cannot drop the signal since the receiver may install a handler before unblocking the signal. Once this signal is queued however, the receiver container-init has no way of knowing if the signal was sent from an ancestor or descendant namespace. This patch ensures that contianer-init drops all SIG_DFL signals in get_signal_to_deliver() except SIGKILL/SIGSTOP. If SIGSTOP/SIGKILL originate from a descendant of container-init they are never queued (i.e dropped in sig_ignored() in an earler patch). If SIGSTOP/SIGKILL originate from parent namespace, the signal is queued and container-init processes the signal. IOW, if get_signal_to_deliver() sees a sig_kernel_only() signal for global or container-init, the signal must have been generated internally or must have come from an ancestor ns and we process the signal. Further, the signal_group_exit() check was needed to cover the case of a multi-threaded init sending SIGKILL to other threads when doing an exit() or exec(). But since the new sig_kernel_only() check covers the SIGKILL, the signal_group_exit() check is no longer needed and can be removed. Finally, now that we have all pieces in place, set SIGNAL_UNKILLABLE for container-inits. Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Roland McGrath <roland@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Daniel Lezcano <daniel.lezcano@free.fr> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-02 23:58:08 +00:00
* Container-init gets no signals it doesn't want from same
* container.
*
* Note that if global/container-init sees a sig_kernel_only()
* signal here, the signal must have been generated internally
* or must have come from an ancestor namespace. In either
* case, the signal cannot be dropped.
*/
if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
signals: protect cinit from blocked fatal signals Normally SIG_DFL signals to global and container-init are dropped early. But if a signal is blocked when it is posted, we cannot drop the signal since the receiver may install a handler before unblocking the signal. Once this signal is queued however, the receiver container-init has no way of knowing if the signal was sent from an ancestor or descendant namespace. This patch ensures that contianer-init drops all SIG_DFL signals in get_signal_to_deliver() except SIGKILL/SIGSTOP. If SIGSTOP/SIGKILL originate from a descendant of container-init they are never queued (i.e dropped in sig_ignored() in an earler patch). If SIGSTOP/SIGKILL originate from parent namespace, the signal is queued and container-init processes the signal. IOW, if get_signal_to_deliver() sees a sig_kernel_only() signal for global or container-init, the signal must have been generated internally or must have come from an ancestor ns and we process the signal. Further, the signal_group_exit() check was needed to cover the case of a multi-threaded init sending SIGKILL to other threads when doing an exit() or exec(). But since the new sig_kernel_only() check covers the SIGKILL, the signal_group_exit() check is no longer needed and can be removed. Finally, now that we have all pieces in place, set SIGNAL_UNKILLABLE for container-inits. Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@tv-sign.ru> Cc: Roland McGrath <roland@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Daniel Lezcano <daniel.lezcano@free.fr> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-02 23:58:08 +00:00
!sig_kernel_only(signr))
continue;
if (sig_kernel_stop(signr)) {
/*
* The default action is to stop all threads in
* the thread group. The job control signals
* do nothing in an orphaned pgrp, but SIGSTOP
* always works. Note that siglock needs to be
* dropped during the call to is_orphaned_pgrp()
* because of lock ordering with tasklist_lock.
* This allows an intervening SIGCONT to be posted.
* We need to check for that and bail out if necessary.
*/
if (signr != SIGSTOP) {
spin_unlock_irq(&sighand->siglock);
/* signals can be posted during this window */
if (is_current_pgrp_orphaned())
goto relock;
spin_lock_irq(&sighand->siglock);
}
if (likely(do_signal_stop(ksig->info.si_signo))) {
/* It released the siglock. */
goto relock;
}
/*
* We didn't actually stop, due to a race
* with SIGCONT or something like that.
*/
continue;
}
fatal:
spin_unlock_irq(&sighand->siglock);
cgroup: never call do_group_exit() with task->frozen bit set I've got two independent reports that cgroup_task_frozen() check in cgroup_exit() has been triggered by lkp libhugetlbfs-test and LTP ptrace01 tests. For example: [ 44.576072] WARNING: CPU: 1 PID: 3028 at kernel/cgroup/cgroup.c:5932 cgroup_exit+0x148/0x160 [ 44.577724] Modules linked in: crct10dif_pclmul crc32_pclmul crc32c_intel ghash_clmulni_intel sr_mod cdrom bochs_drm sg ttm ata_generic pata_acpi ppdev drm_kms_helper snd_pcm syscopyarea aesni_intel snd_timer sysfillrect sysimgblt snd crypto_simd cryptd glue_helper soundcore fb_sys_fops joydev drm serio_raw pcspkr ata_piix libata i2c_piix4 floppy parport_pc parport ip_tables [ 44.583106] CPU: 1 PID: 3028 Comm: ptrace-write-hu Not tainted 5.1.0-rc3-00053-g9262503 #5 [ 44.584600] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 [ 44.586116] RIP: 0010:cgroup_exit+0x148/0x160 [ 44.587135] Code: 0f 84 50 ff ff ff 48 8b 85 c8 0c 00 00 48 8b 78 70 e8 ec 2e 00 00 e9 3b ff ff ff f0 ff 43 60 0f 88 72 21 89 00 e9 48 ff ff ff <0f> 0b e9 1b ff ff ff e8 3c 73 f4 ff 66 90 66 2e 0f 1f 84 00 00 00 [ 44.590113] RSP: 0018:ffffb25702dcfd30 EFLAGS: 00010002 [ 44.591167] RAX: ffff96a7fee32410 RBX: ffff96a7ff1d6000 RCX: dead000000000200 [ 44.592446] RDX: ffff96a7ff1d6080 RSI: ffff96a7fec75290 RDI: ffff96a7fec75290 [ 44.593715] RBP: ffff96a7fec745c0 R08: ffff96a7fec74658 R09: 0000000000000000 [ 44.594985] R10: 0000000000000000 R11: 0000000000000001 R12: ffff96a7fec75101 [ 44.596266] R13: ffff96a7fec745c0 R14: ffff96a7ff3bde30 R15: ffff96a7fec75130 [ 44.597550] FS: 0000000000000000(0000) GS:ffff96a7dd700000(0000) knlGS:0000000000000000 [ 44.598950] CS: 0010 DS: 002b ES: 002b CR0: 0000000080050033 [ 44.600098] CR2: 00000000f7a00000 CR3: 000000000d20e000 CR4: 00000000000406e0 [ 44.601417] Call Trace: [ 44.602777] do_exit+0x337/0xc40 [ 44.603677] do_group_exit+0x3a/0xa0 [ 44.604610] get_signal+0x12e/0x8d0 [ 44.605533] ? __switch_to_asm+0x40/0x70 [ 44.606503] do_signal+0x36/0x650 [ 44.607409] ? __switch_to_asm+0x40/0x70 [ 44.608383] ? __schedule+0x267/0x860 [ 44.609329] exit_to_usermode_loop+0x89/0xf0 [ 44.610349] do_fast_syscall_32+0x251/0x2e3 [ 44.611357] entry_SYSENTER_compat+0x7f/0x91 [ 44.612376] ---[ end trace e4ca5cfc4b7f7964 ]--- The problem is caused by the ptrace_signal() call in the for loop in get_signal(). There is a cgroup_enter_frozen() call inside ptrace_signal(), so after exit from ptrace_signal() the task->frozen bit might be set. In this case do_group_exit() can be called with the task->frozen bit set and trigger the warning. This is only place where we can leave the loop with the task->frozen bit set and without setting JOBCTL_TRAP_FREEZE and TIF_SIGPENDING. To resolve this problem, let's move cgroup_leave_frozen(true) call to just after the fatal label. If the task is going to die, the frozen bit must be cleared no matter how we get into this point. Reported-by: kernel test robot <rong.a.chen@intel.com> Reported-by: Qian Cai <cai@lca.pw> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2019-05-08 20:34:20 +00:00
if (unlikely(cgroup_task_frozen(current)))
cgroup_leave_frozen(true);
/*
* Anything else is fatal, maybe with a core dump.
*/
current->flags |= PF_SIGNALED;
if (sig_kernel_coredump(signr)) {
if (print_fatal_signals)
print_fatal_signal(ksig->info.si_signo);
proc_coredump_connector(current);
/*
* If it was able to dump core, this kills all
* other threads in the group and synchronizes with
* their demise. If we lost the race with another
* thread getting here, it set group_exit_code
* first and our do_group_exit call below will use
* that value and ignore the one we pass it.
*/
do_coredump(&ksig->info);
}
/*
fork, vhost: Use CLONE_THREAD to fix freezer/ps regression When switching from kthreads to vhost_tasks two bugs were added: 1. The vhost worker tasks's now show up as processes so scripts doing ps or ps a would not incorrectly detect the vhost task as another process. 2. kthreads disabled freeze by setting PF_NOFREEZE, but vhost tasks's didn't disable or add support for them. To fix both bugs, this switches the vhost task to be thread in the process that does the VHOST_SET_OWNER ioctl, and has vhost_worker call get_signal to support SIGKILL/SIGSTOP and freeze signals. Note that SIGKILL/STOP support is required because CLONE_THREAD requires CLONE_SIGHAND which requires those 2 signals to be supported. This is a modified version of the patch written by Mike Christie <michael.christie@oracle.com> which was a modified version of patch originally written by Linus. Much of what depended upon PF_IO_WORKER now depends on PF_USER_WORKER. Including ignoring signals, setting up the register state, and having get_signal return instead of calling do_group_exit. Tidied up the vhost_task abstraction so that the definition of vhost_task only needs to be visible inside of vhost_task.c. Making it easier to review the code and tell what needs to be done where. As part of this the main loop has been moved from vhost_worker into vhost_task_fn. vhost_worker now returns true if work was done. The main loop has been updated to call get_signal which handles SIGSTOP, freezing, and collects the message that tells the thread to exit as part of process exit. This collection clears __fatal_signal_pending. This collection is not guaranteed to clear signal_pending() so clear that explicitly so the schedule() sleeps. For now the vhost thread continues to exist and run work until the last file descriptor is closed and the release function is called as part of freeing struct file. To avoid hangs in the coredump rendezvous and when killing threads in a multi-threaded exec. The coredump code and de_thread have been modified to ignore vhost threads. Remvoing the special case for exec appears to require teaching vhost_dev_flush how to directly complete transactions in case the vhost thread is no longer running. Removing the special case for coredump rendezvous requires either the above fix needed for exec or moving the coredump rendezvous into get_signal. Fixes: 6e890c5d5021 ("vhost: use vhost_tasks for worker threads") Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Co-developed-by: Mike Christie <michael.christie@oracle.com> Signed-off-by: Mike Christie <michael.christie@oracle.com> Acked-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-06-01 18:32:32 +00:00
* PF_USER_WORKER threads will catch and exit on fatal signals
* themselves. They have cleanup that must be performed, so
* we cannot call do_exit() on their behalf.
*/
fork, vhost: Use CLONE_THREAD to fix freezer/ps regression When switching from kthreads to vhost_tasks two bugs were added: 1. The vhost worker tasks's now show up as processes so scripts doing ps or ps a would not incorrectly detect the vhost task as another process. 2. kthreads disabled freeze by setting PF_NOFREEZE, but vhost tasks's didn't disable or add support for them. To fix both bugs, this switches the vhost task to be thread in the process that does the VHOST_SET_OWNER ioctl, and has vhost_worker call get_signal to support SIGKILL/SIGSTOP and freeze signals. Note that SIGKILL/STOP support is required because CLONE_THREAD requires CLONE_SIGHAND which requires those 2 signals to be supported. This is a modified version of the patch written by Mike Christie <michael.christie@oracle.com> which was a modified version of patch originally written by Linus. Much of what depended upon PF_IO_WORKER now depends on PF_USER_WORKER. Including ignoring signals, setting up the register state, and having get_signal return instead of calling do_group_exit. Tidied up the vhost_task abstraction so that the definition of vhost_task only needs to be visible inside of vhost_task.c. Making it easier to review the code and tell what needs to be done where. As part of this the main loop has been moved from vhost_worker into vhost_task_fn. vhost_worker now returns true if work was done. The main loop has been updated to call get_signal which handles SIGSTOP, freezing, and collects the message that tells the thread to exit as part of process exit. This collection clears __fatal_signal_pending. This collection is not guaranteed to clear signal_pending() so clear that explicitly so the schedule() sleeps. For now the vhost thread continues to exist and run work until the last file descriptor is closed and the release function is called as part of freeing struct file. To avoid hangs in the coredump rendezvous and when killing threads in a multi-threaded exec. The coredump code and de_thread have been modified to ignore vhost threads. Remvoing the special case for exec appears to require teaching vhost_dev_flush how to directly complete transactions in case the vhost thread is no longer running. Removing the special case for coredump rendezvous requires either the above fix needed for exec or moving the coredump rendezvous into get_signal. Fixes: 6e890c5d5021 ("vhost: use vhost_tasks for worker threads") Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Co-developed-by: Mike Christie <michael.christie@oracle.com> Signed-off-by: Mike Christie <michael.christie@oracle.com> Acked-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-06-01 18:32:32 +00:00
if (current->flags & PF_USER_WORKER)
goto out;
/*
* Death signals, no core dump.
*/
do_group_exit(ksig->info.si_signo);
/* NOTREACHED */
}
spin_unlock_irq(&sighand->siglock);
out:
ksig->sig = signr;
if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
hide_si_addr_tag_bits(ksig);
return ksig->sig > 0;
}
/**
* signal_delivered - called after signal delivery to update blocked signals
* @ksig: kernel signal struct
* @stepping: nonzero if debugger single-step or block-step in use
*
* This function should be called when a signal has successfully been
* delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
* is always blocked), and the signal itself is blocked unless %SA_NODEFER
* is set in @ksig->ka.sa.sa_flags. Tracing is notified.
*/
static void signal_delivered(struct ksignal *ksig, int stepping)
{
sigset_t blocked;
/* A signal was successfully delivered, and the
saved sigmask was stored on the signal frame,
and will be restored by sigreturn. So we can
simply clear the restore sigmask flag. */
clear_restore_sigmask();
sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
sigaddset(&blocked, ksig->sig);
set_current_blocked(&blocked);
if (current->sas_ss_flags & SS_AUTODISARM)
sas_ss_reset(current);
if (stepping)
ptrace_notify(SIGTRAP, 0);
}
void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
{
if (failed)
force_sigsegv(ksig->sig);
else
signal_delivered(ksig, stepping);
}
/*
* It could be that complete_signal() picked us to notify about the
* group-wide signal. Other threads should be notified now to take
* the shared signals in @which since we will not.
*/
static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
{
sigset_t retarget;
struct task_struct *t;
sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
if (sigisemptyset(&retarget))
return;
t = tsk;
while_each_thread(tsk, t) {
if (t->flags & PF_EXITING)
continue;
if (!has_pending_signals(&retarget, &t->blocked))
continue;
/* Remove the signals this thread can handle. */
sigandsets(&retarget, &retarget, &t->blocked);
if (!task_sigpending(t))
signal_wake_up(t, 0);
if (sigisemptyset(&retarget))
break;
}
}
void exit_signals(struct task_struct *tsk)
{
int group_stop = 0;
sigset_t unblocked;
threadgroup: extend threadgroup_lock() to cover exit and exec threadgroup_lock() protected only protected against new addition to the threadgroup, which was inherently somewhat incomplete and problematic for its only user cgroup. On-going migration could race against exec and exit leading to interesting problems - the symmetry between various attach methods, task exiting during method execution, ->exit() racing against attach methods, migrating task switching basic properties during exec and so on. This patch extends threadgroup_lock() such that it protects against all three threadgroup altering operations - fork, exit and exec. For exit, threadgroup_change_begin/end() calls are added to exit_signals around assertion of PF_EXITING. For exec, threadgroup_[un]lock() are updated to also grab and release cred_guard_mutex. With this change, threadgroup_lock() guarantees that the target threadgroup will remain stable - no new task will be added, no new PF_EXITING will be set and exec won't happen. The next patch will update cgroup so that it can take full advantage of this change. -v2: beefed up comment as suggested by Frederic. -v3: narrowed scope of protection in exit path as suggested by Frederic. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Li Zefan <lizf@cn.fujitsu.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Paul Menage <paul@paulmenage.org> Cc: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-13 02:12:21 +00:00
/*
* @tsk is about to have PF_EXITING set - lock out users which
* expect stable threadgroup.
*/
cgroup_threadgroup_change_begin(tsk);
threadgroup: extend threadgroup_lock() to cover exit and exec threadgroup_lock() protected only protected against new addition to the threadgroup, which was inherently somewhat incomplete and problematic for its only user cgroup. On-going migration could race against exec and exit leading to interesting problems - the symmetry between various attach methods, task exiting during method execution, ->exit() racing against attach methods, migrating task switching basic properties during exec and so on. This patch extends threadgroup_lock() such that it protects against all three threadgroup altering operations - fork, exit and exec. For exit, threadgroup_change_begin/end() calls are added to exit_signals around assertion of PF_EXITING. For exec, threadgroup_[un]lock() are updated to also grab and release cred_guard_mutex. With this change, threadgroup_lock() guarantees that the target threadgroup will remain stable - no new task will be added, no new PF_EXITING will be set and exec won't happen. The next patch will update cgroup so that it can take full advantage of this change. -v2: beefed up comment as suggested by Frederic. -v3: narrowed scope of protection in exit path as suggested by Frederic. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Li Zefan <lizf@cn.fujitsu.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Paul Menage <paul@paulmenage.org> Cc: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-13 02:12:21 +00:00
if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
sched: Introduce per-memory-map concurrency ID This feature allows the scheduler to expose a per-memory map concurrency ID to user-space. This concurrency ID is within the possible cpus range, and is temporarily (and uniquely) assigned while threads are actively running within a memory map. If a memory map has fewer threads than cores, or is limited to run on few cores concurrently through sched affinity or cgroup cpusets, the concurrency IDs will be values close to 0, thus allowing efficient use of user-space memory for per-cpu data structures. This feature is meant to be exposed by a new rseq thread area field. The primary purpose of this feature is to do the heavy-lifting needed by memory allocators to allow them to use per-cpu data structures efficiently in the following situations: - Single-threaded applications, - Multi-threaded applications on large systems (many cores) with limited cpu affinity mask, - Multi-threaded applications on large systems (many cores) with restricted cgroup cpuset per container. One of the key concern from scheduler maintainers is the overhead associated with additional spin locks or atomic operations in the scheduler fast-path. This is why the following optimization is implemented. On context switch between threads belonging to the same memory map, transfer the mm_cid from prev to next without any atomic ops. This takes care of use-cases involving frequent context switch between threads belonging to the same memory map. Additional optimizations can be done if the spin locks added when context switching between threads belonging to different memory maps end up being a performance bottleneck. Those are left out of this patch though. A performance impact would have to be clearly demonstrated to justify the added complexity. The credit goes to Paul Turner (Google) for the original virtual cpu id idea. This feature is implemented based on the discussions with Paul Turner and Peter Oskolkov (Google), but I took the liberty to implement scheduler fast-path optimizations and my own NUMA-awareness scheme. The rumor has it that Google have been running a rseq vcpu_id extension internally in production for a year. The tcmalloc source code indeed has comments hinting at a vcpu_id prototype extension to the rseq system call [1]. The following benchmarks do not show any significant overhead added to the scheduler context switch by this feature: * perf bench sched messaging (process) Baseline: 86.5±0.3 ms With mm_cid: 86.7±2.6 ms * perf bench sched messaging (threaded) Baseline: 84.3±3.0 ms With mm_cid: 84.7±2.6 ms * hackbench (process) Baseline: 82.9±2.7 ms With mm_cid: 82.9±2.9 ms * hackbench (threaded) Baseline: 85.2±2.6 ms With mm_cid: 84.4±2.9 ms [1] https://github.com/google/tcmalloc/blob/master/tcmalloc/internal/linux_syscall_support.h#L26 Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20221122203932.231377-8-mathieu.desnoyers@efficios.com
2022-11-22 20:39:09 +00:00
sched_mm_cid_exit_signals(tsk);
tsk->flags |= PF_EXITING;
cgroup_threadgroup_change_end(tsk);
return;
}
spin_lock_irq(&tsk->sighand->siglock);
/*
* From now this task is not visible for group-wide signals,
* see wants_signal(), do_signal_stop().
*/
sched: Introduce per-memory-map concurrency ID This feature allows the scheduler to expose a per-memory map concurrency ID to user-space. This concurrency ID is within the possible cpus range, and is temporarily (and uniquely) assigned while threads are actively running within a memory map. If a memory map has fewer threads than cores, or is limited to run on few cores concurrently through sched affinity or cgroup cpusets, the concurrency IDs will be values close to 0, thus allowing efficient use of user-space memory for per-cpu data structures. This feature is meant to be exposed by a new rseq thread area field. The primary purpose of this feature is to do the heavy-lifting needed by memory allocators to allow them to use per-cpu data structures efficiently in the following situations: - Single-threaded applications, - Multi-threaded applications on large systems (many cores) with limited cpu affinity mask, - Multi-threaded applications on large systems (many cores) with restricted cgroup cpuset per container. One of the key concern from scheduler maintainers is the overhead associated with additional spin locks or atomic operations in the scheduler fast-path. This is why the following optimization is implemented. On context switch between threads belonging to the same memory map, transfer the mm_cid from prev to next without any atomic ops. This takes care of use-cases involving frequent context switch between threads belonging to the same memory map. Additional optimizations can be done if the spin locks added when context switching between threads belonging to different memory maps end up being a performance bottleneck. Those are left out of this patch though. A performance impact would have to be clearly demonstrated to justify the added complexity. The credit goes to Paul Turner (Google) for the original virtual cpu id idea. This feature is implemented based on the discussions with Paul Turner and Peter Oskolkov (Google), but I took the liberty to implement scheduler fast-path optimizations and my own NUMA-awareness scheme. The rumor has it that Google have been running a rseq vcpu_id extension internally in production for a year. The tcmalloc source code indeed has comments hinting at a vcpu_id prototype extension to the rseq system call [1]. The following benchmarks do not show any significant overhead added to the scheduler context switch by this feature: * perf bench sched messaging (process) Baseline: 86.5±0.3 ms With mm_cid: 86.7±2.6 ms * perf bench sched messaging (threaded) Baseline: 84.3±3.0 ms With mm_cid: 84.7±2.6 ms * hackbench (process) Baseline: 82.9±2.7 ms With mm_cid: 82.9±2.9 ms * hackbench (threaded) Baseline: 85.2±2.6 ms With mm_cid: 84.4±2.9 ms [1] https://github.com/google/tcmalloc/blob/master/tcmalloc/internal/linux_syscall_support.h#L26 Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20221122203932.231377-8-mathieu.desnoyers@efficios.com
2022-11-22 20:39:09 +00:00
sched_mm_cid_exit_signals(tsk);
tsk->flags |= PF_EXITING;
threadgroup: extend threadgroup_lock() to cover exit and exec threadgroup_lock() protected only protected against new addition to the threadgroup, which was inherently somewhat incomplete and problematic for its only user cgroup. On-going migration could race against exec and exit leading to interesting problems - the symmetry between various attach methods, task exiting during method execution, ->exit() racing against attach methods, migrating task switching basic properties during exec and so on. This patch extends threadgroup_lock() such that it protects against all three threadgroup altering operations - fork, exit and exec. For exit, threadgroup_change_begin/end() calls are added to exit_signals around assertion of PF_EXITING. For exec, threadgroup_[un]lock() are updated to also grab and release cred_guard_mutex. With this change, threadgroup_lock() guarantees that the target threadgroup will remain stable - no new task will be added, no new PF_EXITING will be set and exec won't happen. The next patch will update cgroup so that it can take full advantage of this change. -v2: beefed up comment as suggested by Frederic. -v3: narrowed scope of protection in exit path as suggested by Frederic. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Li Zefan <lizf@cn.fujitsu.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Paul Menage <paul@paulmenage.org> Cc: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-13 02:12:21 +00:00
cgroup_threadgroup_change_end(tsk);
threadgroup: extend threadgroup_lock() to cover exit and exec threadgroup_lock() protected only protected against new addition to the threadgroup, which was inherently somewhat incomplete and problematic for its only user cgroup. On-going migration could race against exec and exit leading to interesting problems - the symmetry between various attach methods, task exiting during method execution, ->exit() racing against attach methods, migrating task switching basic properties during exec and so on. This patch extends threadgroup_lock() such that it protects against all three threadgroup altering operations - fork, exit and exec. For exit, threadgroup_change_begin/end() calls are added to exit_signals around assertion of PF_EXITING. For exec, threadgroup_[un]lock() are updated to also grab and release cred_guard_mutex. With this change, threadgroup_lock() guarantees that the target threadgroup will remain stable - no new task will be added, no new PF_EXITING will be set and exec won't happen. The next patch will update cgroup so that it can take full advantage of this change. -v2: beefed up comment as suggested by Frederic. -v3: narrowed scope of protection in exit path as suggested by Frederic. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Li Zefan <lizf@cn.fujitsu.com> Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Paul Menage <paul@paulmenage.org> Cc: Linus Torvalds <torvalds@linux-foundation.org>
2011-12-13 02:12:21 +00:00
if (!task_sigpending(tsk))
goto out;
unblocked = tsk->blocked;
signotset(&unblocked);
retarget_shared_pending(tsk, &unblocked);
if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
signal: Fix premature completion of group stop when interfered by ptrace task->signal->group_stop_count is used to track the progress of group stop. It's initialized to the number of tasks which need to stop for group stop to finish and each stopping or trapping task decrements. However, each task doesn't keep track of whether it decremented the counter or not and if woken up before the group stop is complete and stops again, it can decrement the counter multiple times. Please consider the following example code. static void *worker(void *arg) { while (1) ; return NULL; } int main(void) { pthread_t thread; pid_t pid; int i; pid = fork(); if (!pid) { for (i = 0; i < 5; i++) pthread_create(&thread, NULL, worker, NULL); while (1) ; return 0; } ptrace(PTRACE_ATTACH, pid, NULL, NULL); while (1) { waitid(P_PID, pid, NULL, WSTOPPED); ptrace(PTRACE_SINGLESTEP, pid, NULL, (void *)(long)SIGSTOP); } return 0; } The child creates five threads and the parent continuously traps the first thread and whenever the child gets a signal, SIGSTOP is delivered. If an external process sends SIGSTOP to the child, all other threads in the process should reliably stop. However, due to the above bug, the first thread will often end up consuming group_stop_count multiple times and SIGSTOP often ends up stopping none or part of the other four threads. This patch adds a new field task->group_stop which is protected by siglock and uses GROUP_STOP_CONSUME flag to track which task is still to consume group_stop_count to fix this bug. task_clear_group_stop_pending() and task_participate_group_stop() are added to help manipulating group stop states. As ptrace_stop() now also uses task_participate_group_stop(), it will set SIGNAL_STOP_STOPPED if it completes a group stop. There still are many issues regarding the interaction between group stop and ptrace. Patches to address them will follow. - Oleg spotted duplicate GROUP_STOP_CONSUME. Dropped. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Roland McGrath <roland@redhat.com>
2011-03-23 09:37:00 +00:00
task_participate_group_stop(tsk))
group_stop = CLD_STOPPED;
out:
spin_unlock_irq(&tsk->sighand->siglock);
/*
* If group stop has completed, deliver the notification. This
* should always go to the real parent of the group leader.
*/
if (unlikely(group_stop)) {
read_lock(&tasklist_lock);
do_notify_parent_cldstop(tsk, false, group_stop);
read_unlock(&tasklist_lock);
}
}
/*
* System call entry points.
*/
/**
* sys_restart_syscall - restart a system call
*/
SYSCALL_DEFINE0(restart_syscall)
{
all arches, signal: move restart_block to struct task_struct If an attacker can cause a controlled kernel stack overflow, overwriting the restart block is a very juicy exploit target. This is because the restart_block is held in the same memory allocation as the kernel stack. Moving the restart block to struct task_struct prevents this exploit by making the restart_block harder to locate. Note that there are other fields in thread_info that are also easy targets, at least on some architectures. It's also a decent simplification, since the restart code is more or less identical on all architectures. [james.hogan@imgtec.com: metag: align thread_info::supervisor_stack] Signed-off-by: Andy Lutomirski <luto@amacapital.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: David Miller <davem@davemloft.net> Acked-by: Richard Weinberger <richard@nod.at> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Matt Turner <mattst88@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Haavard Skinnemoen <hskinnemoen@gmail.com> Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no> Cc: Steven Miao <realmz6@gmail.com> Cc: Mark Salter <msalter@redhat.com> Cc: Aurelien Jacquiot <a-jacquiot@ti.com> Cc: Mikael Starvik <starvik@axis.com> Cc: Jesper Nilsson <jesper.nilsson@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Michal Simek <monstr@monstr.eu> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Jonas Bonn <jonas@southpole.se> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Helge Deller <deller@gmx.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Tested-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Chen Liqin <liqin.linux@gmail.com> Cc: Lennox Wu <lennox.wu@gmail.com> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: Chris Zankel <chris@zankel.net> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Guenter Roeck <linux@roeck-us.net> Signed-off-by: James Hogan <james.hogan@imgtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 23:01:14 +00:00
struct restart_block *restart = &current->restart_block;
return restart->fn(restart);
}
long do_no_restart_syscall(struct restart_block *param)
{
return -EINTR;
}
static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
{
if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
sigset_t newblocked;
/* A set of now blocked but previously unblocked signals. */
sigandnsets(&newblocked, newset, &current->blocked);
retarget_shared_pending(tsk, &newblocked);
}
tsk->blocked = *newset;
recalc_sigpending();
}
/**
* set_current_blocked - change current->blocked mask
* @newset: new mask
*
* It is wrong to change ->blocked directly, this helper should be used
* to ensure the process can't miss a shared signal we are going to block.
*/
void set_current_blocked(sigset_t *newset)
{
sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
__set_current_blocked(newset);
}
void __set_current_blocked(const sigset_t *newset)
{
struct task_struct *tsk = current;
signals: avoid unnecessary taking of sighand->siglock When running certain database workload on a high-end system with many CPUs, it was found that spinlock contention in the sigprocmask syscalls became a significant portion of the overall CPU cycles as shown below. 9.30% 9.30% 905387 dataserver /proc/kcore 0x7fff8163f4d2 [k] _raw_spin_lock_irq | ---_raw_spin_lock_irq | |--99.34%-- __set_current_blocked | sigprocmask | sys_rt_sigprocmask | system_call_fastpath | | | |--50.63%-- __swapcontext | | | | | |--99.91%-- upsleepgeneric | | | |--49.36%-- __setcontext | | ktskRun Looking further into the swapcontext function in glibc, it was found that the function always call sigprocmask() without checking if there are changes in the signal mask. A check was added to the __set_current_blocked() function to avoid taking the sighand->siglock spinlock if there is no change in the signal mask. This will prevent unneeded spinlock contention when many threads are trying to call sigprocmask(). With this patch applied, the spinlock contention in sigprocmask() was gone. Link: http://lkml.kernel.org/r/1474979209-11867-1-git-send-email-Waiman.Long@hpe.com Signed-off-by: Waiman Long <Waiman.Long@hpe.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Stas Sergeev <stsp@list.ru> Cc: Scott J Norton <scott.norton@hpe.com> Cc: Douglas Hatch <doug.hatch@hpe.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-14 23:04:10 +00:00
/*
* In case the signal mask hasn't changed, there is nothing we need
* to do. The current->blocked shouldn't be modified by other task.
*/
if (sigequalsets(&tsk->blocked, newset))
return;
spin_lock_irq(&tsk->sighand->siglock);
__set_task_blocked(tsk, newset);
spin_unlock_irq(&tsk->sighand->siglock);
}
/*
* This is also useful for kernel threads that want to temporarily
* (or permanently) block certain signals.
*
* NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
* interface happily blocks "unblockable" signals like SIGKILL
* and friends.
*/
int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
{
struct task_struct *tsk = current;
sigset_t newset;
/* Lockless, only current can change ->blocked, never from irq */
if (oldset)
*oldset = tsk->blocked;
switch (how) {
case SIG_BLOCK:
sigorsets(&newset, &tsk->blocked, set);
break;
case SIG_UNBLOCK:
sigandnsets(&newset, &tsk->blocked, set);
break;
case SIG_SETMASK:
newset = *set;
break;
default:
return -EINVAL;
}
__set_current_blocked(&newset);
return 0;
}
EXPORT_SYMBOL(sigprocmask);
/*
* The api helps set app-provided sigmasks.
*
* This is useful for syscalls such as ppoll, pselect, io_pgetevents and
* epoll_pwait where a new sigmask is passed from userland for the syscalls.
*
* Note that it does set_restore_sigmask() in advance, so it must be always
* paired with restore_saved_sigmask_unless() before return from syscall.
*/
int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
{
sigset_t kmask;
if (!umask)
return 0;
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
return -EFAULT;
set_restore_sigmask();
current->saved_sigmask = current->blocked;
set_current_blocked(&kmask);
return 0;
}
#ifdef CONFIG_COMPAT
int set_compat_user_sigmask(const compat_sigset_t __user *umask,
size_t sigsetsize)
{
sigset_t kmask;
if (!umask)
return 0;
if (sigsetsize != sizeof(compat_sigset_t))
return -EINVAL;
if (get_compat_sigset(&kmask, umask))
return -EFAULT;
set_restore_sigmask();
current->saved_sigmask = current->blocked;
set_current_blocked(&kmask);
return 0;
}
#endif
/**
* sys_rt_sigprocmask - change the list of currently blocked signals
* @how: whether to add, remove, or set signals
* @nset: stores pending signals
* @oset: previous value of signal mask if non-null
* @sigsetsize: size of sigset_t type
*/
SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
sigset_t __user *, oset, size_t, sigsetsize)
{
sigset_t old_set, new_set;
int error;
/* XXX: Don't preclude handling different sized sigset_t's. */
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
old_set = current->blocked;
if (nset) {
if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
return -EFAULT;
sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
error = sigprocmask(how, &new_set, NULL);
if (error)
return error;
}
if (oset) {
if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
return -EFAULT;
}
return 0;
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
{
sigset_t old_set = current->blocked;
/* XXX: Don't preclude handling different sized sigset_t's. */
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (nset) {
sigset_t new_set;
int error;
if (get_compat_sigset(&new_set, nset))
return -EFAULT;
sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
error = sigprocmask(how, &new_set, NULL);
if (error)
return error;
}
return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
}
#endif
static void do_sigpending(sigset_t *set)
{
spin_lock_irq(&current->sighand->siglock);
sigorsets(set, &current->pending.signal,
&current->signal->shared_pending.signal);
spin_unlock_irq(&current->sighand->siglock);
/* Outside the lock because only this thread touches it. */
sigandsets(set, &current->blocked, set);
}
/**
* sys_rt_sigpending - examine a pending signal that has been raised
* while blocked
* @uset: stores pending signals
* @sigsetsize: size of sigset_t type or larger
*/
SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
{
sigset_t set;
if (sigsetsize > sizeof(*uset))
return -EINVAL;
do_sigpending(&set);
if (copy_to_user(uset, &set, sigsetsize))
return -EFAULT;
return 0;
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
compat_size_t, sigsetsize)
{
sigset_t set;
if (sigsetsize > sizeof(*uset))
return -EINVAL;
do_sigpending(&set);
return put_compat_sigset(uset, &set, sigsetsize);
}
#endif
static const struct {
unsigned char limit, layout;
} sig_sicodes[] = {
[SIGILL] = { NSIGILL, SIL_FAULT },
[SIGFPE] = { NSIGFPE, SIL_FAULT },
[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
[SIGBUS] = { NSIGBUS, SIL_FAULT },
[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
#if defined(SIGEMT)
[SIGEMT] = { NSIGEMT, SIL_FAULT },
#endif
[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
[SIGPOLL] = { NSIGPOLL, SIL_POLL },
[SIGSYS] = { NSIGSYS, SIL_SYS },
};
signal: Guard against negative signal numbers in copy_siginfo_from_user The bounds checks in known_siginfo_layout only guards against positive numbers that are too large, large negative can slip through and can cause out of bounds accesses. Ordinarily this is not a concern because early in signal processing the signal number is filtered with valid_signal which ensures it is a small positive signal number, but copy_siginfo_from_user is called before this check is performed. [ 73.031126] BUG: unable to handle kernel paging request at ffffffff6281bcb6 [ 73.032038] PGD 3014067 P4D 3014067 PUD 0 [ 73.032565] Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI [ 73.033287] CPU: 0 PID: 732 Comm: trinity-c3 Tainted: G W T 4.19.0-rc1-00077-g4ce5f9c #1 [ 73.034423] RIP: 0010:copy_siginfo_from_user+0x4d/0xd0 [ 73.034908] Code: 00 8b 53 08 81 fa 80 00 00 00 0f 84 90 00 00 00 85 d2 7e 2d 48 63 0b 83 f9 1f 7f 1c 8d 71 ff bf d8 04 01 50 48 0f a3 f7 73 0e <0f> b6 8c 09 20 bb 81 82 39 ca 7f 15 eb 68 31 c0 83 fa 06 7f 0c eb [ 73.036665] RSP: 0018:ffff88001b8f7e20 EFLAGS: 00010297 [ 73.037160] RAX: 0000000000000000 RBX: ffff88001b8f7e90 RCX: fffffffff00000cb [ 73.037865] RDX: 0000000000000001 RSI: 00000000f00000ca RDI: 00000000500104d8 [ 73.038546] RBP: ffff88001b8f7e80 R08: 0000000000000000 R09: 0000000000000000 [ 73.039201] R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000008 [ 73.039874] R13: 00000000000002dc R14: 0000000000000000 R15: 0000000000000000 [ 73.040613] FS: 000000000104a880(0000) GS:ffff88001f000000(0000) knlGS:0000000000000000 [ 73.041649] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 73.042405] CR2: ffffffff6281bcb6 CR3: 000000001cb52003 CR4: 00000000001606b0 [ 73.043351] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 73.044286] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600 [ 73.045221] Call Trace: [ 73.045556] __x64_sys_rt_tgsigqueueinfo+0x34/0xa0 [ 73.046199] do_syscall_64+0x1a4/0x390 [ 73.046708] ? vtime_user_enter+0x61/0x80 [ 73.047242] ? __context_tracking_enter+0x4e/0x60 [ 73.047714] ? __context_tracking_enter+0x4e/0x60 [ 73.048278] entry_SYSCALL_64_after_hwframe+0x44/0xa9 Therefore fix known_siginfo_layout to take an unsigned signal number instead of a signed signal number. All valid signal numbers are small positive numbers so they will not be affected, but invalid negative signal numbers will now become large positive signal numbers and will not be used as indices into the sig_sicodes array. Making the signal number unsigned makes it difficult for similar mistakes to happen in the future. Fixes: 4ce5f9c9e754 ("signal: Use a smaller struct siginfo in the kernel") Inspired-by: Sean Christopherson <sean.j.christopherson@intel.com> Reported-by: kernel test robot <rong.a.chen@intel.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-11 01:11:25 +00:00
static bool known_siginfo_layout(unsigned sig, int si_code)
{
if (si_code == SI_KERNEL)
return true;
else if ((si_code > SI_USER)) {
if (sig_specific_sicodes(sig)) {
if (si_code <= sig_sicodes[sig].limit)
return true;
}
else if (si_code <= NSIGPOLL)
return true;
}
else if (si_code >= SI_DETHREAD)
return true;
else if (si_code == SI_ASYNCNL)
return true;
return false;
}
enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
signal: Remove kernel interal si_code magic struct siginfo is a union and the kernel since 2.4 has been hiding a union tag in the high 16bits of si_code using the values: __SI_KILL __SI_TIMER __SI_POLL __SI_FAULT __SI_CHLD __SI_RT __SI_MESGQ __SI_SYS While this looks plausible on the surface, in practice this situation has not worked well. - Injected positive signals are not copied to user space properly unless they have these magic high bits set. - Injected positive signals are not reported properly by signalfd unless they have these magic high bits set. - These kernel internal values leaked to userspace via ptrace_peek_siginfo - It was possible to inject these kernel internal values and cause the the kernel to misbehave. - Kernel developers got confused and expected these kernel internal values in userspace in kernel self tests. - Kernel developers got confused and set si_code to __SI_FAULT which is SI_USER in userspace which causes userspace to think an ordinary user sent the signal and that it was not kernel generated. - The values make it impossible to reorganize the code to transform siginfo_copy_to_user into a plain copy_to_user. As si_code must be massaged before being passed to userspace. So remove these kernel internal si codes and make the kernel code simpler and more maintainable. To replace these kernel internal magic si_codes introduce the helper function siginfo_layout, that takes a signal number and an si_code and computes which union member of siginfo is being used. Have siginfo_layout return an enumeration so that gcc will have enough information to warn if a switch statement does not handle all of union members. A couple of architectures have a messed up ABI that defines signal specific duplications of SI_USER which causes more special cases in siginfo_layout than I would like. The good news is only problem architectures pay the cost. Update all of the code that used the previous magic __SI_ values to use the new SIL_ values and to call siginfo_layout to get those values. Escept where not all of the cases are handled remove the defaults in the switch statements so that if a new case is missed in the future the lack will show up at compile time. Modify the code that copies siginfo si_code to userspace to just copy the value and not cast si_code to a short first. The high bits are no longer used to hold a magic union member. Fixup the siginfo header files to stop including the __SI_ values in their constants and for the headers that were missing it to properly update the number of si_codes for each signal type. The fixes to copy_siginfo_from_user32 implementations has the interesting property that several of them perviously should never have worked as the __SI_ values they depended up where kernel internal. With that dependency gone those implementations should work much better. The idea of not passing the __SI_ values out to userspace and then not reinserting them has been tested with criu and criu worked without changes. Ref: 2.4.0-test1 Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-07-17 03:36:59 +00:00
{
enum siginfo_layout layout = SIL_KILL;
if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
if ((sig < ARRAY_SIZE(sig_sicodes)) &&
(si_code <= sig_sicodes[sig].limit)) {
layout = sig_sicodes[sig].layout;
/* Handle the exceptions */
if ((sig == SIGBUS) &&
(si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
layout = SIL_FAULT_MCEERR;
else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
layout = SIL_FAULT_BNDERR;
#ifdef SEGV_PKUERR
else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
layout = SIL_FAULT_PKUERR;
#endif
else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
layout = SIL_FAULT_PERF_EVENT;
else if (IS_ENABLED(CONFIG_SPARC) &&
(sig == SIGILL) && (si_code == ILL_ILLTRP))
layout = SIL_FAULT_TRAPNO;
else if (IS_ENABLED(CONFIG_ALPHA) &&
((sig == SIGFPE) ||
((sig == SIGTRAP) && (si_code == TRAP_UNK))))
layout = SIL_FAULT_TRAPNO;
}
signal: Remove kernel interal si_code magic struct siginfo is a union and the kernel since 2.4 has been hiding a union tag in the high 16bits of si_code using the values: __SI_KILL __SI_TIMER __SI_POLL __SI_FAULT __SI_CHLD __SI_RT __SI_MESGQ __SI_SYS While this looks plausible on the surface, in practice this situation has not worked well. - Injected positive signals are not copied to user space properly unless they have these magic high bits set. - Injected positive signals are not reported properly by signalfd unless they have these magic high bits set. - These kernel internal values leaked to userspace via ptrace_peek_siginfo - It was possible to inject these kernel internal values and cause the the kernel to misbehave. - Kernel developers got confused and expected these kernel internal values in userspace in kernel self tests. - Kernel developers got confused and set si_code to __SI_FAULT which is SI_USER in userspace which causes userspace to think an ordinary user sent the signal and that it was not kernel generated. - The values make it impossible to reorganize the code to transform siginfo_copy_to_user into a plain copy_to_user. As si_code must be massaged before being passed to userspace. So remove these kernel internal si codes and make the kernel code simpler and more maintainable. To replace these kernel internal magic si_codes introduce the helper function siginfo_layout, that takes a signal number and an si_code and computes which union member of siginfo is being used. Have siginfo_layout return an enumeration so that gcc will have enough information to warn if a switch statement does not handle all of union members. A couple of architectures have a messed up ABI that defines signal specific duplications of SI_USER which causes more special cases in siginfo_layout than I would like. The good news is only problem architectures pay the cost. Update all of the code that used the previous magic __SI_ values to use the new SIL_ values and to call siginfo_layout to get those values. Escept where not all of the cases are handled remove the defaults in the switch statements so that if a new case is missed in the future the lack will show up at compile time. Modify the code that copies siginfo si_code to userspace to just copy the value and not cast si_code to a short first. The high bits are no longer used to hold a magic union member. Fixup the siginfo header files to stop including the __SI_ values in their constants and for the headers that were missing it to properly update the number of si_codes for each signal type. The fixes to copy_siginfo_from_user32 implementations has the interesting property that several of them perviously should never have worked as the __SI_ values they depended up where kernel internal. With that dependency gone those implementations should work much better. The idea of not passing the __SI_ values out to userspace and then not reinserting them has been tested with criu and criu worked without changes. Ref: 2.4.0-test1 Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-07-17 03:36:59 +00:00
else if (si_code <= NSIGPOLL)
layout = SIL_POLL;
} else {
if (si_code == SI_TIMER)
layout = SIL_TIMER;
else if (si_code == SI_SIGIO)
layout = SIL_POLL;
else if (si_code < 0)
layout = SIL_RT;
}
return layout;
}
static inline char __user *si_expansion(const siginfo_t __user *info)
{
return ((char __user *)info) + sizeof(struct kernel_siginfo);
}
int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
{
char __user *expansion = si_expansion(to);
if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
return -EFAULT;
if (clear_user(expansion, SI_EXPANSION_SIZE))
return -EFAULT;
return 0;
}
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
const siginfo_t __user *from)
{
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
char __user *expansion = si_expansion(from);
char buf[SI_EXPANSION_SIZE];
int i;
/*
* An unknown si_code might need more than
* sizeof(struct kernel_siginfo) bytes. Verify all of the
* extra bytes are 0. This guarantees copy_siginfo_to_user
* will return this data to userspace exactly.
*/
if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
return -EFAULT;
for (i = 0; i < SI_EXPANSION_SIZE; i++) {
if (buf[i] != 0)
return -E2BIG;
}
}
return 0;
}
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
const siginfo_t __user *from)
{
if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
return -EFAULT;
to->si_signo = signo;
return post_copy_siginfo_from_user(to, from);
}
int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
{
if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
return -EFAULT;
return post_copy_siginfo_from_user(to, from);
}
#ifdef CONFIG_COMPAT
/**
* copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
* @to: compat siginfo destination
* @from: kernel siginfo source
*
* Note: This function does not work properly for the SIGCHLD on x32, but
* fortunately it doesn't have to. The only valid callers for this function are
* copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
* The latter does not care because SIGCHLD will never cause a coredump.
*/
void copy_siginfo_to_external32(struct compat_siginfo *to,
const struct kernel_siginfo *from)
{
memset(to, 0, sizeof(*to));
to->si_signo = from->si_signo;
to->si_errno = from->si_errno;
to->si_code = from->si_code;
switch(siginfo_layout(from->si_signo, from->si_code)) {
case SIL_KILL:
to->si_pid = from->si_pid;
to->si_uid = from->si_uid;
break;
case SIL_TIMER:
to->si_tid = from->si_tid;
to->si_overrun = from->si_overrun;
to->si_int = from->si_int;
break;
case SIL_POLL:
to->si_band = from->si_band;
to->si_fd = from->si_fd;
break;
case SIL_FAULT:
to->si_addr = ptr_to_compat(from->si_addr);
break;
case SIL_FAULT_TRAPNO:
to->si_addr = ptr_to_compat(from->si_addr);
to->si_trapno = from->si_trapno;
break;
case SIL_FAULT_MCEERR:
to->si_addr = ptr_to_compat(from->si_addr);
to->si_addr_lsb = from->si_addr_lsb;
break;
case SIL_FAULT_BNDERR:
to->si_addr = ptr_to_compat(from->si_addr);
to->si_lower = ptr_to_compat(from->si_lower);
to->si_upper = ptr_to_compat(from->si_upper);
break;
case SIL_FAULT_PKUERR:
to->si_addr = ptr_to_compat(from->si_addr);
to->si_pkey = from->si_pkey;
break;
case SIL_FAULT_PERF_EVENT:
to->si_addr = ptr_to_compat(from->si_addr);
to->si_perf_data = from->si_perf_data;
to->si_perf_type = from->si_perf_type;
signal: Deliver SIGTRAP on perf event asynchronously if blocked With SIGTRAP on perf events, we have encountered termination of processes due to user space attempting to block delivery of SIGTRAP. Consider this case: <set up SIGTRAP on a perf event> ... sigset_t s; sigemptyset(&s); sigaddset(&s, SIGTRAP | <and others>); sigprocmask(SIG_BLOCK, &s, ...); ... <perf event triggers> When the perf event triggers, while SIGTRAP is blocked, force_sig_perf() will force the signal, but revert back to the default handler, thus terminating the task. This makes sense for error conditions, but not so much for explicitly requested monitoring. However, the expectation is still that signals generated by perf events are synchronous, which will no longer be the case if the signal is blocked and delivered later. To give user space the ability to clearly distinguish synchronous from asynchronous signals, introduce siginfo_t::si_perf_flags and TRAP_PERF_FLAG_ASYNC (opted for flags in case more binary information is required in future). The resolution to the problem is then to (a) no longer force the signal (avoiding the terminations), but (b) tell user space via si_perf_flags if the signal was synchronous or not, so that such signals can be handled differently (e.g. let user space decide to ignore or consider the data imprecise). The alternative of making the kernel ignore SIGTRAP on perf events if the signal is blocked may work for some usecases, but likely causes issues in others that then have to revert back to interception of sigprocmask() (which we want to avoid). [ A concrete example: when using breakpoint perf events to track data-flow, in a region of code where signals are blocked, data-flow can no longer be tracked accurately. When a relevant asynchronous signal is received after unblocking the signal, the data-flow tracking logic needs to know its state is imprecise. ] Fixes: 97ba62b27867 ("perf: Add support for SIGTRAP on perf events") Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Tested-by: Dmitry Vyukov <dvyukov@google.com> Link: https://lore.kernel.org/r/20220404111204.935357-1-elver@google.com
2022-04-04 11:12:04 +00:00
to->si_perf_flags = from->si_perf_flags;
break;
case SIL_CHLD:
to->si_pid = from->si_pid;
to->si_uid = from->si_uid;
to->si_status = from->si_status;
to->si_utime = from->si_utime;
to->si_stime = from->si_stime;
break;
case SIL_RT:
to->si_pid = from->si_pid;
to->si_uid = from->si_uid;
to->si_int = from->si_int;
break;
case SIL_SYS:
to->si_call_addr = ptr_to_compat(from->si_call_addr);
to->si_syscall = from->si_syscall;
to->si_arch = from->si_arch;
break;
}
}
int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
const struct kernel_siginfo *from)
{
struct compat_siginfo new;
copy_siginfo_to_external32(&new, from);
if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
return -EFAULT;
return 0;
}
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
const struct compat_siginfo *from)
{
clear_siginfo(to);
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
to->si_signo = from->si_signo;
to->si_errno = from->si_errno;
to->si_code = from->si_code;
switch(siginfo_layout(from->si_signo, from->si_code)) {
case SIL_KILL:
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
to->si_pid = from->si_pid;
to->si_uid = from->si_uid;
break;
case SIL_TIMER:
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
to->si_tid = from->si_tid;
to->si_overrun = from->si_overrun;
to->si_int = from->si_int;
break;
case SIL_POLL:
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
to->si_band = from->si_band;
to->si_fd = from->si_fd;
break;
case SIL_FAULT:
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
to->si_addr = compat_ptr(from->si_addr);
break;
case SIL_FAULT_TRAPNO:
to->si_addr = compat_ptr(from->si_addr);
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
to->si_trapno = from->si_trapno;
break;
case SIL_FAULT_MCEERR:
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
to->si_addr = compat_ptr(from->si_addr);
to->si_addr_lsb = from->si_addr_lsb;
break;
case SIL_FAULT_BNDERR:
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
to->si_addr = compat_ptr(from->si_addr);
to->si_lower = compat_ptr(from->si_lower);
to->si_upper = compat_ptr(from->si_upper);
break;
case SIL_FAULT_PKUERR:
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
to->si_addr = compat_ptr(from->si_addr);
to->si_pkey = from->si_pkey;
break;
case SIL_FAULT_PERF_EVENT:
to->si_addr = compat_ptr(from->si_addr);
to->si_perf_data = from->si_perf_data;
to->si_perf_type = from->si_perf_type;
signal: Deliver SIGTRAP on perf event asynchronously if blocked With SIGTRAP on perf events, we have encountered termination of processes due to user space attempting to block delivery of SIGTRAP. Consider this case: <set up SIGTRAP on a perf event> ... sigset_t s; sigemptyset(&s); sigaddset(&s, SIGTRAP | <and others>); sigprocmask(SIG_BLOCK, &s, ...); ... <perf event triggers> When the perf event triggers, while SIGTRAP is blocked, force_sig_perf() will force the signal, but revert back to the default handler, thus terminating the task. This makes sense for error conditions, but not so much for explicitly requested monitoring. However, the expectation is still that signals generated by perf events are synchronous, which will no longer be the case if the signal is blocked and delivered later. To give user space the ability to clearly distinguish synchronous from asynchronous signals, introduce siginfo_t::si_perf_flags and TRAP_PERF_FLAG_ASYNC (opted for flags in case more binary information is required in future). The resolution to the problem is then to (a) no longer force the signal (avoiding the terminations), but (b) tell user space via si_perf_flags if the signal was synchronous or not, so that such signals can be handled differently (e.g. let user space decide to ignore or consider the data imprecise). The alternative of making the kernel ignore SIGTRAP on perf events if the signal is blocked may work for some usecases, but likely causes issues in others that then have to revert back to interception of sigprocmask() (which we want to avoid). [ A concrete example: when using breakpoint perf events to track data-flow, in a region of code where signals are blocked, data-flow can no longer be tracked accurately. When a relevant asynchronous signal is received after unblocking the signal, the data-flow tracking logic needs to know its state is imprecise. ] Fixes: 97ba62b27867 ("perf: Add support for SIGTRAP on perf events") Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Tested-by: Dmitry Vyukov <dvyukov@google.com> Link: https://lore.kernel.org/r/20220404111204.935357-1-elver@google.com
2022-04-04 11:12:04 +00:00
to->si_perf_flags = from->si_perf_flags;
break;
case SIL_CHLD:
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
to->si_pid = from->si_pid;
to->si_uid = from->si_uid;
to->si_status = from->si_status;
#ifdef CONFIG_X86_X32_ABI
if (in_x32_syscall()) {
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
to->si_utime = from->_sifields._sigchld_x32._utime;
to->si_stime = from->_sifields._sigchld_x32._stime;
} else
#endif
{
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
to->si_utime = from->si_utime;
to->si_stime = from->si_stime;
}
break;
case SIL_RT:
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
to->si_pid = from->si_pid;
to->si_uid = from->si_uid;
to->si_int = from->si_int;
break;
case SIL_SYS:
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
to->si_call_addr = compat_ptr(from->si_call_addr);
to->si_syscall = from->si_syscall;
to->si_arch = from->si_arch;
break;
}
return 0;
}
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
const struct compat_siginfo __user *ufrom)
{
struct compat_siginfo from;
if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
return -EFAULT;
from.si_signo = signo;
return post_copy_siginfo_from_user32(to, &from);
}
int copy_siginfo_from_user32(struct kernel_siginfo *to,
const struct compat_siginfo __user *ufrom)
{
struct compat_siginfo from;
if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
return -EFAULT;
return post_copy_siginfo_from_user32(to, &from);
}
#endif /* CONFIG_COMPAT */
/**
* do_sigtimedwait - wait for queued signals specified in @which
* @which: queued signals to wait for
* @info: if non-null, the signal's siginfo is returned here
* @ts: upper bound on process time suspension
*/
static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
const struct timespec64 *ts)
{
ktime_t *to = NULL, timeout = KTIME_MAX;
struct task_struct *tsk = current;
sigset_t mask = *which;
enum pid_type type;
int sig, ret = 0;
if (ts) {
if (!timespec64_valid(ts))
return -EINVAL;
timeout = timespec64_to_ktime(*ts);
to = &timeout;
}
/*
* Invert the set of allowed signals to get those we want to block.
*/
sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
signotset(&mask);
spin_lock_irq(&tsk->sighand->siglock);
sig = dequeue_signal(tsk, &mask, info, &type);
if (!sig && timeout) {
/*
* None ready, temporarily unblock those we're interested
* while we are sleeping in so that we'll be awakened when
* they arrive. Unblocking is always fine, we can avoid
* set_current_blocked().
*/
tsk->real_blocked = tsk->blocked;
sigandsets(&tsk->blocked, &tsk->blocked, &mask);
recalc_sigpending();
spin_unlock_irq(&tsk->sighand->siglock);
freezer,sched: Rewrite core freezer logic Rewrite the core freezer to behave better wrt thawing and be simpler in general. By replacing PF_FROZEN with TASK_FROZEN, a special block state, it is ensured frozen tasks stay frozen until thawed and don't randomly wake up early, as is currently possible. As such, it does away with PF_FROZEN and PF_FREEZER_SKIP, freeing up two PF_flags (yay!). Specifically; the current scheme works a little like: freezer_do_not_count(); schedule(); freezer_count(); And either the task is blocked, or it lands in try_to_freezer() through freezer_count(). Now, when it is blocked, the freezer considers it frozen and continues. However, on thawing, once pm_freezing is cleared, freezer_count() stops working, and any random/spurious wakeup will let a task run before its time. That is, thawing tries to thaw things in explicit order; kernel threads and workqueues before doing bringing SMP back before userspace etc.. However due to the above mentioned races it is entirely possible for userspace tasks to thaw (by accident) before SMP is back. This can be a fatal problem in asymmetric ISA architectures (eg ARMv9) where the userspace task requires a special CPU to run. As said; replace this with a special task state TASK_FROZEN and add the following state transitions: TASK_FREEZABLE -> TASK_FROZEN __TASK_STOPPED -> TASK_FROZEN __TASK_TRACED -> TASK_FROZEN The new TASK_FREEZABLE can be set on any state part of TASK_NORMAL (IOW. TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE) -- any such state is already required to deal with spurious wakeups and the freezer causes one such when thawing the task (since the original state is lost). The special __TASK_{STOPPED,TRACED} states *can* be restored since their canonical state is in ->jobctl. With this, frozen tasks need an explicit TASK_FROZEN wakeup and are free of undue (early / spurious) wakeups. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lore.kernel.org/r/20220822114649.055452969@infradead.org
2022-08-22 11:18:22 +00:00
__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
HRTIMER_MODE_REL);
spin_lock_irq(&tsk->sighand->siglock);
__set_task_blocked(tsk, &tsk->real_blocked);
sigemptyset(&tsk->real_blocked);
sig = dequeue_signal(tsk, &mask, info, &type);
}
spin_unlock_irq(&tsk->sighand->siglock);
if (sig)
return sig;
return ret ? -EINTR : -EAGAIN;
}
/**
* sys_rt_sigtimedwait - synchronously wait for queued signals specified
* in @uthese
* @uthese: queued signals to wait for
* @uinfo: if non-null, the signal's siginfo is returned here
* @uts: upper bound on process time suspension
* @sigsetsize: size of sigset_t type
*/
SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
siginfo_t __user *, uinfo,
const struct __kernel_timespec __user *, uts,
size_t, sigsetsize)
{
sigset_t these;
struct timespec64 ts;
kernel_siginfo_t info;
int ret;
/* XXX: Don't preclude handling different sized sigset_t's. */
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (copy_from_user(&these, uthese, sizeof(these)))
return -EFAULT;
if (uts) {
if (get_timespec64(&ts, uts))
return -EFAULT;
}
ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
if (ret > 0 && uinfo) {
if (copy_siginfo_to_user(uinfo, &info))
ret = -EFAULT;
}
return ret;
}
#ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
siginfo_t __user *, uinfo,
const struct old_timespec32 __user *, uts,
size_t, sigsetsize)
{
sigset_t these;
struct timespec64 ts;
kernel_siginfo_t info;
int ret;
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (copy_from_user(&these, uthese, sizeof(these)))
return -EFAULT;
if (uts) {
if (get_old_timespec32(&ts, uts))
return -EFAULT;
}
ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
if (ret > 0 && uinfo) {
if (copy_siginfo_to_user(uinfo, &info))
ret = -EFAULT;
}
return ret;
}
#endif
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
struct compat_siginfo __user *, uinfo,
struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
{
sigset_t s;
struct timespec64 t;
kernel_siginfo_t info;
long ret;
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (get_compat_sigset(&s, uthese))
return -EFAULT;
if (uts) {
if (get_timespec64(&t, uts))
return -EFAULT;
}
ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
if (ret > 0 && uinfo) {
if (copy_siginfo_to_user32(uinfo, &info))
ret = -EFAULT;
}
return ret;
}
#ifdef CONFIG_COMPAT_32BIT_TIME
COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
struct compat_siginfo __user *, uinfo,
y2038: globally rename compat_time to old_time32 Christoph Hellwig suggested a slightly different path for handling backwards compatibility with the 32-bit time_t based system calls: Rather than simply reusing the compat_sys_* entry points on 32-bit architectures unchanged, we get rid of those entry points and the compat_time types by renaming them to something that makes more sense on 32-bit architectures (which don't have a compat mode otherwise), and then share the entry points under the new name with the 64-bit architectures that use them for implementing the compatibility. The following types and interfaces are renamed here, and moved from linux/compat_time.h to linux/time32.h: old new --- --- compat_time_t old_time32_t struct compat_timeval struct old_timeval32 struct compat_timespec struct old_timespec32 struct compat_itimerspec struct old_itimerspec32 ns_to_compat_timeval() ns_to_old_timeval32() get_compat_itimerspec64() get_old_itimerspec32() put_compat_itimerspec64() put_old_itimerspec32() compat_get_timespec64() get_old_timespec32() compat_put_timespec64() put_old_timespec32() As we already have aliases in place, this patch addresses only the instances that are relevant to the system call interface in particular, not those that occur in device drivers and other modules. Those will get handled separately, while providing the 64-bit version of the respective interfaces. I'm not renaming the timex, rusage and itimerval structures, as we are still debating what the new interface will look like, and whether we will need a replacement at all. This also doesn't change the names of the syscall entry points, which can be done more easily when we actually switch over the 32-bit architectures to use them, at that point we need to change COMPAT_SYSCALL_DEFINEx to SYSCALL_DEFINEx with a new name, e.g. with a _time32 suffix. Suggested-by: Christoph Hellwig <hch@infradead.org> Link: https://lore.kernel.org/lkml/20180705222110.GA5698@infradead.org/ Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2018-07-13 10:52:28 +00:00
struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
{
sigset_t s;
struct timespec64 t;
kernel_siginfo_t info;
long ret;
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (get_compat_sigset(&s, uthese))
return -EFAULT;
if (uts) {
if (get_old_timespec32(&t, uts))
return -EFAULT;
}
ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
if (ret > 0 && uinfo) {
if (copy_siginfo_to_user32(uinfo, &info))
ret = -EFAULT;
}
return ret;
}
#endif
#endif
signal: add pidfd_send_signal() syscall The kill() syscall operates on process identifiers (pid). After a process has exited its pid can be reused by another process. If a caller sends a signal to a reused pid it will end up signaling the wrong process. This issue has often surfaced and there has been a push to address this problem [1]. This patch uses file descriptors (fd) from proc/<pid> as stable handles on struct pid. Even if a pid is recycled the handle will not change. The fd can be used to send signals to the process it refers to. Thus, the new syscall pidfd_send_signal() is introduced to solve this problem. Instead of pids it operates on process fds (pidfd). /* prototype and argument /* long pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags); /* syscall number 424 */ The syscall number was chosen to be 424 to align with Arnd's rework in his y2038 to minimize merge conflicts (cf. [25]). In addition to the pidfd and signal argument it takes an additional siginfo_t and flags argument. If the siginfo_t argument is NULL then pidfd_send_signal() is equivalent to kill(<positive-pid>, <signal>). If it is not NULL pidfd_send_signal() is equivalent to rt_sigqueueinfo(). The flags argument is added to allow for future extensions of this syscall. It currently needs to be passed as 0. Failing to do so will cause EINVAL. /* pidfd_send_signal() replaces multiple pid-based syscalls */ The pidfd_send_signal() syscall currently takes on the job of rt_sigqueueinfo(2) and parts of the functionality of kill(2), Namely, when a positive pid is passed to kill(2). It will however be possible to also replace tgkill(2) and rt_tgsigqueueinfo(2) if this syscall is extended. /* sending signals to threads (tid) and process groups (pgid) */ Specifically, the pidfd_send_signal() syscall does currently not operate on process groups or threads. This is left for future extensions. In order to extend the syscall to allow sending signal to threads and process groups appropriately named flags (e.g. PIDFD_TYPE_PGID, and PIDFD_TYPE_TID) should be added. This implies that the flags argument will determine what is signaled and not the file descriptor itself. Put in other words, grouping in this api is a property of the flags argument not a property of the file descriptor (cf. [13]). Clarification for this has been requested by Eric (cf. [19]). When appropriate extensions through the flags argument are added then pidfd_send_signal() can additionally replace the part of kill(2) which operates on process groups as well as the tgkill(2) and rt_tgsigqueueinfo(2) syscalls. How such an extension could be implemented has been very roughly sketched in [14], [15], and [16]. However, this should not be taken as a commitment to a particular implementation. There might be better ways to do it. Right now this is intentionally left out to keep this patchset as simple as possible (cf. [4]). /* naming */ The syscall had various names throughout iterations of this patchset: - procfd_signal() - procfd_send_signal() - taskfd_send_signal() In the last round of reviews it was pointed out that given that if the flags argument decides the scope of the signal instead of different types of fds it might make sense to either settle for "procfd_" or "pidfd_" as prefix. The community was willing to accept either (cf. [17] and [18]). Given that one developer expressed strong preference for the "pidfd_" prefix (cf. [13]) and with other developers less opinionated about the name we should settle for "pidfd_" to avoid further bikeshedding. The "_send_signal" suffix was chosen to reflect the fact that the syscall takes on the job of multiple syscalls. It is therefore intentional that the name is not reminiscent of neither kill(2) nor rt_sigqueueinfo(2). Not the fomer because it might imply that pidfd_send_signal() is a replacement for kill(2), and not the latter because it is a hassle to remember the correct spelling - especially for non-native speakers - and because it is not descriptive enough of what the syscall actually does. The name "pidfd_send_signal" makes it very clear that its job is to send signals. /* zombies */ Zombies can be signaled just as any other process. No special error will be reported since a zombie state is an unreliable state (cf. [3]). However, this can be added as an extension through the @flags argument if the need ever arises. /* cross-namespace signals */ The patch currently enforces that the signaler and signalee either are in the same pid namespace or that the signaler's pid namespace is an ancestor of the signalee's pid namespace. This is done for the sake of simplicity and because it is unclear to what values certain members of struct siginfo_t would need to be set to (cf. [5], [6]). /* compat syscalls */ It became clear that we would like to avoid adding compat syscalls (cf. [7]). The compat syscall handling is now done in kernel/signal.c itself by adding __copy_siginfo_from_user_generic() which lets us avoid compat syscalls (cf. [8]). It should be noted that the addition of __copy_siginfo_from_user_any() is caused by a bug in the original implementation of rt_sigqueueinfo(2) (cf. 12). With upcoming rework for syscall handling things might improve significantly (cf. [11]) and __copy_siginfo_from_user_any() will not gain any additional callers. /* testing */ This patch was tested on x64 and x86. /* userspace usage */ An asciinema recording for the basic functionality can be found under [9]. With this patch a process can be killed via: #define _GNU_SOURCE #include <errno.h> #include <fcntl.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/syscall.h> #include <sys/types.h> #include <unistd.h> static inline int do_pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags) { #ifdef __NR_pidfd_send_signal return syscall(__NR_pidfd_send_signal, pidfd, sig, info, flags); #else return -ENOSYS; #endif } int main(int argc, char *argv[]) { int fd, ret, saved_errno, sig; if (argc < 3) exit(EXIT_FAILURE); fd = open(argv[1], O_DIRECTORY | O_CLOEXEC); if (fd < 0) { printf("%s - Failed to open \"%s\"\n", strerror(errno), argv[1]); exit(EXIT_FAILURE); } sig = atoi(argv[2]); printf("Sending signal %d to process %s\n", sig, argv[1]); ret = do_pidfd_send_signal(fd, sig, NULL, 0); saved_errno = errno; close(fd); errno = saved_errno; if (ret < 0) { printf("%s - Failed to send signal %d to process %s\n", strerror(errno), sig, argv[1]); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); } /* Q&A * Given that it seems the same questions get asked again by people who are * late to the party it makes sense to add a Q&A section to the commit * message so it's hopefully easier to avoid duplicate threads. * * For the sake of progress please consider these arguments settled unless * there is a new point that desperately needs to be addressed. Please make * sure to check the links to the threads in this commit message whether * this has not already been covered. */ Q-01: (Florian Weimer [20], Andrew Morton [21]) What happens when the target process has exited? A-01: Sending the signal will fail with ESRCH (cf. [22]). Q-02: (Andrew Morton [21]) Is the task_struct pinned by the fd? A-02: No. A reference to struct pid is kept. struct pid - as far as I understand - was created exactly for the reason to not require to pin struct task_struct (cf. [22]). Q-03: (Andrew Morton [21]) Does the entire procfs directory remain visible? Just one entry within it? A-03: The same thing that happens right now when you hold a file descriptor to /proc/<pid> open (cf. [22]). Q-04: (Andrew Morton [21]) Does the pid remain reserved? A-04: No. This patchset guarantees a stable handle not that pids are not recycled (cf. [22]). Q-05: (Andrew Morton [21]) Do attempts to signal that fd return errors? A-05: See {Q,A}-01. Q-06: (Andrew Morton [22]) Is there a cleaner way of obtaining the fd? Another syscall perhaps. A-06: Userspace can already trivially retrieve file descriptors from procfs so this is something that we will need to support anyway. Hence, there's no immediate need to add another syscalls just to make pidfd_send_signal() not dependent on the presence of procfs. However, adding a syscalls to get such file descriptors is planned for a future patchset (cf. [22]). Q-07: (Andrew Morton [21] and others) This fd-for-a-process sounds like a handy thing and people may well think up other uses for it in the future, probably unrelated to signals. Are the code and the interface designed to permit such future applications? A-07: Yes (cf. [22]). Q-08: (Andrew Morton [21] and others) Now I think about it, why a new syscall? This thing is looking rather like an ioctl? A-08: This has been extensively discussed. It was agreed that a syscall is preferred for a variety or reasons. Here are just a few taken from prior threads. Syscalls are safer than ioctl()s especially when signaling to fds. Processes are a core kernel concept so a syscall seems more appropriate. The layout of the syscall with its four arguments would require the addition of a custom struct for the ioctl() thereby causing at least the same amount or even more complexity for userspace than a simple syscall. The new syscall will replace multiple other pid-based syscalls (see description above). The file-descriptors-for-processes concept introduced with this syscall will be extended with other syscalls in the future. See also [22], [23] and various other threads already linked in here. Q-09: (Florian Weimer [24]) What happens if you use the new interface with an O_PATH descriptor? A-09: pidfds opened as O_PATH fds cannot be used to send signals to a process (cf. [2]). Signaling processes through pidfds is the equivalent of writing to a file. Thus, this is not an operation that operates "purely at the file descriptor level" as required by the open(2) manpage. See also [4]. /* References */ [1]: https://lore.kernel.org/lkml/20181029221037.87724-1-dancol@google.com/ [2]: https://lore.kernel.org/lkml/874lbtjvtd.fsf@oldenburg2.str.redhat.com/ [3]: https://lore.kernel.org/lkml/20181204132604.aspfupwjgjx6fhva@brauner.io/ [4]: https://lore.kernel.org/lkml/20181203180224.fkvw4kajtbvru2ku@brauner.io/ [5]: https://lore.kernel.org/lkml/20181121213946.GA10795@mail.hallyn.com/ [6]: https://lore.kernel.org/lkml/20181120103111.etlqp7zop34v6nv4@brauner.io/ [7]: https://lore.kernel.org/lkml/36323361-90BD-41AF-AB5B-EE0D7BA02C21@amacapital.net/ [8]: https://lore.kernel.org/lkml/87tvjxp8pc.fsf@xmission.com/ [9]: https://asciinema.org/a/IQjuCHew6bnq1cr78yuMv16cy [11]: https://lore.kernel.org/lkml/F53D6D38-3521-4C20-9034-5AF447DF62FF@amacapital.net/ [12]: https://lore.kernel.org/lkml/87zhtjn8ck.fsf@xmission.com/ [13]: https://lore.kernel.org/lkml/871s6u9z6u.fsf@xmission.com/ [14]: https://lore.kernel.org/lkml/20181206231742.xxi4ghn24z4h2qki@brauner.io/ [15]: https://lore.kernel.org/lkml/20181207003124.GA11160@mail.hallyn.com/ [16]: https://lore.kernel.org/lkml/20181207015423.4miorx43l3qhppfz@brauner.io/ [17]: https://lore.kernel.org/lkml/CAGXu5jL8PciZAXvOvCeCU3wKUEB_dU-O3q0tDw4uB_ojMvDEew@mail.gmail.com/ [18]: https://lore.kernel.org/lkml/20181206222746.GB9224@mail.hallyn.com/ [19]: https://lore.kernel.org/lkml/20181208054059.19813-1-christian@brauner.io/ [20]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [21]: https://lore.kernel.org/lkml/20181228152012.dbf0508c2508138efc5f2bbe@linux-foundation.org/ [22]: https://lore.kernel.org/lkml/20181228233725.722tdfgijxcssg76@brauner.io/ [23]: https://lwn.net/Articles/773459/ [24]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [25]: https://lore.kernel.org/lkml/CAK8P3a0ej9NcJM8wXNPbcGUyOUZYX+VLoDFdbenW3s3114oQZw@mail.gmail.com/ Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Jann Horn <jannh@google.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Florian Weimer <fweimer@redhat.com> Signed-off-by: Christian Brauner <christian@brauner.io> Reviewed-by: Tycho Andersen <tycho@tycho.ws> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Serge Hallyn <serge@hallyn.com> Acked-by: Aleksa Sarai <cyphar@cyphar.com>
2018-11-18 23:51:56 +00:00
static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
{
clear_siginfo(info);
info->si_signo = sig;
info->si_errno = 0;
info->si_code = SI_USER;
info->si_pid = task_tgid_vnr(current);
info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
}
/**
* sys_kill - send a signal to a process
* @pid: the PID of the process
* @sig: signal to be sent
*/
SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
{
struct kernel_siginfo info;
signal: add pidfd_send_signal() syscall The kill() syscall operates on process identifiers (pid). After a process has exited its pid can be reused by another process. If a caller sends a signal to a reused pid it will end up signaling the wrong process. This issue has often surfaced and there has been a push to address this problem [1]. This patch uses file descriptors (fd) from proc/<pid> as stable handles on struct pid. Even if a pid is recycled the handle will not change. The fd can be used to send signals to the process it refers to. Thus, the new syscall pidfd_send_signal() is introduced to solve this problem. Instead of pids it operates on process fds (pidfd). /* prototype and argument /* long pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags); /* syscall number 424 */ The syscall number was chosen to be 424 to align with Arnd's rework in his y2038 to minimize merge conflicts (cf. [25]). In addition to the pidfd and signal argument it takes an additional siginfo_t and flags argument. If the siginfo_t argument is NULL then pidfd_send_signal() is equivalent to kill(<positive-pid>, <signal>). If it is not NULL pidfd_send_signal() is equivalent to rt_sigqueueinfo(). The flags argument is added to allow for future extensions of this syscall. It currently needs to be passed as 0. Failing to do so will cause EINVAL. /* pidfd_send_signal() replaces multiple pid-based syscalls */ The pidfd_send_signal() syscall currently takes on the job of rt_sigqueueinfo(2) and parts of the functionality of kill(2), Namely, when a positive pid is passed to kill(2). It will however be possible to also replace tgkill(2) and rt_tgsigqueueinfo(2) if this syscall is extended. /* sending signals to threads (tid) and process groups (pgid) */ Specifically, the pidfd_send_signal() syscall does currently not operate on process groups or threads. This is left for future extensions. In order to extend the syscall to allow sending signal to threads and process groups appropriately named flags (e.g. PIDFD_TYPE_PGID, and PIDFD_TYPE_TID) should be added. This implies that the flags argument will determine what is signaled and not the file descriptor itself. Put in other words, grouping in this api is a property of the flags argument not a property of the file descriptor (cf. [13]). Clarification for this has been requested by Eric (cf. [19]). When appropriate extensions through the flags argument are added then pidfd_send_signal() can additionally replace the part of kill(2) which operates on process groups as well as the tgkill(2) and rt_tgsigqueueinfo(2) syscalls. How such an extension could be implemented has been very roughly sketched in [14], [15], and [16]. However, this should not be taken as a commitment to a particular implementation. There might be better ways to do it. Right now this is intentionally left out to keep this patchset as simple as possible (cf. [4]). /* naming */ The syscall had various names throughout iterations of this patchset: - procfd_signal() - procfd_send_signal() - taskfd_send_signal() In the last round of reviews it was pointed out that given that if the flags argument decides the scope of the signal instead of different types of fds it might make sense to either settle for "procfd_" or "pidfd_" as prefix. The community was willing to accept either (cf. [17] and [18]). Given that one developer expressed strong preference for the "pidfd_" prefix (cf. [13]) and with other developers less opinionated about the name we should settle for "pidfd_" to avoid further bikeshedding. The "_send_signal" suffix was chosen to reflect the fact that the syscall takes on the job of multiple syscalls. It is therefore intentional that the name is not reminiscent of neither kill(2) nor rt_sigqueueinfo(2). Not the fomer because it might imply that pidfd_send_signal() is a replacement for kill(2), and not the latter because it is a hassle to remember the correct spelling - especially for non-native speakers - and because it is not descriptive enough of what the syscall actually does. The name "pidfd_send_signal" makes it very clear that its job is to send signals. /* zombies */ Zombies can be signaled just as any other process. No special error will be reported since a zombie state is an unreliable state (cf. [3]). However, this can be added as an extension through the @flags argument if the need ever arises. /* cross-namespace signals */ The patch currently enforces that the signaler and signalee either are in the same pid namespace or that the signaler's pid namespace is an ancestor of the signalee's pid namespace. This is done for the sake of simplicity and because it is unclear to what values certain members of struct siginfo_t would need to be set to (cf. [5], [6]). /* compat syscalls */ It became clear that we would like to avoid adding compat syscalls (cf. [7]). The compat syscall handling is now done in kernel/signal.c itself by adding __copy_siginfo_from_user_generic() which lets us avoid compat syscalls (cf. [8]). It should be noted that the addition of __copy_siginfo_from_user_any() is caused by a bug in the original implementation of rt_sigqueueinfo(2) (cf. 12). With upcoming rework for syscall handling things might improve significantly (cf. [11]) and __copy_siginfo_from_user_any() will not gain any additional callers. /* testing */ This patch was tested on x64 and x86. /* userspace usage */ An asciinema recording for the basic functionality can be found under [9]. With this patch a process can be killed via: #define _GNU_SOURCE #include <errno.h> #include <fcntl.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/syscall.h> #include <sys/types.h> #include <unistd.h> static inline int do_pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags) { #ifdef __NR_pidfd_send_signal return syscall(__NR_pidfd_send_signal, pidfd, sig, info, flags); #else return -ENOSYS; #endif } int main(int argc, char *argv[]) { int fd, ret, saved_errno, sig; if (argc < 3) exit(EXIT_FAILURE); fd = open(argv[1], O_DIRECTORY | O_CLOEXEC); if (fd < 0) { printf("%s - Failed to open \"%s\"\n", strerror(errno), argv[1]); exit(EXIT_FAILURE); } sig = atoi(argv[2]); printf("Sending signal %d to process %s\n", sig, argv[1]); ret = do_pidfd_send_signal(fd, sig, NULL, 0); saved_errno = errno; close(fd); errno = saved_errno; if (ret < 0) { printf("%s - Failed to send signal %d to process %s\n", strerror(errno), sig, argv[1]); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); } /* Q&A * Given that it seems the same questions get asked again by people who are * late to the party it makes sense to add a Q&A section to the commit * message so it's hopefully easier to avoid duplicate threads. * * For the sake of progress please consider these arguments settled unless * there is a new point that desperately needs to be addressed. Please make * sure to check the links to the threads in this commit message whether * this has not already been covered. */ Q-01: (Florian Weimer [20], Andrew Morton [21]) What happens when the target process has exited? A-01: Sending the signal will fail with ESRCH (cf. [22]). Q-02: (Andrew Morton [21]) Is the task_struct pinned by the fd? A-02: No. A reference to struct pid is kept. struct pid - as far as I understand - was created exactly for the reason to not require to pin struct task_struct (cf. [22]). Q-03: (Andrew Morton [21]) Does the entire procfs directory remain visible? Just one entry within it? A-03: The same thing that happens right now when you hold a file descriptor to /proc/<pid> open (cf. [22]). Q-04: (Andrew Morton [21]) Does the pid remain reserved? A-04: No. This patchset guarantees a stable handle not that pids are not recycled (cf. [22]). Q-05: (Andrew Morton [21]) Do attempts to signal that fd return errors? A-05: See {Q,A}-01. Q-06: (Andrew Morton [22]) Is there a cleaner way of obtaining the fd? Another syscall perhaps. A-06: Userspace can already trivially retrieve file descriptors from procfs so this is something that we will need to support anyway. Hence, there's no immediate need to add another syscalls just to make pidfd_send_signal() not dependent on the presence of procfs. However, adding a syscalls to get such file descriptors is planned for a future patchset (cf. [22]). Q-07: (Andrew Morton [21] and others) This fd-for-a-process sounds like a handy thing and people may well think up other uses for it in the future, probably unrelated to signals. Are the code and the interface designed to permit such future applications? A-07: Yes (cf. [22]). Q-08: (Andrew Morton [21] and others) Now I think about it, why a new syscall? This thing is looking rather like an ioctl? A-08: This has been extensively discussed. It was agreed that a syscall is preferred for a variety or reasons. Here are just a few taken from prior threads. Syscalls are safer than ioctl()s especially when signaling to fds. Processes are a core kernel concept so a syscall seems more appropriate. The layout of the syscall with its four arguments would require the addition of a custom struct for the ioctl() thereby causing at least the same amount or even more complexity for userspace than a simple syscall. The new syscall will replace multiple other pid-based syscalls (see description above). The file-descriptors-for-processes concept introduced with this syscall will be extended with other syscalls in the future. See also [22], [23] and various other threads already linked in here. Q-09: (Florian Weimer [24]) What happens if you use the new interface with an O_PATH descriptor? A-09: pidfds opened as O_PATH fds cannot be used to send signals to a process (cf. [2]). Signaling processes through pidfds is the equivalent of writing to a file. Thus, this is not an operation that operates "purely at the file descriptor level" as required by the open(2) manpage. See also [4]. /* References */ [1]: https://lore.kernel.org/lkml/20181029221037.87724-1-dancol@google.com/ [2]: https://lore.kernel.org/lkml/874lbtjvtd.fsf@oldenburg2.str.redhat.com/ [3]: https://lore.kernel.org/lkml/20181204132604.aspfupwjgjx6fhva@brauner.io/ [4]: https://lore.kernel.org/lkml/20181203180224.fkvw4kajtbvru2ku@brauner.io/ [5]: https://lore.kernel.org/lkml/20181121213946.GA10795@mail.hallyn.com/ [6]: https://lore.kernel.org/lkml/20181120103111.etlqp7zop34v6nv4@brauner.io/ [7]: https://lore.kernel.org/lkml/36323361-90BD-41AF-AB5B-EE0D7BA02C21@amacapital.net/ [8]: https://lore.kernel.org/lkml/87tvjxp8pc.fsf@xmission.com/ [9]: https://asciinema.org/a/IQjuCHew6bnq1cr78yuMv16cy [11]: https://lore.kernel.org/lkml/F53D6D38-3521-4C20-9034-5AF447DF62FF@amacapital.net/ [12]: https://lore.kernel.org/lkml/87zhtjn8ck.fsf@xmission.com/ [13]: https://lore.kernel.org/lkml/871s6u9z6u.fsf@xmission.com/ [14]: https://lore.kernel.org/lkml/20181206231742.xxi4ghn24z4h2qki@brauner.io/ [15]: https://lore.kernel.org/lkml/20181207003124.GA11160@mail.hallyn.com/ [16]: https://lore.kernel.org/lkml/20181207015423.4miorx43l3qhppfz@brauner.io/ [17]: https://lore.kernel.org/lkml/CAGXu5jL8PciZAXvOvCeCU3wKUEB_dU-O3q0tDw4uB_ojMvDEew@mail.gmail.com/ [18]: https://lore.kernel.org/lkml/20181206222746.GB9224@mail.hallyn.com/ [19]: https://lore.kernel.org/lkml/20181208054059.19813-1-christian@brauner.io/ [20]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [21]: https://lore.kernel.org/lkml/20181228152012.dbf0508c2508138efc5f2bbe@linux-foundation.org/ [22]: https://lore.kernel.org/lkml/20181228233725.722tdfgijxcssg76@brauner.io/ [23]: https://lwn.net/Articles/773459/ [24]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [25]: https://lore.kernel.org/lkml/CAK8P3a0ej9NcJM8wXNPbcGUyOUZYX+VLoDFdbenW3s3114oQZw@mail.gmail.com/ Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Jann Horn <jannh@google.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Florian Weimer <fweimer@redhat.com> Signed-off-by: Christian Brauner <christian@brauner.io> Reviewed-by: Tycho Andersen <tycho@tycho.ws> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Serge Hallyn <serge@hallyn.com> Acked-by: Aleksa Sarai <cyphar@cyphar.com>
2018-11-18 23:51:56 +00:00
prepare_kill_siginfo(sig, &info);
return kill_something_info(sig, &info, pid);
}
signal: add pidfd_send_signal() syscall The kill() syscall operates on process identifiers (pid). After a process has exited its pid can be reused by another process. If a caller sends a signal to a reused pid it will end up signaling the wrong process. This issue has often surfaced and there has been a push to address this problem [1]. This patch uses file descriptors (fd) from proc/<pid> as stable handles on struct pid. Even if a pid is recycled the handle will not change. The fd can be used to send signals to the process it refers to. Thus, the new syscall pidfd_send_signal() is introduced to solve this problem. Instead of pids it operates on process fds (pidfd). /* prototype and argument /* long pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags); /* syscall number 424 */ The syscall number was chosen to be 424 to align with Arnd's rework in his y2038 to minimize merge conflicts (cf. [25]). In addition to the pidfd and signal argument it takes an additional siginfo_t and flags argument. If the siginfo_t argument is NULL then pidfd_send_signal() is equivalent to kill(<positive-pid>, <signal>). If it is not NULL pidfd_send_signal() is equivalent to rt_sigqueueinfo(). The flags argument is added to allow for future extensions of this syscall. It currently needs to be passed as 0. Failing to do so will cause EINVAL. /* pidfd_send_signal() replaces multiple pid-based syscalls */ The pidfd_send_signal() syscall currently takes on the job of rt_sigqueueinfo(2) and parts of the functionality of kill(2), Namely, when a positive pid is passed to kill(2). It will however be possible to also replace tgkill(2) and rt_tgsigqueueinfo(2) if this syscall is extended. /* sending signals to threads (tid) and process groups (pgid) */ Specifically, the pidfd_send_signal() syscall does currently not operate on process groups or threads. This is left for future extensions. In order to extend the syscall to allow sending signal to threads and process groups appropriately named flags (e.g. PIDFD_TYPE_PGID, and PIDFD_TYPE_TID) should be added. This implies that the flags argument will determine what is signaled and not the file descriptor itself. Put in other words, grouping in this api is a property of the flags argument not a property of the file descriptor (cf. [13]). Clarification for this has been requested by Eric (cf. [19]). When appropriate extensions through the flags argument are added then pidfd_send_signal() can additionally replace the part of kill(2) which operates on process groups as well as the tgkill(2) and rt_tgsigqueueinfo(2) syscalls. How such an extension could be implemented has been very roughly sketched in [14], [15], and [16]. However, this should not be taken as a commitment to a particular implementation. There might be better ways to do it. Right now this is intentionally left out to keep this patchset as simple as possible (cf. [4]). /* naming */ The syscall had various names throughout iterations of this patchset: - procfd_signal() - procfd_send_signal() - taskfd_send_signal() In the last round of reviews it was pointed out that given that if the flags argument decides the scope of the signal instead of different types of fds it might make sense to either settle for "procfd_" or "pidfd_" as prefix. The community was willing to accept either (cf. [17] and [18]). Given that one developer expressed strong preference for the "pidfd_" prefix (cf. [13]) and with other developers less opinionated about the name we should settle for "pidfd_" to avoid further bikeshedding. The "_send_signal" suffix was chosen to reflect the fact that the syscall takes on the job of multiple syscalls. It is therefore intentional that the name is not reminiscent of neither kill(2) nor rt_sigqueueinfo(2). Not the fomer because it might imply that pidfd_send_signal() is a replacement for kill(2), and not the latter because it is a hassle to remember the correct spelling - especially for non-native speakers - and because it is not descriptive enough of what the syscall actually does. The name "pidfd_send_signal" makes it very clear that its job is to send signals. /* zombies */ Zombies can be signaled just as any other process. No special error will be reported since a zombie state is an unreliable state (cf. [3]). However, this can be added as an extension through the @flags argument if the need ever arises. /* cross-namespace signals */ The patch currently enforces that the signaler and signalee either are in the same pid namespace or that the signaler's pid namespace is an ancestor of the signalee's pid namespace. This is done for the sake of simplicity and because it is unclear to what values certain members of struct siginfo_t would need to be set to (cf. [5], [6]). /* compat syscalls */ It became clear that we would like to avoid adding compat syscalls (cf. [7]). The compat syscall handling is now done in kernel/signal.c itself by adding __copy_siginfo_from_user_generic() which lets us avoid compat syscalls (cf. [8]). It should be noted that the addition of __copy_siginfo_from_user_any() is caused by a bug in the original implementation of rt_sigqueueinfo(2) (cf. 12). With upcoming rework for syscall handling things might improve significantly (cf. [11]) and __copy_siginfo_from_user_any() will not gain any additional callers. /* testing */ This patch was tested on x64 and x86. /* userspace usage */ An asciinema recording for the basic functionality can be found under [9]. With this patch a process can be killed via: #define _GNU_SOURCE #include <errno.h> #include <fcntl.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/syscall.h> #include <sys/types.h> #include <unistd.h> static inline int do_pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags) { #ifdef __NR_pidfd_send_signal return syscall(__NR_pidfd_send_signal, pidfd, sig, info, flags); #else return -ENOSYS; #endif } int main(int argc, char *argv[]) { int fd, ret, saved_errno, sig; if (argc < 3) exit(EXIT_FAILURE); fd = open(argv[1], O_DIRECTORY | O_CLOEXEC); if (fd < 0) { printf("%s - Failed to open \"%s\"\n", strerror(errno), argv[1]); exit(EXIT_FAILURE); } sig = atoi(argv[2]); printf("Sending signal %d to process %s\n", sig, argv[1]); ret = do_pidfd_send_signal(fd, sig, NULL, 0); saved_errno = errno; close(fd); errno = saved_errno; if (ret < 0) { printf("%s - Failed to send signal %d to process %s\n", strerror(errno), sig, argv[1]); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); } /* Q&A * Given that it seems the same questions get asked again by people who are * late to the party it makes sense to add a Q&A section to the commit * message so it's hopefully easier to avoid duplicate threads. * * For the sake of progress please consider these arguments settled unless * there is a new point that desperately needs to be addressed. Please make * sure to check the links to the threads in this commit message whether * this has not already been covered. */ Q-01: (Florian Weimer [20], Andrew Morton [21]) What happens when the target process has exited? A-01: Sending the signal will fail with ESRCH (cf. [22]). Q-02: (Andrew Morton [21]) Is the task_struct pinned by the fd? A-02: No. A reference to struct pid is kept. struct pid - as far as I understand - was created exactly for the reason to not require to pin struct task_struct (cf. [22]). Q-03: (Andrew Morton [21]) Does the entire procfs directory remain visible? Just one entry within it? A-03: The same thing that happens right now when you hold a file descriptor to /proc/<pid> open (cf. [22]). Q-04: (Andrew Morton [21]) Does the pid remain reserved? A-04: No. This patchset guarantees a stable handle not that pids are not recycled (cf. [22]). Q-05: (Andrew Morton [21]) Do attempts to signal that fd return errors? A-05: See {Q,A}-01. Q-06: (Andrew Morton [22]) Is there a cleaner way of obtaining the fd? Another syscall perhaps. A-06: Userspace can already trivially retrieve file descriptors from procfs so this is something that we will need to support anyway. Hence, there's no immediate need to add another syscalls just to make pidfd_send_signal() not dependent on the presence of procfs. However, adding a syscalls to get such file descriptors is planned for a future patchset (cf. [22]). Q-07: (Andrew Morton [21] and others) This fd-for-a-process sounds like a handy thing and people may well think up other uses for it in the future, probably unrelated to signals. Are the code and the interface designed to permit such future applications? A-07: Yes (cf. [22]). Q-08: (Andrew Morton [21] and others) Now I think about it, why a new syscall? This thing is looking rather like an ioctl? A-08: This has been extensively discussed. It was agreed that a syscall is preferred for a variety or reasons. Here are just a few taken from prior threads. Syscalls are safer than ioctl()s especially when signaling to fds. Processes are a core kernel concept so a syscall seems more appropriate. The layout of the syscall with its four arguments would require the addition of a custom struct for the ioctl() thereby causing at least the same amount or even more complexity for userspace than a simple syscall. The new syscall will replace multiple other pid-based syscalls (see description above). The file-descriptors-for-processes concept introduced with this syscall will be extended with other syscalls in the future. See also [22], [23] and various other threads already linked in here. Q-09: (Florian Weimer [24]) What happens if you use the new interface with an O_PATH descriptor? A-09: pidfds opened as O_PATH fds cannot be used to send signals to a process (cf. [2]). Signaling processes through pidfds is the equivalent of writing to a file. Thus, this is not an operation that operates "purely at the file descriptor level" as required by the open(2) manpage. See also [4]. /* References */ [1]: https://lore.kernel.org/lkml/20181029221037.87724-1-dancol@google.com/ [2]: https://lore.kernel.org/lkml/874lbtjvtd.fsf@oldenburg2.str.redhat.com/ [3]: https://lore.kernel.org/lkml/20181204132604.aspfupwjgjx6fhva@brauner.io/ [4]: https://lore.kernel.org/lkml/20181203180224.fkvw4kajtbvru2ku@brauner.io/ [5]: https://lore.kernel.org/lkml/20181121213946.GA10795@mail.hallyn.com/ [6]: https://lore.kernel.org/lkml/20181120103111.etlqp7zop34v6nv4@brauner.io/ [7]: https://lore.kernel.org/lkml/36323361-90BD-41AF-AB5B-EE0D7BA02C21@amacapital.net/ [8]: https://lore.kernel.org/lkml/87tvjxp8pc.fsf@xmission.com/ [9]: https://asciinema.org/a/IQjuCHew6bnq1cr78yuMv16cy [11]: https://lore.kernel.org/lkml/F53D6D38-3521-4C20-9034-5AF447DF62FF@amacapital.net/ [12]: https://lore.kernel.org/lkml/87zhtjn8ck.fsf@xmission.com/ [13]: https://lore.kernel.org/lkml/871s6u9z6u.fsf@xmission.com/ [14]: https://lore.kernel.org/lkml/20181206231742.xxi4ghn24z4h2qki@brauner.io/ [15]: https://lore.kernel.org/lkml/20181207003124.GA11160@mail.hallyn.com/ [16]: https://lore.kernel.org/lkml/20181207015423.4miorx43l3qhppfz@brauner.io/ [17]: https://lore.kernel.org/lkml/CAGXu5jL8PciZAXvOvCeCU3wKUEB_dU-O3q0tDw4uB_ojMvDEew@mail.gmail.com/ [18]: https://lore.kernel.org/lkml/20181206222746.GB9224@mail.hallyn.com/ [19]: https://lore.kernel.org/lkml/20181208054059.19813-1-christian@brauner.io/ [20]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [21]: https://lore.kernel.org/lkml/20181228152012.dbf0508c2508138efc5f2bbe@linux-foundation.org/ [22]: https://lore.kernel.org/lkml/20181228233725.722tdfgijxcssg76@brauner.io/ [23]: https://lwn.net/Articles/773459/ [24]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [25]: https://lore.kernel.org/lkml/CAK8P3a0ej9NcJM8wXNPbcGUyOUZYX+VLoDFdbenW3s3114oQZw@mail.gmail.com/ Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Jann Horn <jannh@google.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Florian Weimer <fweimer@redhat.com> Signed-off-by: Christian Brauner <christian@brauner.io> Reviewed-by: Tycho Andersen <tycho@tycho.ws> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Serge Hallyn <serge@hallyn.com> Acked-by: Aleksa Sarai <cyphar@cyphar.com>
2018-11-18 23:51:56 +00:00
/*
* Verify that the signaler and signalee either are in the same pid namespace
* or that the signaler's pid namespace is an ancestor of the signalee's pid
* namespace.
*/
static bool access_pidfd_pidns(struct pid *pid)
{
struct pid_namespace *active = task_active_pid_ns(current);
struct pid_namespace *p = ns_of_pid(pid);
for (;;) {
if (!p)
return false;
if (p == active)
break;
p = p->parent;
}
return true;
}
static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
siginfo_t __user *info)
signal: add pidfd_send_signal() syscall The kill() syscall operates on process identifiers (pid). After a process has exited its pid can be reused by another process. If a caller sends a signal to a reused pid it will end up signaling the wrong process. This issue has often surfaced and there has been a push to address this problem [1]. This patch uses file descriptors (fd) from proc/<pid> as stable handles on struct pid. Even if a pid is recycled the handle will not change. The fd can be used to send signals to the process it refers to. Thus, the new syscall pidfd_send_signal() is introduced to solve this problem. Instead of pids it operates on process fds (pidfd). /* prototype and argument /* long pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags); /* syscall number 424 */ The syscall number was chosen to be 424 to align with Arnd's rework in his y2038 to minimize merge conflicts (cf. [25]). In addition to the pidfd and signal argument it takes an additional siginfo_t and flags argument. If the siginfo_t argument is NULL then pidfd_send_signal() is equivalent to kill(<positive-pid>, <signal>). If it is not NULL pidfd_send_signal() is equivalent to rt_sigqueueinfo(). The flags argument is added to allow for future extensions of this syscall. It currently needs to be passed as 0. Failing to do so will cause EINVAL. /* pidfd_send_signal() replaces multiple pid-based syscalls */ The pidfd_send_signal() syscall currently takes on the job of rt_sigqueueinfo(2) and parts of the functionality of kill(2), Namely, when a positive pid is passed to kill(2). It will however be possible to also replace tgkill(2) and rt_tgsigqueueinfo(2) if this syscall is extended. /* sending signals to threads (tid) and process groups (pgid) */ Specifically, the pidfd_send_signal() syscall does currently not operate on process groups or threads. This is left for future extensions. In order to extend the syscall to allow sending signal to threads and process groups appropriately named flags (e.g. PIDFD_TYPE_PGID, and PIDFD_TYPE_TID) should be added. This implies that the flags argument will determine what is signaled and not the file descriptor itself. Put in other words, grouping in this api is a property of the flags argument not a property of the file descriptor (cf. [13]). Clarification for this has been requested by Eric (cf. [19]). When appropriate extensions through the flags argument are added then pidfd_send_signal() can additionally replace the part of kill(2) which operates on process groups as well as the tgkill(2) and rt_tgsigqueueinfo(2) syscalls. How such an extension could be implemented has been very roughly sketched in [14], [15], and [16]. However, this should not be taken as a commitment to a particular implementation. There might be better ways to do it. Right now this is intentionally left out to keep this patchset as simple as possible (cf. [4]). /* naming */ The syscall had various names throughout iterations of this patchset: - procfd_signal() - procfd_send_signal() - taskfd_send_signal() In the last round of reviews it was pointed out that given that if the flags argument decides the scope of the signal instead of different types of fds it might make sense to either settle for "procfd_" or "pidfd_" as prefix. The community was willing to accept either (cf. [17] and [18]). Given that one developer expressed strong preference for the "pidfd_" prefix (cf. [13]) and with other developers less opinionated about the name we should settle for "pidfd_" to avoid further bikeshedding. The "_send_signal" suffix was chosen to reflect the fact that the syscall takes on the job of multiple syscalls. It is therefore intentional that the name is not reminiscent of neither kill(2) nor rt_sigqueueinfo(2). Not the fomer because it might imply that pidfd_send_signal() is a replacement for kill(2), and not the latter because it is a hassle to remember the correct spelling - especially for non-native speakers - and because it is not descriptive enough of what the syscall actually does. The name "pidfd_send_signal" makes it very clear that its job is to send signals. /* zombies */ Zombies can be signaled just as any other process. No special error will be reported since a zombie state is an unreliable state (cf. [3]). However, this can be added as an extension through the @flags argument if the need ever arises. /* cross-namespace signals */ The patch currently enforces that the signaler and signalee either are in the same pid namespace or that the signaler's pid namespace is an ancestor of the signalee's pid namespace. This is done for the sake of simplicity and because it is unclear to what values certain members of struct siginfo_t would need to be set to (cf. [5], [6]). /* compat syscalls */ It became clear that we would like to avoid adding compat syscalls (cf. [7]). The compat syscall handling is now done in kernel/signal.c itself by adding __copy_siginfo_from_user_generic() which lets us avoid compat syscalls (cf. [8]). It should be noted that the addition of __copy_siginfo_from_user_any() is caused by a bug in the original implementation of rt_sigqueueinfo(2) (cf. 12). With upcoming rework for syscall handling things might improve significantly (cf. [11]) and __copy_siginfo_from_user_any() will not gain any additional callers. /* testing */ This patch was tested on x64 and x86. /* userspace usage */ An asciinema recording for the basic functionality can be found under [9]. With this patch a process can be killed via: #define _GNU_SOURCE #include <errno.h> #include <fcntl.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/syscall.h> #include <sys/types.h> #include <unistd.h> static inline int do_pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags) { #ifdef __NR_pidfd_send_signal return syscall(__NR_pidfd_send_signal, pidfd, sig, info, flags); #else return -ENOSYS; #endif } int main(int argc, char *argv[]) { int fd, ret, saved_errno, sig; if (argc < 3) exit(EXIT_FAILURE); fd = open(argv[1], O_DIRECTORY | O_CLOEXEC); if (fd < 0) { printf("%s - Failed to open \"%s\"\n", strerror(errno), argv[1]); exit(EXIT_FAILURE); } sig = atoi(argv[2]); printf("Sending signal %d to process %s\n", sig, argv[1]); ret = do_pidfd_send_signal(fd, sig, NULL, 0); saved_errno = errno; close(fd); errno = saved_errno; if (ret < 0) { printf("%s - Failed to send signal %d to process %s\n", strerror(errno), sig, argv[1]); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); } /* Q&A * Given that it seems the same questions get asked again by people who are * late to the party it makes sense to add a Q&A section to the commit * message so it's hopefully easier to avoid duplicate threads. * * For the sake of progress please consider these arguments settled unless * there is a new point that desperately needs to be addressed. Please make * sure to check the links to the threads in this commit message whether * this has not already been covered. */ Q-01: (Florian Weimer [20], Andrew Morton [21]) What happens when the target process has exited? A-01: Sending the signal will fail with ESRCH (cf. [22]). Q-02: (Andrew Morton [21]) Is the task_struct pinned by the fd? A-02: No. A reference to struct pid is kept. struct pid - as far as I understand - was created exactly for the reason to not require to pin struct task_struct (cf. [22]). Q-03: (Andrew Morton [21]) Does the entire procfs directory remain visible? Just one entry within it? A-03: The same thing that happens right now when you hold a file descriptor to /proc/<pid> open (cf. [22]). Q-04: (Andrew Morton [21]) Does the pid remain reserved? A-04: No. This patchset guarantees a stable handle not that pids are not recycled (cf. [22]). Q-05: (Andrew Morton [21]) Do attempts to signal that fd return errors? A-05: See {Q,A}-01. Q-06: (Andrew Morton [22]) Is there a cleaner way of obtaining the fd? Another syscall perhaps. A-06: Userspace can already trivially retrieve file descriptors from procfs so this is something that we will need to support anyway. Hence, there's no immediate need to add another syscalls just to make pidfd_send_signal() not dependent on the presence of procfs. However, adding a syscalls to get such file descriptors is planned for a future patchset (cf. [22]). Q-07: (Andrew Morton [21] and others) This fd-for-a-process sounds like a handy thing and people may well think up other uses for it in the future, probably unrelated to signals. Are the code and the interface designed to permit such future applications? A-07: Yes (cf. [22]). Q-08: (Andrew Morton [21] and others) Now I think about it, why a new syscall? This thing is looking rather like an ioctl? A-08: This has been extensively discussed. It was agreed that a syscall is preferred for a variety or reasons. Here are just a few taken from prior threads. Syscalls are safer than ioctl()s especially when signaling to fds. Processes are a core kernel concept so a syscall seems more appropriate. The layout of the syscall with its four arguments would require the addition of a custom struct for the ioctl() thereby causing at least the same amount or even more complexity for userspace than a simple syscall. The new syscall will replace multiple other pid-based syscalls (see description above). The file-descriptors-for-processes concept introduced with this syscall will be extended with other syscalls in the future. See also [22], [23] and various other threads already linked in here. Q-09: (Florian Weimer [24]) What happens if you use the new interface with an O_PATH descriptor? A-09: pidfds opened as O_PATH fds cannot be used to send signals to a process (cf. [2]). Signaling processes through pidfds is the equivalent of writing to a file. Thus, this is not an operation that operates "purely at the file descriptor level" as required by the open(2) manpage. See also [4]. /* References */ [1]: https://lore.kernel.org/lkml/20181029221037.87724-1-dancol@google.com/ [2]: https://lore.kernel.org/lkml/874lbtjvtd.fsf@oldenburg2.str.redhat.com/ [3]: https://lore.kernel.org/lkml/20181204132604.aspfupwjgjx6fhva@brauner.io/ [4]: https://lore.kernel.org/lkml/20181203180224.fkvw4kajtbvru2ku@brauner.io/ [5]: https://lore.kernel.org/lkml/20181121213946.GA10795@mail.hallyn.com/ [6]: https://lore.kernel.org/lkml/20181120103111.etlqp7zop34v6nv4@brauner.io/ [7]: https://lore.kernel.org/lkml/36323361-90BD-41AF-AB5B-EE0D7BA02C21@amacapital.net/ [8]: https://lore.kernel.org/lkml/87tvjxp8pc.fsf@xmission.com/ [9]: https://asciinema.org/a/IQjuCHew6bnq1cr78yuMv16cy [11]: https://lore.kernel.org/lkml/F53D6D38-3521-4C20-9034-5AF447DF62FF@amacapital.net/ [12]: https://lore.kernel.org/lkml/87zhtjn8ck.fsf@xmission.com/ [13]: https://lore.kernel.org/lkml/871s6u9z6u.fsf@xmission.com/ [14]: https://lore.kernel.org/lkml/20181206231742.xxi4ghn24z4h2qki@brauner.io/ [15]: https://lore.kernel.org/lkml/20181207003124.GA11160@mail.hallyn.com/ [16]: https://lore.kernel.org/lkml/20181207015423.4miorx43l3qhppfz@brauner.io/ [17]: https://lore.kernel.org/lkml/CAGXu5jL8PciZAXvOvCeCU3wKUEB_dU-O3q0tDw4uB_ojMvDEew@mail.gmail.com/ [18]: https://lore.kernel.org/lkml/20181206222746.GB9224@mail.hallyn.com/ [19]: https://lore.kernel.org/lkml/20181208054059.19813-1-christian@brauner.io/ [20]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [21]: https://lore.kernel.org/lkml/20181228152012.dbf0508c2508138efc5f2bbe@linux-foundation.org/ [22]: https://lore.kernel.org/lkml/20181228233725.722tdfgijxcssg76@brauner.io/ [23]: https://lwn.net/Articles/773459/ [24]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [25]: https://lore.kernel.org/lkml/CAK8P3a0ej9NcJM8wXNPbcGUyOUZYX+VLoDFdbenW3s3114oQZw@mail.gmail.com/ Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Jann Horn <jannh@google.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Florian Weimer <fweimer@redhat.com> Signed-off-by: Christian Brauner <christian@brauner.io> Reviewed-by: Tycho Andersen <tycho@tycho.ws> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Serge Hallyn <serge@hallyn.com> Acked-by: Aleksa Sarai <cyphar@cyphar.com>
2018-11-18 23:51:56 +00:00
{
#ifdef CONFIG_COMPAT
/*
* Avoid hooking up compat syscalls and instead handle necessary
* conversions here. Note, this is a stop-gap measure and should not be
* considered a generic solution.
*/
if (in_compat_syscall())
return copy_siginfo_from_user32(
kinfo, (struct compat_siginfo __user *)info);
#endif
return copy_siginfo_from_user(kinfo, info);
}
static struct pid *pidfd_to_pid(const struct file *file)
{
pidfd: add P_PIDFD to waitid() This adds the P_PIDFD type to waitid(). One of the last remaining bits for the pidfd api is to make it possible to wait on pidfds. With P_PIDFD added to waitid() the parts of userspace that want to use the pidfd api to exclusively manage processes can do so now. One of the things this will unblock in the future is the ability to make it possible to retrieve the exit status via waitid(P_PIDFD) for non-parent processes if handed a _suitable_ pidfd that has this feature set. This is similar to what you can do on FreeBSD with kqueue(). It might even end up being possible to wait on a process as a non-parent if an appropriate property is enabled on the pidfd. With P_PIDFD no scoping of the process identified by the pidfd is possible, i.e. it explicitly blocks things such as wait4(-1), wait4(0), waitid(P_ALL), waitid(P_PGID) etc. It only allows for semantics equivalent to wait4(pid), waitid(P_PID). Users that need scoping should rely on pid-based wait*() syscalls for now. Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: David Howells <dhowells@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Aleksa Sarai <cyphar@cyphar.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Link: https://lore.kernel.org/r/20190727222229.6516-2-christian@brauner.io
2019-07-27 22:22:29 +00:00
struct pid *pid;
pid = pidfd_pid(file);
if (!IS_ERR(pid))
return pid;
return tgid_pidfd_to_pid(file);
}
signal: add pidfd_send_signal() syscall The kill() syscall operates on process identifiers (pid). After a process has exited its pid can be reused by another process. If a caller sends a signal to a reused pid it will end up signaling the wrong process. This issue has often surfaced and there has been a push to address this problem [1]. This patch uses file descriptors (fd) from proc/<pid> as stable handles on struct pid. Even if a pid is recycled the handle will not change. The fd can be used to send signals to the process it refers to. Thus, the new syscall pidfd_send_signal() is introduced to solve this problem. Instead of pids it operates on process fds (pidfd). /* prototype and argument /* long pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags); /* syscall number 424 */ The syscall number was chosen to be 424 to align with Arnd's rework in his y2038 to minimize merge conflicts (cf. [25]). In addition to the pidfd and signal argument it takes an additional siginfo_t and flags argument. If the siginfo_t argument is NULL then pidfd_send_signal() is equivalent to kill(<positive-pid>, <signal>). If it is not NULL pidfd_send_signal() is equivalent to rt_sigqueueinfo(). The flags argument is added to allow for future extensions of this syscall. It currently needs to be passed as 0. Failing to do so will cause EINVAL. /* pidfd_send_signal() replaces multiple pid-based syscalls */ The pidfd_send_signal() syscall currently takes on the job of rt_sigqueueinfo(2) and parts of the functionality of kill(2), Namely, when a positive pid is passed to kill(2). It will however be possible to also replace tgkill(2) and rt_tgsigqueueinfo(2) if this syscall is extended. /* sending signals to threads (tid) and process groups (pgid) */ Specifically, the pidfd_send_signal() syscall does currently not operate on process groups or threads. This is left for future extensions. In order to extend the syscall to allow sending signal to threads and process groups appropriately named flags (e.g. PIDFD_TYPE_PGID, and PIDFD_TYPE_TID) should be added. This implies that the flags argument will determine what is signaled and not the file descriptor itself. Put in other words, grouping in this api is a property of the flags argument not a property of the file descriptor (cf. [13]). Clarification for this has been requested by Eric (cf. [19]). When appropriate extensions through the flags argument are added then pidfd_send_signal() can additionally replace the part of kill(2) which operates on process groups as well as the tgkill(2) and rt_tgsigqueueinfo(2) syscalls. How such an extension could be implemented has been very roughly sketched in [14], [15], and [16]. However, this should not be taken as a commitment to a particular implementation. There might be better ways to do it. Right now this is intentionally left out to keep this patchset as simple as possible (cf. [4]). /* naming */ The syscall had various names throughout iterations of this patchset: - procfd_signal() - procfd_send_signal() - taskfd_send_signal() In the last round of reviews it was pointed out that given that if the flags argument decides the scope of the signal instead of different types of fds it might make sense to either settle for "procfd_" or "pidfd_" as prefix. The community was willing to accept either (cf. [17] and [18]). Given that one developer expressed strong preference for the "pidfd_" prefix (cf. [13]) and with other developers less opinionated about the name we should settle for "pidfd_" to avoid further bikeshedding. The "_send_signal" suffix was chosen to reflect the fact that the syscall takes on the job of multiple syscalls. It is therefore intentional that the name is not reminiscent of neither kill(2) nor rt_sigqueueinfo(2). Not the fomer because it might imply that pidfd_send_signal() is a replacement for kill(2), and not the latter because it is a hassle to remember the correct spelling - especially for non-native speakers - and because it is not descriptive enough of what the syscall actually does. The name "pidfd_send_signal" makes it very clear that its job is to send signals. /* zombies */ Zombies can be signaled just as any other process. No special error will be reported since a zombie state is an unreliable state (cf. [3]). However, this can be added as an extension through the @flags argument if the need ever arises. /* cross-namespace signals */ The patch currently enforces that the signaler and signalee either are in the same pid namespace or that the signaler's pid namespace is an ancestor of the signalee's pid namespace. This is done for the sake of simplicity and because it is unclear to what values certain members of struct siginfo_t would need to be set to (cf. [5], [6]). /* compat syscalls */ It became clear that we would like to avoid adding compat syscalls (cf. [7]). The compat syscall handling is now done in kernel/signal.c itself by adding __copy_siginfo_from_user_generic() which lets us avoid compat syscalls (cf. [8]). It should be noted that the addition of __copy_siginfo_from_user_any() is caused by a bug in the original implementation of rt_sigqueueinfo(2) (cf. 12). With upcoming rework for syscall handling things might improve significantly (cf. [11]) and __copy_siginfo_from_user_any() will not gain any additional callers. /* testing */ This patch was tested on x64 and x86. /* userspace usage */ An asciinema recording for the basic functionality can be found under [9]. With this patch a process can be killed via: #define _GNU_SOURCE #include <errno.h> #include <fcntl.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/syscall.h> #include <sys/types.h> #include <unistd.h> static inline int do_pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags) { #ifdef __NR_pidfd_send_signal return syscall(__NR_pidfd_send_signal, pidfd, sig, info, flags); #else return -ENOSYS; #endif } int main(int argc, char *argv[]) { int fd, ret, saved_errno, sig; if (argc < 3) exit(EXIT_FAILURE); fd = open(argv[1], O_DIRECTORY | O_CLOEXEC); if (fd < 0) { printf("%s - Failed to open \"%s\"\n", strerror(errno), argv[1]); exit(EXIT_FAILURE); } sig = atoi(argv[2]); printf("Sending signal %d to process %s\n", sig, argv[1]); ret = do_pidfd_send_signal(fd, sig, NULL, 0); saved_errno = errno; close(fd); errno = saved_errno; if (ret < 0) { printf("%s - Failed to send signal %d to process %s\n", strerror(errno), sig, argv[1]); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); } /* Q&A * Given that it seems the same questions get asked again by people who are * late to the party it makes sense to add a Q&A section to the commit * message so it's hopefully easier to avoid duplicate threads. * * For the sake of progress please consider these arguments settled unless * there is a new point that desperately needs to be addressed. Please make * sure to check the links to the threads in this commit message whether * this has not already been covered. */ Q-01: (Florian Weimer [20], Andrew Morton [21]) What happens when the target process has exited? A-01: Sending the signal will fail with ESRCH (cf. [22]). Q-02: (Andrew Morton [21]) Is the task_struct pinned by the fd? A-02: No. A reference to struct pid is kept. struct pid - as far as I understand - was created exactly for the reason to not require to pin struct task_struct (cf. [22]). Q-03: (Andrew Morton [21]) Does the entire procfs directory remain visible? Just one entry within it? A-03: The same thing that happens right now when you hold a file descriptor to /proc/<pid> open (cf. [22]). Q-04: (Andrew Morton [21]) Does the pid remain reserved? A-04: No. This patchset guarantees a stable handle not that pids are not recycled (cf. [22]). Q-05: (Andrew Morton [21]) Do attempts to signal that fd return errors? A-05: See {Q,A}-01. Q-06: (Andrew Morton [22]) Is there a cleaner way of obtaining the fd? Another syscall perhaps. A-06: Userspace can already trivially retrieve file descriptors from procfs so this is something that we will need to support anyway. Hence, there's no immediate need to add another syscalls just to make pidfd_send_signal() not dependent on the presence of procfs. However, adding a syscalls to get such file descriptors is planned for a future patchset (cf. [22]). Q-07: (Andrew Morton [21] and others) This fd-for-a-process sounds like a handy thing and people may well think up other uses for it in the future, probably unrelated to signals. Are the code and the interface designed to permit such future applications? A-07: Yes (cf. [22]). Q-08: (Andrew Morton [21] and others) Now I think about it, why a new syscall? This thing is looking rather like an ioctl? A-08: This has been extensively discussed. It was agreed that a syscall is preferred for a variety or reasons. Here are just a few taken from prior threads. Syscalls are safer than ioctl()s especially when signaling to fds. Processes are a core kernel concept so a syscall seems more appropriate. The layout of the syscall with its four arguments would require the addition of a custom struct for the ioctl() thereby causing at least the same amount or even more complexity for userspace than a simple syscall. The new syscall will replace multiple other pid-based syscalls (see description above). The file-descriptors-for-processes concept introduced with this syscall will be extended with other syscalls in the future. See also [22], [23] and various other threads already linked in here. Q-09: (Florian Weimer [24]) What happens if you use the new interface with an O_PATH descriptor? A-09: pidfds opened as O_PATH fds cannot be used to send signals to a process (cf. [2]). Signaling processes through pidfds is the equivalent of writing to a file. Thus, this is not an operation that operates "purely at the file descriptor level" as required by the open(2) manpage. See also [4]. /* References */ [1]: https://lore.kernel.org/lkml/20181029221037.87724-1-dancol@google.com/ [2]: https://lore.kernel.org/lkml/874lbtjvtd.fsf@oldenburg2.str.redhat.com/ [3]: https://lore.kernel.org/lkml/20181204132604.aspfupwjgjx6fhva@brauner.io/ [4]: https://lore.kernel.org/lkml/20181203180224.fkvw4kajtbvru2ku@brauner.io/ [5]: https://lore.kernel.org/lkml/20181121213946.GA10795@mail.hallyn.com/ [6]: https://lore.kernel.org/lkml/20181120103111.etlqp7zop34v6nv4@brauner.io/ [7]: https://lore.kernel.org/lkml/36323361-90BD-41AF-AB5B-EE0D7BA02C21@amacapital.net/ [8]: https://lore.kernel.org/lkml/87tvjxp8pc.fsf@xmission.com/ [9]: https://asciinema.org/a/IQjuCHew6bnq1cr78yuMv16cy [11]: https://lore.kernel.org/lkml/F53D6D38-3521-4C20-9034-5AF447DF62FF@amacapital.net/ [12]: https://lore.kernel.org/lkml/87zhtjn8ck.fsf@xmission.com/ [13]: https://lore.kernel.org/lkml/871s6u9z6u.fsf@xmission.com/ [14]: https://lore.kernel.org/lkml/20181206231742.xxi4ghn24z4h2qki@brauner.io/ [15]: https://lore.kernel.org/lkml/20181207003124.GA11160@mail.hallyn.com/ [16]: https://lore.kernel.org/lkml/20181207015423.4miorx43l3qhppfz@brauner.io/ [17]: https://lore.kernel.org/lkml/CAGXu5jL8PciZAXvOvCeCU3wKUEB_dU-O3q0tDw4uB_ojMvDEew@mail.gmail.com/ [18]: https://lore.kernel.org/lkml/20181206222746.GB9224@mail.hallyn.com/ [19]: https://lore.kernel.org/lkml/20181208054059.19813-1-christian@brauner.io/ [20]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [21]: https://lore.kernel.org/lkml/20181228152012.dbf0508c2508138efc5f2bbe@linux-foundation.org/ [22]: https://lore.kernel.org/lkml/20181228233725.722tdfgijxcssg76@brauner.io/ [23]: https://lwn.net/Articles/773459/ [24]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [25]: https://lore.kernel.org/lkml/CAK8P3a0ej9NcJM8wXNPbcGUyOUZYX+VLoDFdbenW3s3114oQZw@mail.gmail.com/ Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Jann Horn <jannh@google.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Florian Weimer <fweimer@redhat.com> Signed-off-by: Christian Brauner <christian@brauner.io> Reviewed-by: Tycho Andersen <tycho@tycho.ws> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Serge Hallyn <serge@hallyn.com> Acked-by: Aleksa Sarai <cyphar@cyphar.com>
2018-11-18 23:51:56 +00:00
/**
* sys_pidfd_send_signal - Signal a process through a pidfd
* @pidfd: file descriptor of the process
* @sig: signal to send
* @info: signal info
* @flags: future flags
signal: add pidfd_send_signal() syscall The kill() syscall operates on process identifiers (pid). After a process has exited its pid can be reused by another process. If a caller sends a signal to a reused pid it will end up signaling the wrong process. This issue has often surfaced and there has been a push to address this problem [1]. This patch uses file descriptors (fd) from proc/<pid> as stable handles on struct pid. Even if a pid is recycled the handle will not change. The fd can be used to send signals to the process it refers to. Thus, the new syscall pidfd_send_signal() is introduced to solve this problem. Instead of pids it operates on process fds (pidfd). /* prototype and argument /* long pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags); /* syscall number 424 */ The syscall number was chosen to be 424 to align with Arnd's rework in his y2038 to minimize merge conflicts (cf. [25]). In addition to the pidfd and signal argument it takes an additional siginfo_t and flags argument. If the siginfo_t argument is NULL then pidfd_send_signal() is equivalent to kill(<positive-pid>, <signal>). If it is not NULL pidfd_send_signal() is equivalent to rt_sigqueueinfo(). The flags argument is added to allow for future extensions of this syscall. It currently needs to be passed as 0. Failing to do so will cause EINVAL. /* pidfd_send_signal() replaces multiple pid-based syscalls */ The pidfd_send_signal() syscall currently takes on the job of rt_sigqueueinfo(2) and parts of the functionality of kill(2), Namely, when a positive pid is passed to kill(2). It will however be possible to also replace tgkill(2) and rt_tgsigqueueinfo(2) if this syscall is extended. /* sending signals to threads (tid) and process groups (pgid) */ Specifically, the pidfd_send_signal() syscall does currently not operate on process groups or threads. This is left for future extensions. In order to extend the syscall to allow sending signal to threads and process groups appropriately named flags (e.g. PIDFD_TYPE_PGID, and PIDFD_TYPE_TID) should be added. This implies that the flags argument will determine what is signaled and not the file descriptor itself. Put in other words, grouping in this api is a property of the flags argument not a property of the file descriptor (cf. [13]). Clarification for this has been requested by Eric (cf. [19]). When appropriate extensions through the flags argument are added then pidfd_send_signal() can additionally replace the part of kill(2) which operates on process groups as well as the tgkill(2) and rt_tgsigqueueinfo(2) syscalls. How such an extension could be implemented has been very roughly sketched in [14], [15], and [16]. However, this should not be taken as a commitment to a particular implementation. There might be better ways to do it. Right now this is intentionally left out to keep this patchset as simple as possible (cf. [4]). /* naming */ The syscall had various names throughout iterations of this patchset: - procfd_signal() - procfd_send_signal() - taskfd_send_signal() In the last round of reviews it was pointed out that given that if the flags argument decides the scope of the signal instead of different types of fds it might make sense to either settle for "procfd_" or "pidfd_" as prefix. The community was willing to accept either (cf. [17] and [18]). Given that one developer expressed strong preference for the "pidfd_" prefix (cf. [13]) and with other developers less opinionated about the name we should settle for "pidfd_" to avoid further bikeshedding. The "_send_signal" suffix was chosen to reflect the fact that the syscall takes on the job of multiple syscalls. It is therefore intentional that the name is not reminiscent of neither kill(2) nor rt_sigqueueinfo(2). Not the fomer because it might imply that pidfd_send_signal() is a replacement for kill(2), and not the latter because it is a hassle to remember the correct spelling - especially for non-native speakers - and because it is not descriptive enough of what the syscall actually does. The name "pidfd_send_signal" makes it very clear that its job is to send signals. /* zombies */ Zombies can be signaled just as any other process. No special error will be reported since a zombie state is an unreliable state (cf. [3]). However, this can be added as an extension through the @flags argument if the need ever arises. /* cross-namespace signals */ The patch currently enforces that the signaler and signalee either are in the same pid namespace or that the signaler's pid namespace is an ancestor of the signalee's pid namespace. This is done for the sake of simplicity and because it is unclear to what values certain members of struct siginfo_t would need to be set to (cf. [5], [6]). /* compat syscalls */ It became clear that we would like to avoid adding compat syscalls (cf. [7]). The compat syscall handling is now done in kernel/signal.c itself by adding __copy_siginfo_from_user_generic() which lets us avoid compat syscalls (cf. [8]). It should be noted that the addition of __copy_siginfo_from_user_any() is caused by a bug in the original implementation of rt_sigqueueinfo(2) (cf. 12). With upcoming rework for syscall handling things might improve significantly (cf. [11]) and __copy_siginfo_from_user_any() will not gain any additional callers. /* testing */ This patch was tested on x64 and x86. /* userspace usage */ An asciinema recording for the basic functionality can be found under [9]. With this patch a process can be killed via: #define _GNU_SOURCE #include <errno.h> #include <fcntl.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/syscall.h> #include <sys/types.h> #include <unistd.h> static inline int do_pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags) { #ifdef __NR_pidfd_send_signal return syscall(__NR_pidfd_send_signal, pidfd, sig, info, flags); #else return -ENOSYS; #endif } int main(int argc, char *argv[]) { int fd, ret, saved_errno, sig; if (argc < 3) exit(EXIT_FAILURE); fd = open(argv[1], O_DIRECTORY | O_CLOEXEC); if (fd < 0) { printf("%s - Failed to open \"%s\"\n", strerror(errno), argv[1]); exit(EXIT_FAILURE); } sig = atoi(argv[2]); printf("Sending signal %d to process %s\n", sig, argv[1]); ret = do_pidfd_send_signal(fd, sig, NULL, 0); saved_errno = errno; close(fd); errno = saved_errno; if (ret < 0) { printf("%s - Failed to send signal %d to process %s\n", strerror(errno), sig, argv[1]); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); } /* Q&A * Given that it seems the same questions get asked again by people who are * late to the party it makes sense to add a Q&A section to the commit * message so it's hopefully easier to avoid duplicate threads. * * For the sake of progress please consider these arguments settled unless * there is a new point that desperately needs to be addressed. Please make * sure to check the links to the threads in this commit message whether * this has not already been covered. */ Q-01: (Florian Weimer [20], Andrew Morton [21]) What happens when the target process has exited? A-01: Sending the signal will fail with ESRCH (cf. [22]). Q-02: (Andrew Morton [21]) Is the task_struct pinned by the fd? A-02: No. A reference to struct pid is kept. struct pid - as far as I understand - was created exactly for the reason to not require to pin struct task_struct (cf. [22]). Q-03: (Andrew Morton [21]) Does the entire procfs directory remain visible? Just one entry within it? A-03: The same thing that happens right now when you hold a file descriptor to /proc/<pid> open (cf. [22]). Q-04: (Andrew Morton [21]) Does the pid remain reserved? A-04: No. This patchset guarantees a stable handle not that pids are not recycled (cf. [22]). Q-05: (Andrew Morton [21]) Do attempts to signal that fd return errors? A-05: See {Q,A}-01. Q-06: (Andrew Morton [22]) Is there a cleaner way of obtaining the fd? Another syscall perhaps. A-06: Userspace can already trivially retrieve file descriptors from procfs so this is something that we will need to support anyway. Hence, there's no immediate need to add another syscalls just to make pidfd_send_signal() not dependent on the presence of procfs. However, adding a syscalls to get such file descriptors is planned for a future patchset (cf. [22]). Q-07: (Andrew Morton [21] and others) This fd-for-a-process sounds like a handy thing and people may well think up other uses for it in the future, probably unrelated to signals. Are the code and the interface designed to permit such future applications? A-07: Yes (cf. [22]). Q-08: (Andrew Morton [21] and others) Now I think about it, why a new syscall? This thing is looking rather like an ioctl? A-08: This has been extensively discussed. It was agreed that a syscall is preferred for a variety or reasons. Here are just a few taken from prior threads. Syscalls are safer than ioctl()s especially when signaling to fds. Processes are a core kernel concept so a syscall seems more appropriate. The layout of the syscall with its four arguments would require the addition of a custom struct for the ioctl() thereby causing at least the same amount or even more complexity for userspace than a simple syscall. The new syscall will replace multiple other pid-based syscalls (see description above). The file-descriptors-for-processes concept introduced with this syscall will be extended with other syscalls in the future. See also [22], [23] and various other threads already linked in here. Q-09: (Florian Weimer [24]) What happens if you use the new interface with an O_PATH descriptor? A-09: pidfds opened as O_PATH fds cannot be used to send signals to a process (cf. [2]). Signaling processes through pidfds is the equivalent of writing to a file. Thus, this is not an operation that operates "purely at the file descriptor level" as required by the open(2) manpage. See also [4]. /* References */ [1]: https://lore.kernel.org/lkml/20181029221037.87724-1-dancol@google.com/ [2]: https://lore.kernel.org/lkml/874lbtjvtd.fsf@oldenburg2.str.redhat.com/ [3]: https://lore.kernel.org/lkml/20181204132604.aspfupwjgjx6fhva@brauner.io/ [4]: https://lore.kernel.org/lkml/20181203180224.fkvw4kajtbvru2ku@brauner.io/ [5]: https://lore.kernel.org/lkml/20181121213946.GA10795@mail.hallyn.com/ [6]: https://lore.kernel.org/lkml/20181120103111.etlqp7zop34v6nv4@brauner.io/ [7]: https://lore.kernel.org/lkml/36323361-90BD-41AF-AB5B-EE0D7BA02C21@amacapital.net/ [8]: https://lore.kernel.org/lkml/87tvjxp8pc.fsf@xmission.com/ [9]: https://asciinema.org/a/IQjuCHew6bnq1cr78yuMv16cy [11]: https://lore.kernel.org/lkml/F53D6D38-3521-4C20-9034-5AF447DF62FF@amacapital.net/ [12]: https://lore.kernel.org/lkml/87zhtjn8ck.fsf@xmission.com/ [13]: https://lore.kernel.org/lkml/871s6u9z6u.fsf@xmission.com/ [14]: https://lore.kernel.org/lkml/20181206231742.xxi4ghn24z4h2qki@brauner.io/ [15]: https://lore.kernel.org/lkml/20181207003124.GA11160@mail.hallyn.com/ [16]: https://lore.kernel.org/lkml/20181207015423.4miorx43l3qhppfz@brauner.io/ [17]: https://lore.kernel.org/lkml/CAGXu5jL8PciZAXvOvCeCU3wKUEB_dU-O3q0tDw4uB_ojMvDEew@mail.gmail.com/ [18]: https://lore.kernel.org/lkml/20181206222746.GB9224@mail.hallyn.com/ [19]: https://lore.kernel.org/lkml/20181208054059.19813-1-christian@brauner.io/ [20]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [21]: https://lore.kernel.org/lkml/20181228152012.dbf0508c2508138efc5f2bbe@linux-foundation.org/ [22]: https://lore.kernel.org/lkml/20181228233725.722tdfgijxcssg76@brauner.io/ [23]: https://lwn.net/Articles/773459/ [24]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [25]: https://lore.kernel.org/lkml/CAK8P3a0ej9NcJM8wXNPbcGUyOUZYX+VLoDFdbenW3s3114oQZw@mail.gmail.com/ Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Jann Horn <jannh@google.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Florian Weimer <fweimer@redhat.com> Signed-off-by: Christian Brauner <christian@brauner.io> Reviewed-by: Tycho Andersen <tycho@tycho.ws> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Serge Hallyn <serge@hallyn.com> Acked-by: Aleksa Sarai <cyphar@cyphar.com>
2018-11-18 23:51:56 +00:00
*
* The syscall currently only signals via PIDTYPE_PID which covers
* kill(<positive-pid>, <signal>. It does not signal threads or process
* groups.
* In order to extend the syscall to threads and process groups the @flags
* argument should be used. In essence, the @flags argument will determine
* what is signaled and not the file descriptor itself. Put in other words,
* grouping is a property of the flags argument not a property of the file
* descriptor.
*
* Return: 0 on success, negative errno on failure
*/
SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
siginfo_t __user *, info, unsigned int, flags)
{
int ret;
struct fd f;
struct pid *pid;
kernel_siginfo_t kinfo;
/* Enforce flags be set to 0 until we add an extension. */
if (flags)
return -EINVAL;
f = fdget(pidfd);
signal: add pidfd_send_signal() syscall The kill() syscall operates on process identifiers (pid). After a process has exited its pid can be reused by another process. If a caller sends a signal to a reused pid it will end up signaling the wrong process. This issue has often surfaced and there has been a push to address this problem [1]. This patch uses file descriptors (fd) from proc/<pid> as stable handles on struct pid. Even if a pid is recycled the handle will not change. The fd can be used to send signals to the process it refers to. Thus, the new syscall pidfd_send_signal() is introduced to solve this problem. Instead of pids it operates on process fds (pidfd). /* prototype and argument /* long pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags); /* syscall number 424 */ The syscall number was chosen to be 424 to align with Arnd's rework in his y2038 to minimize merge conflicts (cf. [25]). In addition to the pidfd and signal argument it takes an additional siginfo_t and flags argument. If the siginfo_t argument is NULL then pidfd_send_signal() is equivalent to kill(<positive-pid>, <signal>). If it is not NULL pidfd_send_signal() is equivalent to rt_sigqueueinfo(). The flags argument is added to allow for future extensions of this syscall. It currently needs to be passed as 0. Failing to do so will cause EINVAL. /* pidfd_send_signal() replaces multiple pid-based syscalls */ The pidfd_send_signal() syscall currently takes on the job of rt_sigqueueinfo(2) and parts of the functionality of kill(2), Namely, when a positive pid is passed to kill(2). It will however be possible to also replace tgkill(2) and rt_tgsigqueueinfo(2) if this syscall is extended. /* sending signals to threads (tid) and process groups (pgid) */ Specifically, the pidfd_send_signal() syscall does currently not operate on process groups or threads. This is left for future extensions. In order to extend the syscall to allow sending signal to threads and process groups appropriately named flags (e.g. PIDFD_TYPE_PGID, and PIDFD_TYPE_TID) should be added. This implies that the flags argument will determine what is signaled and not the file descriptor itself. Put in other words, grouping in this api is a property of the flags argument not a property of the file descriptor (cf. [13]). Clarification for this has been requested by Eric (cf. [19]). When appropriate extensions through the flags argument are added then pidfd_send_signal() can additionally replace the part of kill(2) which operates on process groups as well as the tgkill(2) and rt_tgsigqueueinfo(2) syscalls. How such an extension could be implemented has been very roughly sketched in [14], [15], and [16]. However, this should not be taken as a commitment to a particular implementation. There might be better ways to do it. Right now this is intentionally left out to keep this patchset as simple as possible (cf. [4]). /* naming */ The syscall had various names throughout iterations of this patchset: - procfd_signal() - procfd_send_signal() - taskfd_send_signal() In the last round of reviews it was pointed out that given that if the flags argument decides the scope of the signal instead of different types of fds it might make sense to either settle for "procfd_" or "pidfd_" as prefix. The community was willing to accept either (cf. [17] and [18]). Given that one developer expressed strong preference for the "pidfd_" prefix (cf. [13]) and with other developers less opinionated about the name we should settle for "pidfd_" to avoid further bikeshedding. The "_send_signal" suffix was chosen to reflect the fact that the syscall takes on the job of multiple syscalls. It is therefore intentional that the name is not reminiscent of neither kill(2) nor rt_sigqueueinfo(2). Not the fomer because it might imply that pidfd_send_signal() is a replacement for kill(2), and not the latter because it is a hassle to remember the correct spelling - especially for non-native speakers - and because it is not descriptive enough of what the syscall actually does. The name "pidfd_send_signal" makes it very clear that its job is to send signals. /* zombies */ Zombies can be signaled just as any other process. No special error will be reported since a zombie state is an unreliable state (cf. [3]). However, this can be added as an extension through the @flags argument if the need ever arises. /* cross-namespace signals */ The patch currently enforces that the signaler and signalee either are in the same pid namespace or that the signaler's pid namespace is an ancestor of the signalee's pid namespace. This is done for the sake of simplicity and because it is unclear to what values certain members of struct siginfo_t would need to be set to (cf. [5], [6]). /* compat syscalls */ It became clear that we would like to avoid adding compat syscalls (cf. [7]). The compat syscall handling is now done in kernel/signal.c itself by adding __copy_siginfo_from_user_generic() which lets us avoid compat syscalls (cf. [8]). It should be noted that the addition of __copy_siginfo_from_user_any() is caused by a bug in the original implementation of rt_sigqueueinfo(2) (cf. 12). With upcoming rework for syscall handling things might improve significantly (cf. [11]) and __copy_siginfo_from_user_any() will not gain any additional callers. /* testing */ This patch was tested on x64 and x86. /* userspace usage */ An asciinema recording for the basic functionality can be found under [9]. With this patch a process can be killed via: #define _GNU_SOURCE #include <errno.h> #include <fcntl.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/syscall.h> #include <sys/types.h> #include <unistd.h> static inline int do_pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags) { #ifdef __NR_pidfd_send_signal return syscall(__NR_pidfd_send_signal, pidfd, sig, info, flags); #else return -ENOSYS; #endif } int main(int argc, char *argv[]) { int fd, ret, saved_errno, sig; if (argc < 3) exit(EXIT_FAILURE); fd = open(argv[1], O_DIRECTORY | O_CLOEXEC); if (fd < 0) { printf("%s - Failed to open \"%s\"\n", strerror(errno), argv[1]); exit(EXIT_FAILURE); } sig = atoi(argv[2]); printf("Sending signal %d to process %s\n", sig, argv[1]); ret = do_pidfd_send_signal(fd, sig, NULL, 0); saved_errno = errno; close(fd); errno = saved_errno; if (ret < 0) { printf("%s - Failed to send signal %d to process %s\n", strerror(errno), sig, argv[1]); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); } /* Q&A * Given that it seems the same questions get asked again by people who are * late to the party it makes sense to add a Q&A section to the commit * message so it's hopefully easier to avoid duplicate threads. * * For the sake of progress please consider these arguments settled unless * there is a new point that desperately needs to be addressed. Please make * sure to check the links to the threads in this commit message whether * this has not already been covered. */ Q-01: (Florian Weimer [20], Andrew Morton [21]) What happens when the target process has exited? A-01: Sending the signal will fail with ESRCH (cf. [22]). Q-02: (Andrew Morton [21]) Is the task_struct pinned by the fd? A-02: No. A reference to struct pid is kept. struct pid - as far as I understand - was created exactly for the reason to not require to pin struct task_struct (cf. [22]). Q-03: (Andrew Morton [21]) Does the entire procfs directory remain visible? Just one entry within it? A-03: The same thing that happens right now when you hold a file descriptor to /proc/<pid> open (cf. [22]). Q-04: (Andrew Morton [21]) Does the pid remain reserved? A-04: No. This patchset guarantees a stable handle not that pids are not recycled (cf. [22]). Q-05: (Andrew Morton [21]) Do attempts to signal that fd return errors? A-05: See {Q,A}-01. Q-06: (Andrew Morton [22]) Is there a cleaner way of obtaining the fd? Another syscall perhaps. A-06: Userspace can already trivially retrieve file descriptors from procfs so this is something that we will need to support anyway. Hence, there's no immediate need to add another syscalls just to make pidfd_send_signal() not dependent on the presence of procfs. However, adding a syscalls to get such file descriptors is planned for a future patchset (cf. [22]). Q-07: (Andrew Morton [21] and others) This fd-for-a-process sounds like a handy thing and people may well think up other uses for it in the future, probably unrelated to signals. Are the code and the interface designed to permit such future applications? A-07: Yes (cf. [22]). Q-08: (Andrew Morton [21] and others) Now I think about it, why a new syscall? This thing is looking rather like an ioctl? A-08: This has been extensively discussed. It was agreed that a syscall is preferred for a variety or reasons. Here are just a few taken from prior threads. Syscalls are safer than ioctl()s especially when signaling to fds. Processes are a core kernel concept so a syscall seems more appropriate. The layout of the syscall with its four arguments would require the addition of a custom struct for the ioctl() thereby causing at least the same amount or even more complexity for userspace than a simple syscall. The new syscall will replace multiple other pid-based syscalls (see description above). The file-descriptors-for-processes concept introduced with this syscall will be extended with other syscalls in the future. See also [22], [23] and various other threads already linked in here. Q-09: (Florian Weimer [24]) What happens if you use the new interface with an O_PATH descriptor? A-09: pidfds opened as O_PATH fds cannot be used to send signals to a process (cf. [2]). Signaling processes through pidfds is the equivalent of writing to a file. Thus, this is not an operation that operates "purely at the file descriptor level" as required by the open(2) manpage. See also [4]. /* References */ [1]: https://lore.kernel.org/lkml/20181029221037.87724-1-dancol@google.com/ [2]: https://lore.kernel.org/lkml/874lbtjvtd.fsf@oldenburg2.str.redhat.com/ [3]: https://lore.kernel.org/lkml/20181204132604.aspfupwjgjx6fhva@brauner.io/ [4]: https://lore.kernel.org/lkml/20181203180224.fkvw4kajtbvru2ku@brauner.io/ [5]: https://lore.kernel.org/lkml/20181121213946.GA10795@mail.hallyn.com/ [6]: https://lore.kernel.org/lkml/20181120103111.etlqp7zop34v6nv4@brauner.io/ [7]: https://lore.kernel.org/lkml/36323361-90BD-41AF-AB5B-EE0D7BA02C21@amacapital.net/ [8]: https://lore.kernel.org/lkml/87tvjxp8pc.fsf@xmission.com/ [9]: https://asciinema.org/a/IQjuCHew6bnq1cr78yuMv16cy [11]: https://lore.kernel.org/lkml/F53D6D38-3521-4C20-9034-5AF447DF62FF@amacapital.net/ [12]: https://lore.kernel.org/lkml/87zhtjn8ck.fsf@xmission.com/ [13]: https://lore.kernel.org/lkml/871s6u9z6u.fsf@xmission.com/ [14]: https://lore.kernel.org/lkml/20181206231742.xxi4ghn24z4h2qki@brauner.io/ [15]: https://lore.kernel.org/lkml/20181207003124.GA11160@mail.hallyn.com/ [16]: https://lore.kernel.org/lkml/20181207015423.4miorx43l3qhppfz@brauner.io/ [17]: https://lore.kernel.org/lkml/CAGXu5jL8PciZAXvOvCeCU3wKUEB_dU-O3q0tDw4uB_ojMvDEew@mail.gmail.com/ [18]: https://lore.kernel.org/lkml/20181206222746.GB9224@mail.hallyn.com/ [19]: https://lore.kernel.org/lkml/20181208054059.19813-1-christian@brauner.io/ [20]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [21]: https://lore.kernel.org/lkml/20181228152012.dbf0508c2508138efc5f2bbe@linux-foundation.org/ [22]: https://lore.kernel.org/lkml/20181228233725.722tdfgijxcssg76@brauner.io/ [23]: https://lwn.net/Articles/773459/ [24]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [25]: https://lore.kernel.org/lkml/CAK8P3a0ej9NcJM8wXNPbcGUyOUZYX+VLoDFdbenW3s3114oQZw@mail.gmail.com/ Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Jann Horn <jannh@google.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Florian Weimer <fweimer@redhat.com> Signed-off-by: Christian Brauner <christian@brauner.io> Reviewed-by: Tycho Andersen <tycho@tycho.ws> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Serge Hallyn <serge@hallyn.com> Acked-by: Aleksa Sarai <cyphar@cyphar.com>
2018-11-18 23:51:56 +00:00
if (!f.file)
return -EBADF;
/* Is this a pidfd? */
pid = pidfd_to_pid(f.file);
signal: add pidfd_send_signal() syscall The kill() syscall operates on process identifiers (pid). After a process has exited its pid can be reused by another process. If a caller sends a signal to a reused pid it will end up signaling the wrong process. This issue has often surfaced and there has been a push to address this problem [1]. This patch uses file descriptors (fd) from proc/<pid> as stable handles on struct pid. Even if a pid is recycled the handle will not change. The fd can be used to send signals to the process it refers to. Thus, the new syscall pidfd_send_signal() is introduced to solve this problem. Instead of pids it operates on process fds (pidfd). /* prototype and argument /* long pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags); /* syscall number 424 */ The syscall number was chosen to be 424 to align with Arnd's rework in his y2038 to minimize merge conflicts (cf. [25]). In addition to the pidfd and signal argument it takes an additional siginfo_t and flags argument. If the siginfo_t argument is NULL then pidfd_send_signal() is equivalent to kill(<positive-pid>, <signal>). If it is not NULL pidfd_send_signal() is equivalent to rt_sigqueueinfo(). The flags argument is added to allow for future extensions of this syscall. It currently needs to be passed as 0. Failing to do so will cause EINVAL. /* pidfd_send_signal() replaces multiple pid-based syscalls */ The pidfd_send_signal() syscall currently takes on the job of rt_sigqueueinfo(2) and parts of the functionality of kill(2), Namely, when a positive pid is passed to kill(2). It will however be possible to also replace tgkill(2) and rt_tgsigqueueinfo(2) if this syscall is extended. /* sending signals to threads (tid) and process groups (pgid) */ Specifically, the pidfd_send_signal() syscall does currently not operate on process groups or threads. This is left for future extensions. In order to extend the syscall to allow sending signal to threads and process groups appropriately named flags (e.g. PIDFD_TYPE_PGID, and PIDFD_TYPE_TID) should be added. This implies that the flags argument will determine what is signaled and not the file descriptor itself. Put in other words, grouping in this api is a property of the flags argument not a property of the file descriptor (cf. [13]). Clarification for this has been requested by Eric (cf. [19]). When appropriate extensions through the flags argument are added then pidfd_send_signal() can additionally replace the part of kill(2) which operates on process groups as well as the tgkill(2) and rt_tgsigqueueinfo(2) syscalls. How such an extension could be implemented has been very roughly sketched in [14], [15], and [16]. However, this should not be taken as a commitment to a particular implementation. There might be better ways to do it. Right now this is intentionally left out to keep this patchset as simple as possible (cf. [4]). /* naming */ The syscall had various names throughout iterations of this patchset: - procfd_signal() - procfd_send_signal() - taskfd_send_signal() In the last round of reviews it was pointed out that given that if the flags argument decides the scope of the signal instead of different types of fds it might make sense to either settle for "procfd_" or "pidfd_" as prefix. The community was willing to accept either (cf. [17] and [18]). Given that one developer expressed strong preference for the "pidfd_" prefix (cf. [13]) and with other developers less opinionated about the name we should settle for "pidfd_" to avoid further bikeshedding. The "_send_signal" suffix was chosen to reflect the fact that the syscall takes on the job of multiple syscalls. It is therefore intentional that the name is not reminiscent of neither kill(2) nor rt_sigqueueinfo(2). Not the fomer because it might imply that pidfd_send_signal() is a replacement for kill(2), and not the latter because it is a hassle to remember the correct spelling - especially for non-native speakers - and because it is not descriptive enough of what the syscall actually does. The name "pidfd_send_signal" makes it very clear that its job is to send signals. /* zombies */ Zombies can be signaled just as any other process. No special error will be reported since a zombie state is an unreliable state (cf. [3]). However, this can be added as an extension through the @flags argument if the need ever arises. /* cross-namespace signals */ The patch currently enforces that the signaler and signalee either are in the same pid namespace or that the signaler's pid namespace is an ancestor of the signalee's pid namespace. This is done for the sake of simplicity and because it is unclear to what values certain members of struct siginfo_t would need to be set to (cf. [5], [6]). /* compat syscalls */ It became clear that we would like to avoid adding compat syscalls (cf. [7]). The compat syscall handling is now done in kernel/signal.c itself by adding __copy_siginfo_from_user_generic() which lets us avoid compat syscalls (cf. [8]). It should be noted that the addition of __copy_siginfo_from_user_any() is caused by a bug in the original implementation of rt_sigqueueinfo(2) (cf. 12). With upcoming rework for syscall handling things might improve significantly (cf. [11]) and __copy_siginfo_from_user_any() will not gain any additional callers. /* testing */ This patch was tested on x64 and x86. /* userspace usage */ An asciinema recording for the basic functionality can be found under [9]. With this patch a process can be killed via: #define _GNU_SOURCE #include <errno.h> #include <fcntl.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/syscall.h> #include <sys/types.h> #include <unistd.h> static inline int do_pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags) { #ifdef __NR_pidfd_send_signal return syscall(__NR_pidfd_send_signal, pidfd, sig, info, flags); #else return -ENOSYS; #endif } int main(int argc, char *argv[]) { int fd, ret, saved_errno, sig; if (argc < 3) exit(EXIT_FAILURE); fd = open(argv[1], O_DIRECTORY | O_CLOEXEC); if (fd < 0) { printf("%s - Failed to open \"%s\"\n", strerror(errno), argv[1]); exit(EXIT_FAILURE); } sig = atoi(argv[2]); printf("Sending signal %d to process %s\n", sig, argv[1]); ret = do_pidfd_send_signal(fd, sig, NULL, 0); saved_errno = errno; close(fd); errno = saved_errno; if (ret < 0) { printf("%s - Failed to send signal %d to process %s\n", strerror(errno), sig, argv[1]); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); } /* Q&A * Given that it seems the same questions get asked again by people who are * late to the party it makes sense to add a Q&A section to the commit * message so it's hopefully easier to avoid duplicate threads. * * For the sake of progress please consider these arguments settled unless * there is a new point that desperately needs to be addressed. Please make * sure to check the links to the threads in this commit message whether * this has not already been covered. */ Q-01: (Florian Weimer [20], Andrew Morton [21]) What happens when the target process has exited? A-01: Sending the signal will fail with ESRCH (cf. [22]). Q-02: (Andrew Morton [21]) Is the task_struct pinned by the fd? A-02: No. A reference to struct pid is kept. struct pid - as far as I understand - was created exactly for the reason to not require to pin struct task_struct (cf. [22]). Q-03: (Andrew Morton [21]) Does the entire procfs directory remain visible? Just one entry within it? A-03: The same thing that happens right now when you hold a file descriptor to /proc/<pid> open (cf. [22]). Q-04: (Andrew Morton [21]) Does the pid remain reserved? A-04: No. This patchset guarantees a stable handle not that pids are not recycled (cf. [22]). Q-05: (Andrew Morton [21]) Do attempts to signal that fd return errors? A-05: See {Q,A}-01. Q-06: (Andrew Morton [22]) Is there a cleaner way of obtaining the fd? Another syscall perhaps. A-06: Userspace can already trivially retrieve file descriptors from procfs so this is something that we will need to support anyway. Hence, there's no immediate need to add another syscalls just to make pidfd_send_signal() not dependent on the presence of procfs. However, adding a syscalls to get such file descriptors is planned for a future patchset (cf. [22]). Q-07: (Andrew Morton [21] and others) This fd-for-a-process sounds like a handy thing and people may well think up other uses for it in the future, probably unrelated to signals. Are the code and the interface designed to permit such future applications? A-07: Yes (cf. [22]). Q-08: (Andrew Morton [21] and others) Now I think about it, why a new syscall? This thing is looking rather like an ioctl? A-08: This has been extensively discussed. It was agreed that a syscall is preferred for a variety or reasons. Here are just a few taken from prior threads. Syscalls are safer than ioctl()s especially when signaling to fds. Processes are a core kernel concept so a syscall seems more appropriate. The layout of the syscall with its four arguments would require the addition of a custom struct for the ioctl() thereby causing at least the same amount or even more complexity for userspace than a simple syscall. The new syscall will replace multiple other pid-based syscalls (see description above). The file-descriptors-for-processes concept introduced with this syscall will be extended with other syscalls in the future. See also [22], [23] and various other threads already linked in here. Q-09: (Florian Weimer [24]) What happens if you use the new interface with an O_PATH descriptor? A-09: pidfds opened as O_PATH fds cannot be used to send signals to a process (cf. [2]). Signaling processes through pidfds is the equivalent of writing to a file. Thus, this is not an operation that operates "purely at the file descriptor level" as required by the open(2) manpage. See also [4]. /* References */ [1]: https://lore.kernel.org/lkml/20181029221037.87724-1-dancol@google.com/ [2]: https://lore.kernel.org/lkml/874lbtjvtd.fsf@oldenburg2.str.redhat.com/ [3]: https://lore.kernel.org/lkml/20181204132604.aspfupwjgjx6fhva@brauner.io/ [4]: https://lore.kernel.org/lkml/20181203180224.fkvw4kajtbvru2ku@brauner.io/ [5]: https://lore.kernel.org/lkml/20181121213946.GA10795@mail.hallyn.com/ [6]: https://lore.kernel.org/lkml/20181120103111.etlqp7zop34v6nv4@brauner.io/ [7]: https://lore.kernel.org/lkml/36323361-90BD-41AF-AB5B-EE0D7BA02C21@amacapital.net/ [8]: https://lore.kernel.org/lkml/87tvjxp8pc.fsf@xmission.com/ [9]: https://asciinema.org/a/IQjuCHew6bnq1cr78yuMv16cy [11]: https://lore.kernel.org/lkml/F53D6D38-3521-4C20-9034-5AF447DF62FF@amacapital.net/ [12]: https://lore.kernel.org/lkml/87zhtjn8ck.fsf@xmission.com/ [13]: https://lore.kernel.org/lkml/871s6u9z6u.fsf@xmission.com/ [14]: https://lore.kernel.org/lkml/20181206231742.xxi4ghn24z4h2qki@brauner.io/ [15]: https://lore.kernel.org/lkml/20181207003124.GA11160@mail.hallyn.com/ [16]: https://lore.kernel.org/lkml/20181207015423.4miorx43l3qhppfz@brauner.io/ [17]: https://lore.kernel.org/lkml/CAGXu5jL8PciZAXvOvCeCU3wKUEB_dU-O3q0tDw4uB_ojMvDEew@mail.gmail.com/ [18]: https://lore.kernel.org/lkml/20181206222746.GB9224@mail.hallyn.com/ [19]: https://lore.kernel.org/lkml/20181208054059.19813-1-christian@brauner.io/ [20]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [21]: https://lore.kernel.org/lkml/20181228152012.dbf0508c2508138efc5f2bbe@linux-foundation.org/ [22]: https://lore.kernel.org/lkml/20181228233725.722tdfgijxcssg76@brauner.io/ [23]: https://lwn.net/Articles/773459/ [24]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [25]: https://lore.kernel.org/lkml/CAK8P3a0ej9NcJM8wXNPbcGUyOUZYX+VLoDFdbenW3s3114oQZw@mail.gmail.com/ Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Jann Horn <jannh@google.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Florian Weimer <fweimer@redhat.com> Signed-off-by: Christian Brauner <christian@brauner.io> Reviewed-by: Tycho Andersen <tycho@tycho.ws> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Serge Hallyn <serge@hallyn.com> Acked-by: Aleksa Sarai <cyphar@cyphar.com>
2018-11-18 23:51:56 +00:00
if (IS_ERR(pid)) {
ret = PTR_ERR(pid);
goto err;
}
ret = -EINVAL;
if (!access_pidfd_pidns(pid))
goto err;
if (info) {
ret = copy_siginfo_from_user_any(&kinfo, info);
if (unlikely(ret))
goto err;
ret = -EINVAL;
if (unlikely(sig != kinfo.si_signo))
goto err;
/* Only allow sending arbitrary signals to yourself. */
ret = -EPERM;
signal: add pidfd_send_signal() syscall The kill() syscall operates on process identifiers (pid). After a process has exited its pid can be reused by another process. If a caller sends a signal to a reused pid it will end up signaling the wrong process. This issue has often surfaced and there has been a push to address this problem [1]. This patch uses file descriptors (fd) from proc/<pid> as stable handles on struct pid. Even if a pid is recycled the handle will not change. The fd can be used to send signals to the process it refers to. Thus, the new syscall pidfd_send_signal() is introduced to solve this problem. Instead of pids it operates on process fds (pidfd). /* prototype and argument /* long pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags); /* syscall number 424 */ The syscall number was chosen to be 424 to align with Arnd's rework in his y2038 to minimize merge conflicts (cf. [25]). In addition to the pidfd and signal argument it takes an additional siginfo_t and flags argument. If the siginfo_t argument is NULL then pidfd_send_signal() is equivalent to kill(<positive-pid>, <signal>). If it is not NULL pidfd_send_signal() is equivalent to rt_sigqueueinfo(). The flags argument is added to allow for future extensions of this syscall. It currently needs to be passed as 0. Failing to do so will cause EINVAL. /* pidfd_send_signal() replaces multiple pid-based syscalls */ The pidfd_send_signal() syscall currently takes on the job of rt_sigqueueinfo(2) and parts of the functionality of kill(2), Namely, when a positive pid is passed to kill(2). It will however be possible to also replace tgkill(2) and rt_tgsigqueueinfo(2) if this syscall is extended. /* sending signals to threads (tid) and process groups (pgid) */ Specifically, the pidfd_send_signal() syscall does currently not operate on process groups or threads. This is left for future extensions. In order to extend the syscall to allow sending signal to threads and process groups appropriately named flags (e.g. PIDFD_TYPE_PGID, and PIDFD_TYPE_TID) should be added. This implies that the flags argument will determine what is signaled and not the file descriptor itself. Put in other words, grouping in this api is a property of the flags argument not a property of the file descriptor (cf. [13]). Clarification for this has been requested by Eric (cf. [19]). When appropriate extensions through the flags argument are added then pidfd_send_signal() can additionally replace the part of kill(2) which operates on process groups as well as the tgkill(2) and rt_tgsigqueueinfo(2) syscalls. How such an extension could be implemented has been very roughly sketched in [14], [15], and [16]. However, this should not be taken as a commitment to a particular implementation. There might be better ways to do it. Right now this is intentionally left out to keep this patchset as simple as possible (cf. [4]). /* naming */ The syscall had various names throughout iterations of this patchset: - procfd_signal() - procfd_send_signal() - taskfd_send_signal() In the last round of reviews it was pointed out that given that if the flags argument decides the scope of the signal instead of different types of fds it might make sense to either settle for "procfd_" or "pidfd_" as prefix. The community was willing to accept either (cf. [17] and [18]). Given that one developer expressed strong preference for the "pidfd_" prefix (cf. [13]) and with other developers less opinionated about the name we should settle for "pidfd_" to avoid further bikeshedding. The "_send_signal" suffix was chosen to reflect the fact that the syscall takes on the job of multiple syscalls. It is therefore intentional that the name is not reminiscent of neither kill(2) nor rt_sigqueueinfo(2). Not the fomer because it might imply that pidfd_send_signal() is a replacement for kill(2), and not the latter because it is a hassle to remember the correct spelling - especially for non-native speakers - and because it is not descriptive enough of what the syscall actually does. The name "pidfd_send_signal" makes it very clear that its job is to send signals. /* zombies */ Zombies can be signaled just as any other process. No special error will be reported since a zombie state is an unreliable state (cf. [3]). However, this can be added as an extension through the @flags argument if the need ever arises. /* cross-namespace signals */ The patch currently enforces that the signaler and signalee either are in the same pid namespace or that the signaler's pid namespace is an ancestor of the signalee's pid namespace. This is done for the sake of simplicity and because it is unclear to what values certain members of struct siginfo_t would need to be set to (cf. [5], [6]). /* compat syscalls */ It became clear that we would like to avoid adding compat syscalls (cf. [7]). The compat syscall handling is now done in kernel/signal.c itself by adding __copy_siginfo_from_user_generic() which lets us avoid compat syscalls (cf. [8]). It should be noted that the addition of __copy_siginfo_from_user_any() is caused by a bug in the original implementation of rt_sigqueueinfo(2) (cf. 12). With upcoming rework for syscall handling things might improve significantly (cf. [11]) and __copy_siginfo_from_user_any() will not gain any additional callers. /* testing */ This patch was tested on x64 and x86. /* userspace usage */ An asciinema recording for the basic functionality can be found under [9]. With this patch a process can be killed via: #define _GNU_SOURCE #include <errno.h> #include <fcntl.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/syscall.h> #include <sys/types.h> #include <unistd.h> static inline int do_pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags) { #ifdef __NR_pidfd_send_signal return syscall(__NR_pidfd_send_signal, pidfd, sig, info, flags); #else return -ENOSYS; #endif } int main(int argc, char *argv[]) { int fd, ret, saved_errno, sig; if (argc < 3) exit(EXIT_FAILURE); fd = open(argv[1], O_DIRECTORY | O_CLOEXEC); if (fd < 0) { printf("%s - Failed to open \"%s\"\n", strerror(errno), argv[1]); exit(EXIT_FAILURE); } sig = atoi(argv[2]); printf("Sending signal %d to process %s\n", sig, argv[1]); ret = do_pidfd_send_signal(fd, sig, NULL, 0); saved_errno = errno; close(fd); errno = saved_errno; if (ret < 0) { printf("%s - Failed to send signal %d to process %s\n", strerror(errno), sig, argv[1]); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); } /* Q&A * Given that it seems the same questions get asked again by people who are * late to the party it makes sense to add a Q&A section to the commit * message so it's hopefully easier to avoid duplicate threads. * * For the sake of progress please consider these arguments settled unless * there is a new point that desperately needs to be addressed. Please make * sure to check the links to the threads in this commit message whether * this has not already been covered. */ Q-01: (Florian Weimer [20], Andrew Morton [21]) What happens when the target process has exited? A-01: Sending the signal will fail with ESRCH (cf. [22]). Q-02: (Andrew Morton [21]) Is the task_struct pinned by the fd? A-02: No. A reference to struct pid is kept. struct pid - as far as I understand - was created exactly for the reason to not require to pin struct task_struct (cf. [22]). Q-03: (Andrew Morton [21]) Does the entire procfs directory remain visible? Just one entry within it? A-03: The same thing that happens right now when you hold a file descriptor to /proc/<pid> open (cf. [22]). Q-04: (Andrew Morton [21]) Does the pid remain reserved? A-04: No. This patchset guarantees a stable handle not that pids are not recycled (cf. [22]). Q-05: (Andrew Morton [21]) Do attempts to signal that fd return errors? A-05: See {Q,A}-01. Q-06: (Andrew Morton [22]) Is there a cleaner way of obtaining the fd? Another syscall perhaps. A-06: Userspace can already trivially retrieve file descriptors from procfs so this is something that we will need to support anyway. Hence, there's no immediate need to add another syscalls just to make pidfd_send_signal() not dependent on the presence of procfs. However, adding a syscalls to get such file descriptors is planned for a future patchset (cf. [22]). Q-07: (Andrew Morton [21] and others) This fd-for-a-process sounds like a handy thing and people may well think up other uses for it in the future, probably unrelated to signals. Are the code and the interface designed to permit such future applications? A-07: Yes (cf. [22]). Q-08: (Andrew Morton [21] and others) Now I think about it, why a new syscall? This thing is looking rather like an ioctl? A-08: This has been extensively discussed. It was agreed that a syscall is preferred for a variety or reasons. Here are just a few taken from prior threads. Syscalls are safer than ioctl()s especially when signaling to fds. Processes are a core kernel concept so a syscall seems more appropriate. The layout of the syscall with its four arguments would require the addition of a custom struct for the ioctl() thereby causing at least the same amount or even more complexity for userspace than a simple syscall. The new syscall will replace multiple other pid-based syscalls (see description above). The file-descriptors-for-processes concept introduced with this syscall will be extended with other syscalls in the future. See also [22], [23] and various other threads already linked in here. Q-09: (Florian Weimer [24]) What happens if you use the new interface with an O_PATH descriptor? A-09: pidfds opened as O_PATH fds cannot be used to send signals to a process (cf. [2]). Signaling processes through pidfds is the equivalent of writing to a file. Thus, this is not an operation that operates "purely at the file descriptor level" as required by the open(2) manpage. See also [4]. /* References */ [1]: https://lore.kernel.org/lkml/20181029221037.87724-1-dancol@google.com/ [2]: https://lore.kernel.org/lkml/874lbtjvtd.fsf@oldenburg2.str.redhat.com/ [3]: https://lore.kernel.org/lkml/20181204132604.aspfupwjgjx6fhva@brauner.io/ [4]: https://lore.kernel.org/lkml/20181203180224.fkvw4kajtbvru2ku@brauner.io/ [5]: https://lore.kernel.org/lkml/20181121213946.GA10795@mail.hallyn.com/ [6]: https://lore.kernel.org/lkml/20181120103111.etlqp7zop34v6nv4@brauner.io/ [7]: https://lore.kernel.org/lkml/36323361-90BD-41AF-AB5B-EE0D7BA02C21@amacapital.net/ [8]: https://lore.kernel.org/lkml/87tvjxp8pc.fsf@xmission.com/ [9]: https://asciinema.org/a/IQjuCHew6bnq1cr78yuMv16cy [11]: https://lore.kernel.org/lkml/F53D6D38-3521-4C20-9034-5AF447DF62FF@amacapital.net/ [12]: https://lore.kernel.org/lkml/87zhtjn8ck.fsf@xmission.com/ [13]: https://lore.kernel.org/lkml/871s6u9z6u.fsf@xmission.com/ [14]: https://lore.kernel.org/lkml/20181206231742.xxi4ghn24z4h2qki@brauner.io/ [15]: https://lore.kernel.org/lkml/20181207003124.GA11160@mail.hallyn.com/ [16]: https://lore.kernel.org/lkml/20181207015423.4miorx43l3qhppfz@brauner.io/ [17]: https://lore.kernel.org/lkml/CAGXu5jL8PciZAXvOvCeCU3wKUEB_dU-O3q0tDw4uB_ojMvDEew@mail.gmail.com/ [18]: https://lore.kernel.org/lkml/20181206222746.GB9224@mail.hallyn.com/ [19]: https://lore.kernel.org/lkml/20181208054059.19813-1-christian@brauner.io/ [20]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [21]: https://lore.kernel.org/lkml/20181228152012.dbf0508c2508138efc5f2bbe@linux-foundation.org/ [22]: https://lore.kernel.org/lkml/20181228233725.722tdfgijxcssg76@brauner.io/ [23]: https://lwn.net/Articles/773459/ [24]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [25]: https://lore.kernel.org/lkml/CAK8P3a0ej9NcJM8wXNPbcGUyOUZYX+VLoDFdbenW3s3114oQZw@mail.gmail.com/ Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Jann Horn <jannh@google.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Florian Weimer <fweimer@redhat.com> Signed-off-by: Christian Brauner <christian@brauner.io> Reviewed-by: Tycho Andersen <tycho@tycho.ws> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Serge Hallyn <serge@hallyn.com> Acked-by: Aleksa Sarai <cyphar@cyphar.com>
2018-11-18 23:51:56 +00:00
if ((task_pid(current) != pid) &&
(kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
goto err;
signal: add pidfd_send_signal() syscall The kill() syscall operates on process identifiers (pid). After a process has exited its pid can be reused by another process. If a caller sends a signal to a reused pid it will end up signaling the wrong process. This issue has often surfaced and there has been a push to address this problem [1]. This patch uses file descriptors (fd) from proc/<pid> as stable handles on struct pid. Even if a pid is recycled the handle will not change. The fd can be used to send signals to the process it refers to. Thus, the new syscall pidfd_send_signal() is introduced to solve this problem. Instead of pids it operates on process fds (pidfd). /* prototype and argument /* long pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags); /* syscall number 424 */ The syscall number was chosen to be 424 to align with Arnd's rework in his y2038 to minimize merge conflicts (cf. [25]). In addition to the pidfd and signal argument it takes an additional siginfo_t and flags argument. If the siginfo_t argument is NULL then pidfd_send_signal() is equivalent to kill(<positive-pid>, <signal>). If it is not NULL pidfd_send_signal() is equivalent to rt_sigqueueinfo(). The flags argument is added to allow for future extensions of this syscall. It currently needs to be passed as 0. Failing to do so will cause EINVAL. /* pidfd_send_signal() replaces multiple pid-based syscalls */ The pidfd_send_signal() syscall currently takes on the job of rt_sigqueueinfo(2) and parts of the functionality of kill(2), Namely, when a positive pid is passed to kill(2). It will however be possible to also replace tgkill(2) and rt_tgsigqueueinfo(2) if this syscall is extended. /* sending signals to threads (tid) and process groups (pgid) */ Specifically, the pidfd_send_signal() syscall does currently not operate on process groups or threads. This is left for future extensions. In order to extend the syscall to allow sending signal to threads and process groups appropriately named flags (e.g. PIDFD_TYPE_PGID, and PIDFD_TYPE_TID) should be added. This implies that the flags argument will determine what is signaled and not the file descriptor itself. Put in other words, grouping in this api is a property of the flags argument not a property of the file descriptor (cf. [13]). Clarification for this has been requested by Eric (cf. [19]). When appropriate extensions through the flags argument are added then pidfd_send_signal() can additionally replace the part of kill(2) which operates on process groups as well as the tgkill(2) and rt_tgsigqueueinfo(2) syscalls. How such an extension could be implemented has been very roughly sketched in [14], [15], and [16]. However, this should not be taken as a commitment to a particular implementation. There might be better ways to do it. Right now this is intentionally left out to keep this patchset as simple as possible (cf. [4]). /* naming */ The syscall had various names throughout iterations of this patchset: - procfd_signal() - procfd_send_signal() - taskfd_send_signal() In the last round of reviews it was pointed out that given that if the flags argument decides the scope of the signal instead of different types of fds it might make sense to either settle for "procfd_" or "pidfd_" as prefix. The community was willing to accept either (cf. [17] and [18]). Given that one developer expressed strong preference for the "pidfd_" prefix (cf. [13]) and with other developers less opinionated about the name we should settle for "pidfd_" to avoid further bikeshedding. The "_send_signal" suffix was chosen to reflect the fact that the syscall takes on the job of multiple syscalls. It is therefore intentional that the name is not reminiscent of neither kill(2) nor rt_sigqueueinfo(2). Not the fomer because it might imply that pidfd_send_signal() is a replacement for kill(2), and not the latter because it is a hassle to remember the correct spelling - especially for non-native speakers - and because it is not descriptive enough of what the syscall actually does. The name "pidfd_send_signal" makes it very clear that its job is to send signals. /* zombies */ Zombies can be signaled just as any other process. No special error will be reported since a zombie state is an unreliable state (cf. [3]). However, this can be added as an extension through the @flags argument if the need ever arises. /* cross-namespace signals */ The patch currently enforces that the signaler and signalee either are in the same pid namespace or that the signaler's pid namespace is an ancestor of the signalee's pid namespace. This is done for the sake of simplicity and because it is unclear to what values certain members of struct siginfo_t would need to be set to (cf. [5], [6]). /* compat syscalls */ It became clear that we would like to avoid adding compat syscalls (cf. [7]). The compat syscall handling is now done in kernel/signal.c itself by adding __copy_siginfo_from_user_generic() which lets us avoid compat syscalls (cf. [8]). It should be noted that the addition of __copy_siginfo_from_user_any() is caused by a bug in the original implementation of rt_sigqueueinfo(2) (cf. 12). With upcoming rework for syscall handling things might improve significantly (cf. [11]) and __copy_siginfo_from_user_any() will not gain any additional callers. /* testing */ This patch was tested on x64 and x86. /* userspace usage */ An asciinema recording for the basic functionality can be found under [9]. With this patch a process can be killed via: #define _GNU_SOURCE #include <errno.h> #include <fcntl.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/syscall.h> #include <sys/types.h> #include <unistd.h> static inline int do_pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags) { #ifdef __NR_pidfd_send_signal return syscall(__NR_pidfd_send_signal, pidfd, sig, info, flags); #else return -ENOSYS; #endif } int main(int argc, char *argv[]) { int fd, ret, saved_errno, sig; if (argc < 3) exit(EXIT_FAILURE); fd = open(argv[1], O_DIRECTORY | O_CLOEXEC); if (fd < 0) { printf("%s - Failed to open \"%s\"\n", strerror(errno), argv[1]); exit(EXIT_FAILURE); } sig = atoi(argv[2]); printf("Sending signal %d to process %s\n", sig, argv[1]); ret = do_pidfd_send_signal(fd, sig, NULL, 0); saved_errno = errno; close(fd); errno = saved_errno; if (ret < 0) { printf("%s - Failed to send signal %d to process %s\n", strerror(errno), sig, argv[1]); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); } /* Q&A * Given that it seems the same questions get asked again by people who are * late to the party it makes sense to add a Q&A section to the commit * message so it's hopefully easier to avoid duplicate threads. * * For the sake of progress please consider these arguments settled unless * there is a new point that desperately needs to be addressed. Please make * sure to check the links to the threads in this commit message whether * this has not already been covered. */ Q-01: (Florian Weimer [20], Andrew Morton [21]) What happens when the target process has exited? A-01: Sending the signal will fail with ESRCH (cf. [22]). Q-02: (Andrew Morton [21]) Is the task_struct pinned by the fd? A-02: No. A reference to struct pid is kept. struct pid - as far as I understand - was created exactly for the reason to not require to pin struct task_struct (cf. [22]). Q-03: (Andrew Morton [21]) Does the entire procfs directory remain visible? Just one entry within it? A-03: The same thing that happens right now when you hold a file descriptor to /proc/<pid> open (cf. [22]). Q-04: (Andrew Morton [21]) Does the pid remain reserved? A-04: No. This patchset guarantees a stable handle not that pids are not recycled (cf. [22]). Q-05: (Andrew Morton [21]) Do attempts to signal that fd return errors? A-05: See {Q,A}-01. Q-06: (Andrew Morton [22]) Is there a cleaner way of obtaining the fd? Another syscall perhaps. A-06: Userspace can already trivially retrieve file descriptors from procfs so this is something that we will need to support anyway. Hence, there's no immediate need to add another syscalls just to make pidfd_send_signal() not dependent on the presence of procfs. However, adding a syscalls to get such file descriptors is planned for a future patchset (cf. [22]). Q-07: (Andrew Morton [21] and others) This fd-for-a-process sounds like a handy thing and people may well think up other uses for it in the future, probably unrelated to signals. Are the code and the interface designed to permit such future applications? A-07: Yes (cf. [22]). Q-08: (Andrew Morton [21] and others) Now I think about it, why a new syscall? This thing is looking rather like an ioctl? A-08: This has been extensively discussed. It was agreed that a syscall is preferred for a variety or reasons. Here are just a few taken from prior threads. Syscalls are safer than ioctl()s especially when signaling to fds. Processes are a core kernel concept so a syscall seems more appropriate. The layout of the syscall with its four arguments would require the addition of a custom struct for the ioctl() thereby causing at least the same amount or even more complexity for userspace than a simple syscall. The new syscall will replace multiple other pid-based syscalls (see description above). The file-descriptors-for-processes concept introduced with this syscall will be extended with other syscalls in the future. See also [22], [23] and various other threads already linked in here. Q-09: (Florian Weimer [24]) What happens if you use the new interface with an O_PATH descriptor? A-09: pidfds opened as O_PATH fds cannot be used to send signals to a process (cf. [2]). Signaling processes through pidfds is the equivalent of writing to a file. Thus, this is not an operation that operates "purely at the file descriptor level" as required by the open(2) manpage. See also [4]. /* References */ [1]: https://lore.kernel.org/lkml/20181029221037.87724-1-dancol@google.com/ [2]: https://lore.kernel.org/lkml/874lbtjvtd.fsf@oldenburg2.str.redhat.com/ [3]: https://lore.kernel.org/lkml/20181204132604.aspfupwjgjx6fhva@brauner.io/ [4]: https://lore.kernel.org/lkml/20181203180224.fkvw4kajtbvru2ku@brauner.io/ [5]: https://lore.kernel.org/lkml/20181121213946.GA10795@mail.hallyn.com/ [6]: https://lore.kernel.org/lkml/20181120103111.etlqp7zop34v6nv4@brauner.io/ [7]: https://lore.kernel.org/lkml/36323361-90BD-41AF-AB5B-EE0D7BA02C21@amacapital.net/ [8]: https://lore.kernel.org/lkml/87tvjxp8pc.fsf@xmission.com/ [9]: https://asciinema.org/a/IQjuCHew6bnq1cr78yuMv16cy [11]: https://lore.kernel.org/lkml/F53D6D38-3521-4C20-9034-5AF447DF62FF@amacapital.net/ [12]: https://lore.kernel.org/lkml/87zhtjn8ck.fsf@xmission.com/ [13]: https://lore.kernel.org/lkml/871s6u9z6u.fsf@xmission.com/ [14]: https://lore.kernel.org/lkml/20181206231742.xxi4ghn24z4h2qki@brauner.io/ [15]: https://lore.kernel.org/lkml/20181207003124.GA11160@mail.hallyn.com/ [16]: https://lore.kernel.org/lkml/20181207015423.4miorx43l3qhppfz@brauner.io/ [17]: https://lore.kernel.org/lkml/CAGXu5jL8PciZAXvOvCeCU3wKUEB_dU-O3q0tDw4uB_ojMvDEew@mail.gmail.com/ [18]: https://lore.kernel.org/lkml/20181206222746.GB9224@mail.hallyn.com/ [19]: https://lore.kernel.org/lkml/20181208054059.19813-1-christian@brauner.io/ [20]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [21]: https://lore.kernel.org/lkml/20181228152012.dbf0508c2508138efc5f2bbe@linux-foundation.org/ [22]: https://lore.kernel.org/lkml/20181228233725.722tdfgijxcssg76@brauner.io/ [23]: https://lwn.net/Articles/773459/ [24]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [25]: https://lore.kernel.org/lkml/CAK8P3a0ej9NcJM8wXNPbcGUyOUZYX+VLoDFdbenW3s3114oQZw@mail.gmail.com/ Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Jann Horn <jannh@google.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Florian Weimer <fweimer@redhat.com> Signed-off-by: Christian Brauner <christian@brauner.io> Reviewed-by: Tycho Andersen <tycho@tycho.ws> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Serge Hallyn <serge@hallyn.com> Acked-by: Aleksa Sarai <cyphar@cyphar.com>
2018-11-18 23:51:56 +00:00
} else {
prepare_kill_siginfo(sig, &kinfo);
}
ret = kill_pid_info(sig, &kinfo, pid);
err:
fdput(f);
return ret;
}
static int
do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
{
struct task_struct *p;
int error = -ESRCH;
rcu_read_lock();
p = find_task_by_vpid(pid);
if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
error = check_kill_permission(sig, info, p);
/*
* The null signal is a permissions and process existence
* probe. No signal is actually delivered.
*/
if (!error && sig) {
error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
/*
* If lock_task_sighand() failed we pretend the task
* dies after receiving the signal. The window is tiny,
* and the signal is private anyway.
*/
if (unlikely(error == -ESRCH))
error = 0;
}
}
rcu_read_unlock();
return error;
}
static int do_tkill(pid_t tgid, pid_t pid, int sig)
{
struct kernel_siginfo info;
clear_siginfo(&info);
info.si_signo = sig;
info.si_errno = 0;
info.si_code = SI_TKILL;
info.si_pid = task_tgid_vnr(current);
info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
return do_send_specific(tgid, pid, sig, &info);
}
/**
* sys_tgkill - send signal to one specific thread
* @tgid: the thread group ID of the thread
* @pid: the PID of the thread
* @sig: signal to be sent
*
* This syscall also checks the @tgid and returns -ESRCH even if the PID
* exists but it's not belonging to the target process anymore. This
* method solves the problem of threads exiting and PIDs getting reused.
*/
SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
{
/* This is only valid for single tasks */
if (pid <= 0 || tgid <= 0)
return -EINVAL;
return do_tkill(tgid, pid, sig);
}
/**
* sys_tkill - send signal to one specific task
* @pid: the PID of the task
* @sig: signal to be sent
*
* Send a signal to only one task, even if it's a CLONE_THREAD task.
*/
SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
{
/* This is only valid for single tasks */
if (pid <= 0)
return -EINVAL;
return do_tkill(0, pid, sig);
}
static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
{
/* Not even root can pretend to send signals from the kernel.
* Nor can they impersonate a kill()/tgkill(), which adds source info.
*/
signal: allow to send any siginfo to itself The idea is simple. We need to get the siginfo for each signal on checkpointing dump, and then return it back on restore. The first problem is that the kernel doesn't report complete siginfos to userspace. In a signal handler the kernel strips SI_CODE from siginfo. When a siginfo is received from signalfd, it has a different format with fixed sizes of fields. The interface of signalfd was extended. If a signalfd is created with the flag SFD_RAW, it returns siginfo in a raw format. rt_sigqueueinfo looks suitable for restoring signals, but it can't send siginfo with a positive si_code, because these codes are reserved for the kernel. In the real world each person has right to do anything with himself, so I think a process should able to send any siginfo to itself. This patch: The kernel prevents sending of siginfo with positive si_code, because these codes are reserved for kernel. I think we can allow a task to send such a siginfo to itself. This operation should not be dangerous. This functionality is required for restoring signals in checkpoint/restart. Signed-off-by: Andrey Vagin <avagin@openvz.org> Cc: Serge Hallyn <serge.hallyn@canonical.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 01:03:12 +00:00
if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
(task_pid_vnr(current) != pid))
return -EPERM;
/* POSIX.1b doesn't mention process groups. */
return kill_proc_info(sig, info, pid);
}
/**
* sys_rt_sigqueueinfo - send signal information to a signal
* @pid: the PID of the thread
* @sig: signal to be sent
* @uinfo: signal info to be sent
*/
SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
siginfo_t __user *, uinfo)
{
kernel_siginfo_t info;
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
int ret = __copy_siginfo_from_user(sig, &info, uinfo);
if (unlikely(ret))
return ret;
return do_rt_sigqueueinfo(pid, sig, &info);
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
compat_pid_t, pid,
int, sig,
struct compat_siginfo __user *, uinfo)
{
kernel_siginfo_t info;
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
if (unlikely(ret))
return ret;
return do_rt_sigqueueinfo(pid, sig, &info);
}
#endif
static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
{
/* This is only valid for single tasks */
if (pid <= 0 || tgid <= 0)
return -EINVAL;
/* Not even root can pretend to send signals from the kernel.
* Nor can they impersonate a kill()/tgkill(), which adds source info.
*/
if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
(task_pid_vnr(current) != pid))
return -EPERM;
return do_send_specific(tgid, pid, sig, info);
}
SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
siginfo_t __user *, uinfo)
{
kernel_siginfo_t info;
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
int ret = __copy_siginfo_from_user(sig, &info, uinfo);
if (unlikely(ret))
return ret;
return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
compat_pid_t, tgid,
compat_pid_t, pid,
int, sig,
struct compat_siginfo __user *, uinfo)
{
kernel_siginfo_t info;
signal: In sigqueueinfo prefer sig not si_signo Andrei Vagin <avagin@gmail.com> reported: > Accoding to the man page, the user should not set si_signo, it has to be set > by kernel. > > $ man 2 rt_sigqueueinfo > > The uinfo argument specifies the data to accompany the signal. This > argument is a pointer to a structure of type siginfo_t, described in > sigaction(2) (and defined by including <sigaction.h>). The caller > should set the following fields in this structure: > > si_code > This must be one of the SI_* codes in the Linux kernel source > file include/asm-generic/siginfo.h, with the restriction that > the code must be negative (i.e., cannot be SI_USER, which is > used by the kernel to indicate a signal sent by kill(2)) and > cannot (since Linux 2.6.39) be SI_TKILL (which is used by the > kernel to indicate a signal sent using tgkill(2)). > > si_pid This should be set to a process ID, typically the process ID of > the sender. > > si_uid This should be set to a user ID, typically the real user ID of > the sender. > > si_value > This field contains the user data to accompany the signal. For > more information, see the description of the last (union sigval) > argument of sigqueue(3). > > Internally, the kernel sets the si_signo field to the value specified > in sig, so that the receiver of the signal can also obtain the signal > number via that field. > > On Tue, Sep 25, 2018 at 07:19:02PM +0200, Eric W. Biederman wrote: >> >> If there is some application that calls sigqueueinfo directly that has >> a problem with this added sanity check we can revisit this when we see >> what kind of crazy that application is doing. > > > I already know two "applications" ;) > > https://github.com/torvalds/linux/blob/master/tools/testing/selftests/ptrace/peeksiginfo.c > https://github.com/checkpoint-restore/criu/blob/master/test/zdtm/static/sigpending.c > > Disclaimer: I'm the author of both of them. Looking at the kernel code the historical behavior has alwasy been to prefer the signal number passed in by the kernel. So sigh. Implmenet __copy_siginfo_from_user and __copy_siginfo_from_user32 to take that signal number and prefer it. The user of ptrace will still use copy_siginfo_from_user and copy_siginfo_from_user32 as they do not and never have had a signal number there. Luckily this change has never made it farther than linux-next. Fixes: e75dc036c445 ("signal: Fail sigqueueinfo if si_signo != sig") Reported-by: Andrei Vagin <avagin@gmail.com> Tested-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-05 07:02:48 +00:00
int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
if (unlikely(ret))
return ret;
return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
}
#endif
/*
* For kthreads only, must not be used if cloned with CLONE_SIGHAND
*/
void kernel_sigaction(int sig, __sighandler_t action)
{
spin_lock_irq(&current->sighand->siglock);
current->sighand->action[sig - 1].sa.sa_handler = action;
if (action == SIG_IGN) {
sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, sig);
flush_sigqueue_mask(&mask, &current->signal->shared_pending);
flush_sigqueue_mask(&mask, &current->pending);
recalc_sigpending();
}
spin_unlock_irq(&current->sighand->siglock);
}
EXPORT_SYMBOL(kernel_sigaction);
void __weak sigaction_compat_abi(struct k_sigaction *act,
struct k_sigaction *oact)
{
}
int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
{
struct task_struct *p = current, *t;
struct k_sigaction *k;
sigset_t mask;
if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
return -EINVAL;
k = &p->sighand->action[sig-1];
spin_lock_irq(&p->sighand->siglock);
if (k->sa.sa_flags & SA_IMMUTABLE) {
spin_unlock_irq(&p->sighand->siglock);
return -EINVAL;
}
if (oact)
*oact = *k;
/*
* Make sure that we never accidentally claim to support SA_UNSUPPORTED,
* e.g. by having an architecture use the bit in their uapi.
*/
BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
signal: clear non-uapi flag bits when passing/returning sa_flags Previously we were not clearing non-uapi flag bits in sigaction.sa_flags when storing the userspace-provided sa_flags or when returning them via oldact. Start doing so. This allows userspace to detect missing support for flag bits and allows the kernel to use non-uapi bits internally, as we are already doing in arch/x86 for two flag bits. Now that this change is in place, we no longer need the code in arch/x86 that was hiding these bits from userspace, so remove it. This is technically a userspace-visible behavior change for sigaction, as the unknown bits returned via oldact.sa_flags are no longer set. However, we are free to define the behavior for unknown bits exactly because their behavior is currently undefined, so for now we can define the meaning of each of them to be "clear the bit in oldact.sa_flags unless the bit becomes known in the future". Furthermore, this behavior is consistent with OpenBSD [1], illumos [2] and XNU [3] (FreeBSD [4] and NetBSD [5] fail the syscall if unknown bits are set). So there is some precedent for this behavior in other kernels, and in particular in XNU, which is probably the most popular kernel among those that I looked at, which means that this change is less likely to be a compatibility issue. Link: [1] https://github.com/openbsd/src/blob/f634a6a4b5bf832e9c1de77f7894ae2625e74484/sys/kern/kern_sig.c#L278 Link: [2] https://github.com/illumos/illumos-gate/blob/76f19f5fdc974fe5be5c82a556e43a4df93f1de1/usr/src/uts/common/syscall/sigaction.c#L86 Link: [3] https://github.com/apple/darwin-xnu/blob/a449c6a3b8014d9406c2ddbdc81795da24aa7443/bsd/kern/kern_sig.c#L480 Link: [4] https://github.com/freebsd/freebsd/blob/eded70c37057857c6e23fae51f86b8f8f43cd2d0/sys/kern/kern_sig.c#L699 Link: [5] https://github.com/NetBSD/src/blob/3365779becdcedfca206091a645a0e8e22b2946e/sys/kern/sys_sig.c#L473 Signed-off-by: Peter Collingbourne <pcc@google.com> Reviewed-by: Dave Martin <Dave.Martin@arm.com> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Link: https://linux-review.googlesource.com/id/I35aab6f5be932505d90f3b3450c083b4db1eca86 Link: https://lkml.kernel.org/r/878dbcb5f47bc9b11881c81f745c0bef5c23f97f.1605235762.git.pcc@google.com Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2020-11-13 02:53:34 +00:00
/*
* Clear unknown flag bits in order to allow userspace to detect missing
* support for flag bits and to allow the kernel to use non-uapi bits
* internally.
*/
if (act)
act->sa.sa_flags &= UAPI_SA_FLAGS;
if (oact)
oact->sa.sa_flags &= UAPI_SA_FLAGS;
sigaction_compat_abi(act, oact);
if (act) {
sigdelsetmask(&act->sa.sa_mask,
sigmask(SIGKILL) | sigmask(SIGSTOP));
*k = *act;
/*
* POSIX 3.3.1.3:
* "Setting a signal action to SIG_IGN for a signal that is
* pending shall cause the pending signal to be discarded,
* whether or not it is blocked."
*
* "Setting a signal action to SIG_DFL for a signal that is
* pending and whose default action is to ignore the signal
* (for example, SIGCHLD), shall cause the pending signal to
* be discarded, whether or not it is blocked"
*/
if (sig_handler_ignored(sig_handler(p, sig), sig)) {
sigemptyset(&mask);
sigaddset(&mask, sig);
flush_sigqueue_mask(&mask, &p->signal->shared_pending);
for_each_thread(p, t)
flush_sigqueue_mask(&mask, &t->pending);
}
}
spin_unlock_irq(&p->sighand->siglock);
return 0;
}
signal: Add an optional check for altstack size New x86 FPU features will be very large, requiring ~10k of stack in signal handlers. These new features require a new approach called "dynamic features". The kernel currently tries to ensure that altstacks are reasonably sized. Right now, on x86, sys_sigaltstack() requires a size of >=2k. However, that 2k is a constant. Simply raising that 2k requirement to >10k for the new features would break existing apps which have a compiled-in size of 2k. Instead of universally enforcing a larger stack, prohibit a process from using dynamic features without properly-sized altstacks. This must be enforced in two places: * A dynamic feature can not be enabled without an large-enough altstack for each process thread. * Once a dynamic feature is enabled, any request to install a too-small altstack will be rejected The dynamic feature enabling code must examine each thread in a process to ensure that the altstacks are large enough. Add a new lock (sigaltstack_lock()) to ensure that threads can not race and change their altstack after being examined. Add the infrastructure in form of a config option and provide empty stubs for architectures which do not need dynamic altstack size checks. This implementation will be fleshed out for x86 in a future patch called x86/arch_prctl: Add controls for dynamic XSTATE components [dhansen: commit message. ] Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20211021225527.10184-2-chang.seok.bae@intel.com
2021-10-21 22:55:05 +00:00
#ifdef CONFIG_DYNAMIC_SIGFRAME
static inline void sigaltstack_lock(void)
__acquires(&current->sighand->siglock)
{
spin_lock_irq(&current->sighand->siglock);
}
static inline void sigaltstack_unlock(void)
__releases(&current->sighand->siglock)
{
spin_unlock_irq(&current->sighand->siglock);
}
#else
static inline void sigaltstack_lock(void) { }
static inline void sigaltstack_unlock(void) { }
#endif
static int
do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
size_t min_ss_size)
{
struct task_struct *t = current;
signal: Add an optional check for altstack size New x86 FPU features will be very large, requiring ~10k of stack in signal handlers. These new features require a new approach called "dynamic features". The kernel currently tries to ensure that altstacks are reasonably sized. Right now, on x86, sys_sigaltstack() requires a size of >=2k. However, that 2k is a constant. Simply raising that 2k requirement to >10k for the new features would break existing apps which have a compiled-in size of 2k. Instead of universally enforcing a larger stack, prohibit a process from using dynamic features without properly-sized altstacks. This must be enforced in two places: * A dynamic feature can not be enabled without an large-enough altstack for each process thread. * Once a dynamic feature is enabled, any request to install a too-small altstack will be rejected The dynamic feature enabling code must examine each thread in a process to ensure that the altstacks are large enough. Add a new lock (sigaltstack_lock()) to ensure that threads can not race and change their altstack after being examined. Add the infrastructure in form of a config option and provide empty stubs for architectures which do not need dynamic altstack size checks. This implementation will be fleshed out for x86 in a future patch called x86/arch_prctl: Add controls for dynamic XSTATE components [dhansen: commit message. ] Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20211021225527.10184-2-chang.seok.bae@intel.com
2021-10-21 22:55:05 +00:00
int ret = 0;
if (oss) {
memset(oss, 0, sizeof(stack_t));
oss->ss_sp = (void __user *) t->sas_ss_sp;
oss->ss_size = t->sas_ss_size;
oss->ss_flags = sas_ss_flags(sp) |
(current->sas_ss_flags & SS_FLAG_BITS);
}
if (ss) {
void __user *ss_sp = ss->ss_sp;
size_t ss_size = ss->ss_size;
unsigned ss_flags = ss->ss_flags;
signals/sigaltstack: Prepare to add new SS_xxx flags This patch adds SS_FLAG_BITS - the mask that splits sigaltstack mode values and bit-flags. Since there is no bit-flags yet, the mask is defined to 0. The flags are added by subsequent patches. With every new flag, the mask should have the appropriate bit cleared. This makes sure if some flag is tried on a kernel that doesn't support it, the -EINVAL error will be returned, because such a flag will be treated as an invalid mode rather than the bit-flag. That way the existence of the particular features can be probed at run-time. This change was suggested by Andy Lutomirski: https://lkml.org/lkml/2016/3/6/158 Signed-off-by: Stas Sergeev <stsp@list.ru> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Amanieu d'Antras <amanieu@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Weinberger <richard@nod.at> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Shuah Khan <shuahkh@osg.samsung.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: linux-api@vger.kernel.org Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1460665206-13646-3-git-send-email-stsp@list.ru Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-14 20:20:03 +00:00
int ss_mode;
if (unlikely(on_sig_stack(sp)))
return -EPERM;
signals/sigaltstack: Prepare to add new SS_xxx flags This patch adds SS_FLAG_BITS - the mask that splits sigaltstack mode values and bit-flags. Since there is no bit-flags yet, the mask is defined to 0. The flags are added by subsequent patches. With every new flag, the mask should have the appropriate bit cleared. This makes sure if some flag is tried on a kernel that doesn't support it, the -EINVAL error will be returned, because such a flag will be treated as an invalid mode rather than the bit-flag. That way the existence of the particular features can be probed at run-time. This change was suggested by Andy Lutomirski: https://lkml.org/lkml/2016/3/6/158 Signed-off-by: Stas Sergeev <stsp@list.ru> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Amanieu d'Antras <amanieu@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Weinberger <richard@nod.at> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Shuah Khan <shuahkh@osg.samsung.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: linux-api@vger.kernel.org Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1460665206-13646-3-git-send-email-stsp@list.ru Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-14 20:20:03 +00:00
ss_mode = ss_flags & ~SS_FLAG_BITS;
if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
ss_mode != 0))
return -EINVAL;
/*
* Return before taking any locks if no actual
* sigaltstack changes were requested.
*/
if (t->sas_ss_sp == (unsigned long)ss_sp &&
t->sas_ss_size == ss_size &&
t->sas_ss_flags == ss_flags)
return 0;
signal: Add an optional check for altstack size New x86 FPU features will be very large, requiring ~10k of stack in signal handlers. These new features require a new approach called "dynamic features". The kernel currently tries to ensure that altstacks are reasonably sized. Right now, on x86, sys_sigaltstack() requires a size of >=2k. However, that 2k is a constant. Simply raising that 2k requirement to >10k for the new features would break existing apps which have a compiled-in size of 2k. Instead of universally enforcing a larger stack, prohibit a process from using dynamic features without properly-sized altstacks. This must be enforced in two places: * A dynamic feature can not be enabled without an large-enough altstack for each process thread. * Once a dynamic feature is enabled, any request to install a too-small altstack will be rejected The dynamic feature enabling code must examine each thread in a process to ensure that the altstacks are large enough. Add a new lock (sigaltstack_lock()) to ensure that threads can not race and change their altstack after being examined. Add the infrastructure in form of a config option and provide empty stubs for architectures which do not need dynamic altstack size checks. This implementation will be fleshed out for x86 in a future patch called x86/arch_prctl: Add controls for dynamic XSTATE components [dhansen: commit message. ] Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20211021225527.10184-2-chang.seok.bae@intel.com
2021-10-21 22:55:05 +00:00
sigaltstack_lock();
signals/sigaltstack: Prepare to add new SS_xxx flags This patch adds SS_FLAG_BITS - the mask that splits sigaltstack mode values and bit-flags. Since there is no bit-flags yet, the mask is defined to 0. The flags are added by subsequent patches. With every new flag, the mask should have the appropriate bit cleared. This makes sure if some flag is tried on a kernel that doesn't support it, the -EINVAL error will be returned, because such a flag will be treated as an invalid mode rather than the bit-flag. That way the existence of the particular features can be probed at run-time. This change was suggested by Andy Lutomirski: https://lkml.org/lkml/2016/3/6/158 Signed-off-by: Stas Sergeev <stsp@list.ru> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Amanieu d'Antras <amanieu@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Weinberger <richard@nod.at> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Shuah Khan <shuahkh@osg.samsung.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: linux-api@vger.kernel.org Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1460665206-13646-3-git-send-email-stsp@list.ru Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-14 20:20:03 +00:00
if (ss_mode == SS_DISABLE) {
ss_size = 0;
ss_sp = NULL;
} else {
if (unlikely(ss_size < min_ss_size))
signal: Add an optional check for altstack size New x86 FPU features will be very large, requiring ~10k of stack in signal handlers. These new features require a new approach called "dynamic features". The kernel currently tries to ensure that altstacks are reasonably sized. Right now, on x86, sys_sigaltstack() requires a size of >=2k. However, that 2k is a constant. Simply raising that 2k requirement to >10k for the new features would break existing apps which have a compiled-in size of 2k. Instead of universally enforcing a larger stack, prohibit a process from using dynamic features without properly-sized altstacks. This must be enforced in two places: * A dynamic feature can not be enabled without an large-enough altstack for each process thread. * Once a dynamic feature is enabled, any request to install a too-small altstack will be rejected The dynamic feature enabling code must examine each thread in a process to ensure that the altstacks are large enough. Add a new lock (sigaltstack_lock()) to ensure that threads can not race and change their altstack after being examined. Add the infrastructure in form of a config option and provide empty stubs for architectures which do not need dynamic altstack size checks. This implementation will be fleshed out for x86 in a future patch called x86/arch_prctl: Add controls for dynamic XSTATE components [dhansen: commit message. ] Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20211021225527.10184-2-chang.seok.bae@intel.com
2021-10-21 22:55:05 +00:00
ret = -ENOMEM;
if (!sigaltstack_size_valid(ss_size))
ret = -ENOMEM;
}
signal: Add an optional check for altstack size New x86 FPU features will be very large, requiring ~10k of stack in signal handlers. These new features require a new approach called "dynamic features". The kernel currently tries to ensure that altstacks are reasonably sized. Right now, on x86, sys_sigaltstack() requires a size of >=2k. However, that 2k is a constant. Simply raising that 2k requirement to >10k for the new features would break existing apps which have a compiled-in size of 2k. Instead of universally enforcing a larger stack, prohibit a process from using dynamic features without properly-sized altstacks. This must be enforced in two places: * A dynamic feature can not be enabled without an large-enough altstack for each process thread. * Once a dynamic feature is enabled, any request to install a too-small altstack will be rejected The dynamic feature enabling code must examine each thread in a process to ensure that the altstacks are large enough. Add a new lock (sigaltstack_lock()) to ensure that threads can not race and change their altstack after being examined. Add the infrastructure in form of a config option and provide empty stubs for architectures which do not need dynamic altstack size checks. This implementation will be fleshed out for x86 in a future patch called x86/arch_prctl: Add controls for dynamic XSTATE components [dhansen: commit message. ] Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20211021225527.10184-2-chang.seok.bae@intel.com
2021-10-21 22:55:05 +00:00
if (!ret) {
t->sas_ss_sp = (unsigned long) ss_sp;
t->sas_ss_size = ss_size;
t->sas_ss_flags = ss_flags;
}
sigaltstack_unlock();
}
signal: Add an optional check for altstack size New x86 FPU features will be very large, requiring ~10k of stack in signal handlers. These new features require a new approach called "dynamic features". The kernel currently tries to ensure that altstacks are reasonably sized. Right now, on x86, sys_sigaltstack() requires a size of >=2k. However, that 2k is a constant. Simply raising that 2k requirement to >10k for the new features would break existing apps which have a compiled-in size of 2k. Instead of universally enforcing a larger stack, prohibit a process from using dynamic features without properly-sized altstacks. This must be enforced in two places: * A dynamic feature can not be enabled without an large-enough altstack for each process thread. * Once a dynamic feature is enabled, any request to install a too-small altstack will be rejected The dynamic feature enabling code must examine each thread in a process to ensure that the altstacks are large enough. Add a new lock (sigaltstack_lock()) to ensure that threads can not race and change their altstack after being examined. Add the infrastructure in form of a config option and provide empty stubs for architectures which do not need dynamic altstack size checks. This implementation will be fleshed out for x86 in a future patch called x86/arch_prctl: Add controls for dynamic XSTATE components [dhansen: commit message. ] Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20211021225527.10184-2-chang.seok.bae@intel.com
2021-10-21 22:55:05 +00:00
return ret;
}
SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
{
stack_t new, old;
int err;
if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
return -EFAULT;
err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
current_user_stack_pointer(),
MINSIGSTKSZ);
if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
err = -EFAULT;
return err;
}
int restore_altstack(const stack_t __user *uss)
{
stack_t new;
if (copy_from_user(&new, uss, sizeof(stack_t)))
return -EFAULT;
(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
MINSIGSTKSZ);
/* squash all but EFAULT for now */
return 0;
}
int __save_altstack(stack_t __user *uss, unsigned long sp)
{
struct task_struct *t = current;
signals/sigaltstack: Implement SS_AUTODISARM flag This patch implements the SS_AUTODISARM flag that can be OR-ed with SS_ONSTACK when forming ss_flags. When this flag is set, sigaltstack will be disabled when entering the signal handler; more precisely, after saving sas to uc_stack. When leaving the signal handler, the sigaltstack is restored by uc_stack. When this flag is used, it is safe to switch from sighandler with swapcontext(). Without this flag, the subsequent signal will corrupt the state of the switched-away sighandler. To detect the support of this functionality, one can do: err = sigaltstack(SS_DISABLE | SS_AUTODISARM); if (err && errno == EINVAL) unsupported(); Signed-off-by: Stas Sergeev <stsp@list.ru> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Aleksa Sarai <cyphar@cyphar.com> Cc: Amanieu d'Antras <amanieu@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Heinrich Schuchardt <xypron.glpk@gmx.de> Cc: Jason Low <jason.low2@hp.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Moore <pmoore@redhat.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Weinberger <richard@nod.at> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Shuah Khan <shuahkh@osg.samsung.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: linux-api@vger.kernel.org Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/1460665206-13646-4-git-send-email-stsp@list.ru Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-14 20:20:04 +00:00
int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
__put_user(t->sas_ss_flags, &uss->ss_flags) |
__put_user(t->sas_ss_size, &uss->ss_size);
return err;
}
#ifdef CONFIG_COMPAT
static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
compat_stack_t __user *uoss_ptr)
{
stack_t uss, uoss;
int ret;
if (uss_ptr) {
compat_stack_t uss32;
if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
return -EFAULT;
uss.ss_sp = compat_ptr(uss32.ss_sp);
uss.ss_flags = uss32.ss_flags;
uss.ss_size = uss32.ss_size;
}
ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
compat_user_stack_pointer(),
COMPAT_MINSIGSTKSZ);
if (ret >= 0 && uoss_ptr) {
compat_stack_t old;
memset(&old, 0, sizeof(old));
old.ss_sp = ptr_to_compat(uoss.ss_sp);
old.ss_flags = uoss.ss_flags;
old.ss_size = uoss.ss_size;
if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
ret = -EFAULT;
}
return ret;
}
COMPAT_SYSCALL_DEFINE2(sigaltstack,
const compat_stack_t __user *, uss_ptr,
compat_stack_t __user *, uoss_ptr)
{
return do_compat_sigaltstack(uss_ptr, uoss_ptr);
}
int compat_restore_altstack(const compat_stack_t __user *uss)
{
int err = do_compat_sigaltstack(uss, NULL);
/* squash all but -EFAULT for now */
return err == -EFAULT ? err : 0;
}
int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
{
int err;
struct task_struct *t = current;
err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
&uss->ss_sp) |
__put_user(t->sas_ss_flags, &uss->ss_flags) |
__put_user(t->sas_ss_size, &uss->ss_size);
return err;
}
#endif
#ifdef __ARCH_WANT_SYS_SIGPENDING
/**
* sys_sigpending - examine pending signals
* @uset: where mask of pending signal is returned
*/
SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
{
sigset_t set;
if (sizeof(old_sigset_t) > sizeof(*uset))
return -EINVAL;
do_sigpending(&set);
if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
return -EFAULT;
return 0;
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
{
sigset_t set;
do_sigpending(&set);
return put_user(set.sig[0], set32);
}
#endif
#endif
#ifdef __ARCH_WANT_SYS_SIGPROCMASK
/**
* sys_sigprocmask - examine and change blocked signals
* @how: whether to add, remove, or set signals
* @nset: signals to add or remove (if non-null)
* @oset: previous value of signal mask if non-null
*
* Some platforms have their own version with special arguments;
* others support only sys_rt_sigprocmask.
*/
SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
old_sigset_t __user *, oset)
{
old_sigset_t old_set, new_set;
sigset_t new_blocked;
old_set = current->blocked.sig[0];
if (nset) {
if (copy_from_user(&new_set, nset, sizeof(*nset)))
return -EFAULT;
new_blocked = current->blocked;
switch (how) {
case SIG_BLOCK:
sigaddsetmask(&new_blocked, new_set);
break;
case SIG_UNBLOCK:
sigdelsetmask(&new_blocked, new_set);
break;
case SIG_SETMASK:
new_blocked.sig[0] = new_set;
break;
default:
return -EINVAL;
}
set_current_blocked(&new_blocked);
}
if (oset) {
if (copy_to_user(oset, &old_set, sizeof(*oset)))
return -EFAULT;
}
return 0;
}
#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
#ifndef CONFIG_ODD_RT_SIGACTION
/**
* sys_rt_sigaction - alter an action taken by a process
* @sig: signal to be sent
* @act: new sigaction
* @oact: used to save the previous sigaction
* @sigsetsize: size of sigset_t type
*/
SYSCALL_DEFINE4(rt_sigaction, int, sig,
const struct sigaction __user *, act,
struct sigaction __user *, oact,
size_t, sigsetsize)
{
struct k_sigaction new_sa, old_sa;
int ret;
/* XXX: Don't preclude handling different sized sigset_t's. */
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
return -EFAULT;
ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
if (ret)
return ret;
if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
return -EFAULT;
return 0;
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
const struct compat_sigaction __user *, act,
struct compat_sigaction __user *, oact,
compat_size_t, sigsetsize)
{
struct k_sigaction new_ka, old_ka;
#ifdef __ARCH_HAS_SA_RESTORER
compat_uptr_t restorer;
#endif
int ret;
/* XXX: Don't preclude handling different sized sigset_t's. */
if (sigsetsize != sizeof(compat_sigset_t))
return -EINVAL;
if (act) {
compat_uptr_t handler;
ret = get_user(handler, &act->sa_handler);
new_ka.sa.sa_handler = compat_ptr(handler);
#ifdef __ARCH_HAS_SA_RESTORER
ret |= get_user(restorer, &act->sa_restorer);
new_ka.sa.sa_restorer = compat_ptr(restorer);
#endif
ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
if (ret)
return -EFAULT;
}
ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
if (!ret && oact) {
ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
&oact->sa_handler);
ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
sizeof(oact->sa_mask));
ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
#ifdef __ARCH_HAS_SA_RESTORER
ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
&oact->sa_restorer);
#endif
}
return ret;
}
#endif
#endif /* !CONFIG_ODD_RT_SIGACTION */
#ifdef CONFIG_OLD_SIGACTION
SYSCALL_DEFINE3(sigaction, int, sig,
const struct old_sigaction __user *, act,
struct old_sigaction __user *, oact)
{
struct k_sigaction new_ka, old_ka;
int ret;
if (act) {
old_sigset_t mask;
Remove 'type' argument from access_ok() function Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument of the user address range verification function since we got rid of the old racy i386-only code to walk page tables by hand. It existed because the original 80386 would not honor the write protect bit when in kernel mode, so you had to do COW by hand before doing any user access. But we haven't supported that in a long time, and these days the 'type' argument is a purely historical artifact. A discussion about extending 'user_access_begin()' to do the range checking resulted this patch, because there is no way we're going to move the old VERIFY_xyz interface to that model. And it's best done at the end of the merge window when I've done most of my merges, so let's just get this done once and for all. This patch was mostly done with a sed-script, with manual fix-ups for the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form. There were a couple of notable cases: - csky still had the old "verify_area()" name as an alias. - the iter_iov code had magical hardcoded knowledge of the actual values of VERIFY_{READ,WRITE} (not that they mattered, since nothing really used it) - microblaze used the type argument for a debug printout but other than those oddities this should be a total no-op patch. I tried to fix up all architectures, did fairly extensive grepping for access_ok() uses, and the changes are trivial, but I may have missed something. Any missed conversion should be trivially fixable, though. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 02:57:57 +00:00
if (!access_ok(act, sizeof(*act)) ||
__get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
__get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
__get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
__get_user(mask, &act->sa_mask))
return -EFAULT;
#ifdef __ARCH_HAS_KA_RESTORER
new_ka.ka_restorer = NULL;
#endif
siginitset(&new_ka.sa.sa_mask, mask);
}
ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
if (!ret && oact) {
Remove 'type' argument from access_ok() function Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument of the user address range verification function since we got rid of the old racy i386-only code to walk page tables by hand. It existed because the original 80386 would not honor the write protect bit when in kernel mode, so you had to do COW by hand before doing any user access. But we haven't supported that in a long time, and these days the 'type' argument is a purely historical artifact. A discussion about extending 'user_access_begin()' to do the range checking resulted this patch, because there is no way we're going to move the old VERIFY_xyz interface to that model. And it's best done at the end of the merge window when I've done most of my merges, so let's just get this done once and for all. This patch was mostly done with a sed-script, with manual fix-ups for the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form. There were a couple of notable cases: - csky still had the old "verify_area()" name as an alias. - the iter_iov code had magical hardcoded knowledge of the actual values of VERIFY_{READ,WRITE} (not that they mattered, since nothing really used it) - microblaze used the type argument for a debug printout but other than those oddities this should be a total no-op patch. I tried to fix up all architectures, did fairly extensive grepping for access_ok() uses, and the changes are trivial, but I may have missed something. Any missed conversion should be trivially fixable, though. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 02:57:57 +00:00
if (!access_ok(oact, sizeof(*oact)) ||
__put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
__put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
__put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
__put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
return -EFAULT;
}
return ret;
}
#endif
#ifdef CONFIG_COMPAT_OLD_SIGACTION
COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
const struct compat_old_sigaction __user *, act,
struct compat_old_sigaction __user *, oact)
{
struct k_sigaction new_ka, old_ka;
int ret;
compat_old_sigset_t mask;
compat_uptr_t handler, restorer;
if (act) {
Remove 'type' argument from access_ok() function Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument of the user address range verification function since we got rid of the old racy i386-only code to walk page tables by hand. It existed because the original 80386 would not honor the write protect bit when in kernel mode, so you had to do COW by hand before doing any user access. But we haven't supported that in a long time, and these days the 'type' argument is a purely historical artifact. A discussion about extending 'user_access_begin()' to do the range checking resulted this patch, because there is no way we're going to move the old VERIFY_xyz interface to that model. And it's best done at the end of the merge window when I've done most of my merges, so let's just get this done once and for all. This patch was mostly done with a sed-script, with manual fix-ups for the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form. There were a couple of notable cases: - csky still had the old "verify_area()" name as an alias. - the iter_iov code had magical hardcoded knowledge of the actual values of VERIFY_{READ,WRITE} (not that they mattered, since nothing really used it) - microblaze used the type argument for a debug printout but other than those oddities this should be a total no-op patch. I tried to fix up all architectures, did fairly extensive grepping for access_ok() uses, and the changes are trivial, but I may have missed something. Any missed conversion should be trivially fixable, though. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 02:57:57 +00:00
if (!access_ok(act, sizeof(*act)) ||
__get_user(handler, &act->sa_handler) ||
__get_user(restorer, &act->sa_restorer) ||
__get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
__get_user(mask, &act->sa_mask))
return -EFAULT;
#ifdef __ARCH_HAS_KA_RESTORER
new_ka.ka_restorer = NULL;
#endif
new_ka.sa.sa_handler = compat_ptr(handler);
new_ka.sa.sa_restorer = compat_ptr(restorer);
siginitset(&new_ka.sa.sa_mask, mask);
}
ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
if (!ret && oact) {
Remove 'type' argument from access_ok() function Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument of the user address range verification function since we got rid of the old racy i386-only code to walk page tables by hand. It existed because the original 80386 would not honor the write protect bit when in kernel mode, so you had to do COW by hand before doing any user access. But we haven't supported that in a long time, and these days the 'type' argument is a purely historical artifact. A discussion about extending 'user_access_begin()' to do the range checking resulted this patch, because there is no way we're going to move the old VERIFY_xyz interface to that model. And it's best done at the end of the merge window when I've done most of my merges, so let's just get this done once and for all. This patch was mostly done with a sed-script, with manual fix-ups for the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form. There were a couple of notable cases: - csky still had the old "verify_area()" name as an alias. - the iter_iov code had magical hardcoded knowledge of the actual values of VERIFY_{READ,WRITE} (not that they mattered, since nothing really used it) - microblaze used the type argument for a debug printout but other than those oddities this should be a total no-op patch. I tried to fix up all architectures, did fairly extensive grepping for access_ok() uses, and the changes are trivial, but I may have missed something. Any missed conversion should be trivially fixable, though. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04 02:57:57 +00:00
if (!access_ok(oact, sizeof(*oact)) ||
__put_user(ptr_to_compat(old_ka.sa.sa_handler),
&oact->sa_handler) ||
__put_user(ptr_to_compat(old_ka.sa.sa_restorer),
&oact->sa_restorer) ||
__put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
__put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
return -EFAULT;
}
return ret;
}
#endif
#ifdef CONFIG_SGETMASK_SYSCALL
/*
* For backwards compatibility. Functionality superseded by sigprocmask.
*/
SYSCALL_DEFINE0(sgetmask)
{
/* SMP safe */
return current->blocked.sig[0];
}
SYSCALL_DEFINE1(ssetmask, int, newmask)
{
int old = current->blocked.sig[0];
sigset_t newset;
siginitset(&newset, newmask);
set_current_blocked(&newset);
return old;
}
#endif /* CONFIG_SGETMASK_SYSCALL */
#ifdef __ARCH_WANT_SYS_SIGNAL
/*
* For backwards compatibility. Functionality superseded by sigaction.
*/
SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
{
struct k_sigaction new_sa, old_sa;
int ret;
new_sa.sa.sa_handler = handler;
new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
sigemptyset(&new_sa.sa.sa_mask);
ret = do_sigaction(sig, &new_sa, &old_sa);
return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
}
#endif /* __ARCH_WANT_SYS_SIGNAL */
#ifdef __ARCH_WANT_SYS_PAUSE
SYSCALL_DEFINE0(pause)
{
while (!signal_pending(current)) {
__set_current_state(TASK_INTERRUPTIBLE);
schedule();
}
return -ERESTARTNOHAND;
}
#endif
static int sigsuspend(sigset_t *set)
{
current->saved_sigmask = current->blocked;
set_current_blocked(set);
while (!signal_pending(current)) {
__set_current_state(TASK_INTERRUPTIBLE);
schedule();
}
set_restore_sigmask();
return -ERESTARTNOHAND;
}
/**
* sys_rt_sigsuspend - replace the signal mask for a value with the
* @unewset value until a signal is received
* @unewset: new signal mask value
* @sigsetsize: size of sigset_t type
*/
SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
{
sigset_t newset;
/* XXX: Don't preclude handling different sized sigset_t's. */
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (copy_from_user(&newset, unewset, sizeof(newset)))
return -EFAULT;
return sigsuspend(&newset);
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
{
sigset_t newset;
/* XXX: Don't preclude handling different sized sigset_t's. */
if (sigsetsize != sizeof(sigset_t))
return -EINVAL;
if (get_compat_sigset(&newset, unewset))
return -EFAULT;
return sigsuspend(&newset);
}
#endif
#ifdef CONFIG_OLD_SIGSUSPEND
SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
{
sigset_t blocked;
siginitset(&blocked, mask);
return sigsuspend(&blocked);
}
#endif
#ifdef CONFIG_OLD_SIGSUSPEND3
SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
{
sigset_t blocked;
siginitset(&blocked, mask);
return sigsuspend(&blocked);
}
#endif
__weak const char *arch_vma_name(struct vm_area_struct *vma)
{
return NULL;
}
static inline void siginfo_buildtime_checks(void)
{
BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
kernel/signal.c: add compile-time check for __ARCH_SI_PREAMBLE_SIZE The value of __ARCH_SI_PREAMBLE_SIZE defines the size (including padding) of the part of the struct siginfo that is before the union, and it is then used to calculate the needed padding (SI_PAD_SIZE) to make the size of struct siginfo equal to 128 (SI_MAX_SIZE) bytes. Depending on the target architecture and word width it equals to either 3 or 4 times sizeof int. Since the very beginning we had __ARCH_SI_PREAMBLE_SIZE wrong on the parisc architecture for the 64bit kernel build. It's even more frustrating, because it can easily be checked at compile time if the value was defined correctly. This patch adds such a check for the correctness of __ARCH_SI_PREAMBLE_SIZE in the hope that it will prevent existing and future architectures from running into the same problem. I refrained from replacing __ARCH_SI_PREAMBLE_SIZE by offsetof() in copy_siginfo() in include/asm-generic/siginfo.h, because a) it doesn't make any difference and b) it's used in the Documentation/kmemcheck.txt example. I ran this patch through the 0-DAY kernel test infrastructure and only the parisc architecture triggered as expected. That means that this patch should be OK for all major architectures. Signed-off-by: Helge Deller <deller@gmx.de> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-22 21:27:54 +00:00
/* Verify the offsets in the two siginfos match */
#define CHECK_OFFSET(field) \
BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
/* kill */
CHECK_OFFSET(si_pid);
CHECK_OFFSET(si_uid);
/* timer */
CHECK_OFFSET(si_tid);
CHECK_OFFSET(si_overrun);
CHECK_OFFSET(si_value);
/* rt */
CHECK_OFFSET(si_pid);
CHECK_OFFSET(si_uid);
CHECK_OFFSET(si_value);
/* sigchld */
CHECK_OFFSET(si_pid);
CHECK_OFFSET(si_uid);
CHECK_OFFSET(si_status);
CHECK_OFFSET(si_utime);
CHECK_OFFSET(si_stime);
/* sigfault */
CHECK_OFFSET(si_addr);
siginfo: Move si_trapno inside the union inside _si_fault It turns out that linux uses si_trapno very sparingly, and as such it can be considered extra information for a very narrow selection of signals, rather than information that is present with every fault reported in siginfo. As such move si_trapno inside the union inside of _si_fault. This results in no change in placement, and makes it eaiser to extend _si_fault in the future as this reduces the number of special cases. In particular with si_trapno included in the union it is no longer a concern that the union must be pointer aligned on most architectures because the union follows immediately after si_addr which is a pointer. This change results in a difference in siginfo field placement on sparc and alpha for the fields si_addr_lsb, si_lower, si_upper, si_pkey, and si_perf. These architectures do not implement the signals that would use si_addr_lsb, si_lower, si_upper, si_pkey, and si_perf. Further these architecture have not yet implemented the userspace that would use si_perf. The point of this change is in fact to correct these placement issues before sparc or alpha grow userspace that cares. This change was discussed[1] and the agreement is that this change is currently safe. [1]: https://lkml.kernel.org/r/CAK8P3a0+uKYwL1NhY6Hvtieghba2hKYGD6hcKx5n8=4Gtt+pHA@mail.gmail.com Acked-by: Marco Elver <elver@google.com> v1: https://lkml.kernel.org/r/m1tunns7yf.fsf_-_@fess.ebiederm.org v2: https://lkml.kernel.org/r/20210505141101.11519-5-ebiederm@xmission.com Link: https://lkml.kernel.org/r/20210517195748.8880-1-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-04-30 22:06:01 +00:00
CHECK_OFFSET(si_trapno);
CHECK_OFFSET(si_addr_lsb);
CHECK_OFFSET(si_lower);
CHECK_OFFSET(si_upper);
CHECK_OFFSET(si_pkey);
CHECK_OFFSET(si_perf_data);
CHECK_OFFSET(si_perf_type);
signal: Deliver SIGTRAP on perf event asynchronously if blocked With SIGTRAP on perf events, we have encountered termination of processes due to user space attempting to block delivery of SIGTRAP. Consider this case: <set up SIGTRAP on a perf event> ... sigset_t s; sigemptyset(&s); sigaddset(&s, SIGTRAP | <and others>); sigprocmask(SIG_BLOCK, &s, ...); ... <perf event triggers> When the perf event triggers, while SIGTRAP is blocked, force_sig_perf() will force the signal, but revert back to the default handler, thus terminating the task. This makes sense for error conditions, but not so much for explicitly requested monitoring. However, the expectation is still that signals generated by perf events are synchronous, which will no longer be the case if the signal is blocked and delivered later. To give user space the ability to clearly distinguish synchronous from asynchronous signals, introduce siginfo_t::si_perf_flags and TRAP_PERF_FLAG_ASYNC (opted for flags in case more binary information is required in future). The resolution to the problem is then to (a) no longer force the signal (avoiding the terminations), but (b) tell user space via si_perf_flags if the signal was synchronous or not, so that such signals can be handled differently (e.g. let user space decide to ignore or consider the data imprecise). The alternative of making the kernel ignore SIGTRAP on perf events if the signal is blocked may work for some usecases, but likely causes issues in others that then have to revert back to interception of sigprocmask() (which we want to avoid). [ A concrete example: when using breakpoint perf events to track data-flow, in a region of code where signals are blocked, data-flow can no longer be tracked accurately. When a relevant asynchronous signal is received after unblocking the signal, the data-flow tracking logic needs to know its state is imprecise. ] Fixes: 97ba62b27867 ("perf: Add support for SIGTRAP on perf events") Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Tested-by: Dmitry Vyukov <dvyukov@google.com> Link: https://lore.kernel.org/r/20220404111204.935357-1-elver@google.com
2022-04-04 11:12:04 +00:00
CHECK_OFFSET(si_perf_flags);
/* sigpoll */
CHECK_OFFSET(si_band);
CHECK_OFFSET(si_fd);
/* sigsys */
CHECK_OFFSET(si_call_addr);
CHECK_OFFSET(si_syscall);
CHECK_OFFSET(si_arch);
#undef CHECK_OFFSET
signal/usb: Replace kill_pid_info_as_cred with kill_pid_usb_asyncio The usb support for asyncio encoded one of it's values in the wrong field. It should have used si_value but instead used si_addr which is not present in the _rt union member of struct siginfo. The practical result of this is that on a 64bit big endian kernel when delivering a signal to a 32bit process the si_addr field is set to NULL, instead of the expected pointer value. This issue can not be fixed in copy_siginfo_to_user32 as the usb usage of the the _sigfault (aka si_addr) member of the siginfo union when SI_ASYNCIO is set is incompatible with the POSIX and glibc usage of the _rt member of the siginfo union. Therefore replace kill_pid_info_as_cred with kill_pid_usb_asyncio a dedicated function for this one specific case. There are no other users of kill_pid_info_as_cred so this specialization should have no impact on the amount of code in the kernel. Have kill_pid_usb_asyncio take instead of a siginfo_t which is difficult and error prone, 3 arguments, a signal number, an errno value, and an address enconded as a sigval_t. The encoding of the address as a sigval_t allows the code that reads the userspace request for a signal to handle this compat issue along with all of the other compat issues. Add BUILD_BUG_ONs in kernel/signal.c to ensure that we can now place the pointer value at the in si_pid (instead of si_addr). That is the code now verifies that si_pid and si_addr always occur at the same location. Further the code veries that for native structures a value placed in si_pid and spilling into si_uid will appear in userspace in si_addr (on a byte by byte copy of siginfo or a field by field copy of siginfo). The code also verifies that for a 64bit kernel and a 32bit userspace the 32bit pointer will fit in si_pid. I have used the usbsig.c program below written by Alan Stern and slightly tweaked by me to run on a big endian machine to verify the issue exists (on sparc64) and to confirm the patch below fixes the issue. /* usbsig.c -- test USB async signal delivery */ #define _GNU_SOURCE #include <stdio.h> #include <fcntl.h> #include <signal.h> #include <string.h> #include <sys/ioctl.h> #include <unistd.h> #include <endian.h> #include <linux/usb/ch9.h> #include <linux/usbdevice_fs.h> static struct usbdevfs_urb urb; static struct usbdevfs_disconnectsignal ds; static volatile sig_atomic_t done = 0; void urb_handler(int sig, siginfo_t *info , void *ucontext) { printf("Got signal %d, signo %d errno %d code %d addr: %p urb: %p\n", sig, info->si_signo, info->si_errno, info->si_code, info->si_addr, &urb); printf("%s\n", (info->si_addr == &urb) ? "Good" : "Bad"); } void ds_handler(int sig, siginfo_t *info , void *ucontext) { printf("Got signal %d, signo %d errno %d code %d addr: %p ds: %p\n", sig, info->si_signo, info->si_errno, info->si_code, info->si_addr, &ds); printf("%s\n", (info->si_addr == &ds) ? "Good" : "Bad"); done = 1; } int main(int argc, char **argv) { char *devfilename; int fd; int rc; struct sigaction act; struct usb_ctrlrequest *req; void *ptr; char buf[80]; if (argc != 2) { fprintf(stderr, "Usage: usbsig device-file-name\n"); return 1; } devfilename = argv[1]; fd = open(devfilename, O_RDWR); if (fd == -1) { perror("Error opening device file"); return 1; } act.sa_sigaction = urb_handler; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO; rc = sigaction(SIGUSR1, &act, NULL); if (rc == -1) { perror("Error in sigaction"); return 1; } act.sa_sigaction = ds_handler; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO; rc = sigaction(SIGUSR2, &act, NULL); if (rc == -1) { perror("Error in sigaction"); return 1; } memset(&urb, 0, sizeof(urb)); urb.type = USBDEVFS_URB_TYPE_CONTROL; urb.endpoint = USB_DIR_IN | 0; urb.buffer = buf; urb.buffer_length = sizeof(buf); urb.signr = SIGUSR1; req = (struct usb_ctrlrequest *) buf; req->bRequestType = USB_DIR_IN | USB_TYPE_STANDARD | USB_RECIP_DEVICE; req->bRequest = USB_REQ_GET_DESCRIPTOR; req->wValue = htole16(USB_DT_DEVICE << 8); req->wIndex = htole16(0); req->wLength = htole16(sizeof(buf) - sizeof(*req)); rc = ioctl(fd, USBDEVFS_SUBMITURB, &urb); if (rc == -1) { perror("Error in SUBMITURB ioctl"); return 1; } rc = ioctl(fd, USBDEVFS_REAPURB, &ptr); if (rc == -1) { perror("Error in REAPURB ioctl"); return 1; } memset(&ds, 0, sizeof(ds)); ds.signr = SIGUSR2; ds.context = &ds; rc = ioctl(fd, USBDEVFS_DISCSIGNAL, &ds); if (rc == -1) { perror("Error in DISCSIGNAL ioctl"); return 1; } printf("Waiting for usb disconnect\n"); while (!done) { sleep(1); } close(fd); return 0; } Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: linux-usb@vger.kernel.org Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Oliver Neukum <oneukum@suse.com> Fixes: v2.3.39 Cc: stable@vger.kernel.org Acked-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2019-02-08 01:44:12 +00:00
/* usb asyncio */
BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
offsetof(struct siginfo, si_addr));
if (sizeof(int) == sizeof(void __user *)) {
BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
sizeof(void __user *));
} else {
BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
sizeof_field(struct siginfo, si_uid)) !=
sizeof(void __user *));
BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
offsetof(struct siginfo, si_uid));
}
#ifdef CONFIG_COMPAT
BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
offsetof(struct compat_siginfo, si_addr));
BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
sizeof(compat_uptr_t));
BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
sizeof_field(struct siginfo, si_pid));
#endif
}
#if defined(CONFIG_SYSCTL)
static struct ctl_table signal_debug_table[] = {
#ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
{
.procname = "exception-trace",
.data = &show_unhandled_signals,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec
},
#endif
{ }
};
static int __init init_signal_sysctls(void)
{
register_sysctl_init("debug", signal_debug_table);
return 0;
}
early_initcall(init_signal_sysctls);
#endif /* CONFIG_SYSCTL */
void __init signals_init(void)
{
siginfo_buildtime_checks();
memcg: enable accounting for signals When a user send a signal to any another processes it forces the kernel to allocate memory for 'struct sigqueue' objects. The number of signals is limited by RLIMIT_SIGPENDING resource limit, but even the default settings allow each user to consume up to several megabytes of memory. It makes sense to account for these allocations to restrict the host's memory consumption from inside the memcg-limited container. Link: https://lkml.kernel.org/r/e34e958c-e785-712e-a62a-2c7b66c646c7@virtuozzo.com Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrei Vagin <avagin@gmail.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Christian Brauner <christian.brauner@ubuntu.com> Cc: Dmitry Safonov <0x7f454c46@gmail.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: Jeff Layton <jlayton@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jiri Slaby <jirislaby@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Roman Gushchin <guro@fb.com> Cc: Serge Hallyn <serge@hallyn.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Yutian Yang <nglaive@gmail.com> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-02 21:55:35 +00:00
sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
}
#ifdef CONFIG_KGDB_KDB
#include <linux/kdb.h>
/*
* kdb_send_sig - Allows kdb to send signals without exposing
* signal internals. This function checks if the required locks are
* available before calling the main signal code, to avoid kdb
* deadlocks.
*/
void kdb_send_sig(struct task_struct *t, int sig)
{
static struct task_struct *kdb_prev_t;
int new_t, ret;
if (!spin_trylock(&t->sighand->siglock)) {
kdb_printf("Can't do kill command now.\n"
"The sigmask lock is held somewhere else in "
"kernel, try again later\n");
return;
}
new_t = kdb_prev_t != t;
kdb_prev_t = t;
if (!task_is_running(t) && new_t) {
spin_unlock(&t->sighand->siglock);
kdb_printf("Process is not RUNNING, sending a signal from "
"kdb risks deadlock\n"
"on the run queue locks. "
"The signal has _not_ been sent.\n"
"Reissue the kill command if you want to risk "
"the deadlock.\n");
return;
}
ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
spin_unlock(&t->sighand->siglock);
if (ret)
kdb_printf("Fail to deliver Signal %d to process %d.\n",
sig, t->pid);
else
kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
}
#endif /* CONFIG_KGDB_KDB */