2008-01-11 14:57:09 +00:00
|
|
|
/* SCTP kernel implementation
|
2005-04-16 22:20:36 +00:00
|
|
|
* (C) Copyright IBM Corp. 2001, 2004
|
|
|
|
* Copyright (c) 1999-2000 Cisco, Inc.
|
|
|
|
* Copyright (c) 1999-2001 Motorola, Inc.
|
|
|
|
* Copyright (c) 2001-2002 Intel Corp.
|
|
|
|
* Copyright (c) 2002 Nokia Corp.
|
|
|
|
*
|
2008-01-11 14:57:09 +00:00
|
|
|
* This is part of the SCTP Linux Kernel Implementation.
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
|
|
|
* These are the state functions for the state machine.
|
|
|
|
*
|
2008-01-11 14:57:09 +00:00
|
|
|
* This SCTP implementation is free software;
|
2005-04-16 22:20:36 +00:00
|
|
|
* you can redistribute it and/or modify it under the terms of
|
|
|
|
* the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
|
|
* any later version.
|
|
|
|
*
|
2008-01-11 14:57:09 +00:00
|
|
|
* This SCTP implementation is distributed in the hope that it
|
2005-04-16 22:20:36 +00:00
|
|
|
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
|
|
|
|
* ************************
|
|
|
|
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
* See the GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
2013-12-06 14:28:48 +00:00
|
|
|
* along with GNU CC; see the file COPYING. If not, see
|
|
|
|
* <http://www.gnu.org/licenses/>.
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
|
|
|
* Please send any bug reports or fixes you make to the
|
|
|
|
* email address(es):
|
2013-07-23 12:51:47 +00:00
|
|
|
* lksctp developers <linux-sctp@vger.kernel.org>
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
|
|
|
* Written or modified by:
|
|
|
|
* La Monte H.P. Yarroll <piggy@acm.org>
|
|
|
|
* Karl Knutson <karl@athena.chicago.il.us>
|
|
|
|
* Mathew Kotowsky <kotowsky@sctp.org>
|
|
|
|
* Sridhar Samudrala <samudrala@us.ibm.com>
|
|
|
|
* Jon Grimm <jgrimm@us.ibm.com>
|
|
|
|
* Hui Huang <hui.huang@nokia.com>
|
|
|
|
* Dajiang Zhang <dajiang.zhang@nokia.com>
|
|
|
|
* Daisy Chang <daisyc@us.ibm.com>
|
|
|
|
* Ardelle Fan <ardelle.fan@intel.com>
|
|
|
|
* Ryan Layer <rmlayer@us.ibm.com>
|
|
|
|
* Kevin Gao <kevin.gao@intel.com>
|
|
|
|
*/
|
|
|
|
|
2010-08-24 13:21:08 +00:00
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/ip.h>
|
|
|
|
#include <linux/ipv6.h>
|
|
|
|
#include <linux/net.h>
|
|
|
|
#include <linux/inet.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
|
|
|
#include <linux/slab.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
#include <net/sock.h>
|
|
|
|
#include <net/inet_ecn.h>
|
|
|
|
#include <linux/skbuff.h>
|
|
|
|
#include <net/sctp/sctp.h>
|
|
|
|
#include <net/sctp/sm.h>
|
|
|
|
#include <net/sctp/structs.h>
|
|
|
|
|
2012-08-07 07:28:09 +00:00
|
|
|
static struct sctp_packet *sctp_abort_pkt_new(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
struct sctp_chunk *chunk,
|
|
|
|
const void *payload,
|
|
|
|
size_t paylen);
|
|
|
|
static int sctp_eat_data(const struct sctp_association *asoc,
|
|
|
|
struct sctp_chunk *chunk,
|
|
|
|
sctp_cmd_seq_t *commands);
|
2012-08-06 08:43:06 +00:00
|
|
|
static struct sctp_packet *sctp_ootb_pkt_new(struct net *net,
|
|
|
|
const struct sctp_association *asoc,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_chunk *chunk);
|
2012-08-07 07:28:09 +00:00
|
|
|
static void sctp_send_stale_cookie_err(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const struct sctp_chunk *chunk,
|
|
|
|
sctp_cmd_seq_t *commands,
|
|
|
|
struct sctp_chunk *err_chunk);
|
2012-08-07 07:28:09 +00:00
|
|
|
static sctp_disposition_t sctp_sf_do_5_2_6_stale(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands);
|
2012-08-07 07:28:09 +00:00
|
|
|
static sctp_disposition_t sctp_sf_shut_8_4_5(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands);
|
2012-08-07 07:28:09 +00:00
|
|
|
static sctp_disposition_t sctp_sf_tabort_8_4_8(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2007-09-07 20:30:54 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
static struct sctp_sackhdr *sctp_sm_pull_sack(struct sctp_chunk *chunk);
|
|
|
|
|
2012-08-07 07:28:09 +00:00
|
|
|
static sctp_disposition_t sctp_stop_t1_and_abort(struct net *net,
|
|
|
|
sctp_cmd_seq_t *commands,
|
2006-11-21 01:00:25 +00:00
|
|
|
__be16 error, int sk_err,
|
2005-06-24 05:05:33 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
struct sctp_transport *transport);
|
|
|
|
|
2007-08-02 08:57:44 +00:00
|
|
|
static sctp_disposition_t sctp_sf_abort_violation(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2007-09-07 20:30:54 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
2007-08-02 08:57:44 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands,
|
|
|
|
const __u8 *payload,
|
|
|
|
const size_t paylen);
|
|
|
|
|
2005-06-24 05:05:33 +00:00
|
|
|
static sctp_disposition_t sctp_sf_violation_chunklen(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2005-06-24 05:05:33 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-09-19 09:19:52 +00:00
|
|
|
static sctp_disposition_t sctp_sf_violation_paramlen(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2007-09-19 09:19:52 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
2008-09-30 12:32:24 +00:00
|
|
|
void *arg, void *ext,
|
2007-09-19 09:19:52 +00:00
|
|
|
sctp_cmd_seq_t *commands);
|
|
|
|
|
2007-08-02 08:57:44 +00:00
|
|
|
static sctp_disposition_t sctp_sf_violation_ctsn(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2007-08-02 08:57:44 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands);
|
|
|
|
|
2007-09-07 20:30:54 +00:00
|
|
|
static sctp_disposition_t sctp_sf_violation_chunk(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2007-09-07 20:30:54 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands);
|
|
|
|
|
2012-08-07 07:28:09 +00:00
|
|
|
static sctp_ierror_t sctp_sf_authenticate(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2007-10-04 00:51:34 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
struct sctp_chunk *chunk);
|
|
|
|
|
2012-08-07 07:28:09 +00:00
|
|
|
static sctp_disposition_t __sctp_sf_do_9_1_abort(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2007-12-20 22:12:59 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Small helper function that checks if the chunk length
|
|
|
|
* is of the appropriate length. The 'required_length' argument
|
|
|
|
* is set to be the size of a specific chunk we are testing.
|
2016-12-28 11:26:35 +00:00
|
|
|
* Return Values: true = Valid length
|
|
|
|
* false = Invalid length
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
|
|
|
*/
|
2016-12-28 11:26:35 +00:00
|
|
|
static inline bool
|
|
|
|
sctp_chunk_length_valid(struct sctp_chunk *chunk, __u16 required_length)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
__u16 chunk_length = ntohs(chunk->chunk_hdr->length);
|
|
|
|
|
net: sctp: fix remote memory pressure from excessive queueing
This scenario is not limited to ASCONF, just taken as one
example triggering the issue. When receiving ASCONF probes
in the form of ...
-------------- INIT[ASCONF; ASCONF_ACK] ------------->
<----------- INIT-ACK[ASCONF; ASCONF_ACK] ------------
-------------------- COOKIE-ECHO -------------------->
<-------------------- COOKIE-ACK ---------------------
---- ASCONF_a; [ASCONF_b; ...; ASCONF_n;] JUNK ------>
[...]
---- ASCONF_m; [ASCONF_o; ...; ASCONF_z;] JUNK ------>
... where ASCONF_a, ASCONF_b, ..., ASCONF_z are good-formed
ASCONFs and have increasing serial numbers, we process such
ASCONF chunk(s) marked with !end_of_packet and !singleton,
since we have not yet reached the SCTP packet end. SCTP does
only do verification on a chunk by chunk basis, as an SCTP
packet is nothing more than just a container of a stream of
chunks which it eats up one by one.
We could run into the case that we receive a packet with a
malformed tail, above marked as trailing JUNK. All previous
chunks are here goodformed, so the stack will eat up all
previous chunks up to this point. In case JUNK does not fit
into a chunk header and there are no more other chunks in
the input queue, or in case JUNK contains a garbage chunk
header, but the encoded chunk length would exceed the skb
tail, or we came here from an entirely different scenario
and the chunk has pdiscard=1 mark (without having had a flush
point), it will happen, that we will excessively queue up
the association's output queue (a correct final chunk may
then turn it into a response flood when flushing the
queue ;)): I ran a simple script with incremental ASCONF
serial numbers and could see the server side consuming
excessive amount of RAM [before/after: up to 2GB and more].
The issue at heart is that the chunk train basically ends
with !end_of_packet and !singleton markers and since commit
2e3216cd54b1 ("sctp: Follow security requirement of responding
with 1 packet") therefore preventing an output queue flush
point in sctp_do_sm() -> sctp_cmd_interpreter() on the input
chunk (chunk = event_arg) even though local_cork is set,
but its precedence has changed since then. In the normal
case, the last chunk with end_of_packet=1 would trigger the
queue flush to accommodate possible outgoing bundling.
In the input queue, sctp_inq_pop() seems to do the right thing
in terms of discarding invalid chunks. So, above JUNK will
not enter the state machine and instead be released and exit
the sctp_assoc_bh_rcv() chunk processing loop. It's simply
the flush point being missing at loop exit. Adding a try-flush
approach on the output queue might not work as the underlying
infrastructure might be long gone at this point due to the
side-effect interpreter run.
One possibility, albeit a bit of a kludge, would be to defer
invalid chunk freeing into the state machine in order to
possibly trigger packet discards and thus indirectly a queue
flush on error. It would surely be better to discard chunks
as in the current, perhaps better controlled environment, but
going back and forth, it's simply architecturally not possible.
I tried various trailing JUNK attack cases and it seems to
look good now.
Joint work with Vlad Yasevich.
Fixes: 2e3216cd54b1 ("sctp: Follow security requirement of responding with 1 packet")
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-09 20:55:33 +00:00
|
|
|
/* Previously already marked? */
|
|
|
|
if (unlikely(chunk->pdiscard))
|
2016-12-28 11:26:35 +00:00
|
|
|
return false;
|
2005-04-16 22:20:36 +00:00
|
|
|
if (unlikely(chunk_length < required_length))
|
2016-12-28 11:26:35 +00:00
|
|
|
return false;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-12-28 11:26:35 +00:00
|
|
|
return true;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**********************************************************
|
|
|
|
* These are the state functions for handling chunk events.
|
|
|
|
**********************************************************/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process the final SHUTDOWN COMPLETE.
|
|
|
|
*
|
|
|
|
* Section: 4 (C) (diagram), 9.2
|
|
|
|
* Upon reception of the SHUTDOWN COMPLETE chunk the endpoint will verify
|
|
|
|
* that it is in SHUTDOWN-ACK-SENT state, if it is not the chunk should be
|
|
|
|
* discarded. If the endpoint is in the SHUTDOWN-ACK-SENT state the endpoint
|
|
|
|
* should stop the T2-shutdown timer and remove all knowledge of the
|
|
|
|
* association (and thus the association enters the CLOSED state).
|
|
|
|
*
|
2005-04-28 18:58:43 +00:00
|
|
|
* Verification Tag: 8.5.1(C), sctpimpguide 2.41.
|
2005-04-16 22:20:36 +00:00
|
|
|
* C) Rules for packet carrying SHUTDOWN COMPLETE:
|
|
|
|
* ...
|
2005-04-28 18:58:43 +00:00
|
|
|
* - The receiver of a SHUTDOWN COMPLETE shall accept the packet
|
|
|
|
* if the Verification Tag field of the packet matches its own tag and
|
|
|
|
* the T bit is not set
|
|
|
|
* OR
|
|
|
|
* it is set to its peer's tag and the T bit is set in the Chunk
|
|
|
|
* Flags.
|
|
|
|
* Otherwise, the receiver MUST silently discard the packet
|
|
|
|
* and take no further action. An endpoint MUST ignore the
|
|
|
|
* SHUTDOWN COMPLETE if it is not in the SHUTDOWN-ACK-SENT state.
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_4_C(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
struct sctp_ulpevent *ev;
|
|
|
|
|
2007-09-07 20:30:54 +00:00
|
|
|
if (!sctp_vtag_verify_either(chunk, asoc))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2007-09-07 20:30:54 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* RFC 2960 6.10 Bundling
|
|
|
|
*
|
|
|
|
* An endpoint MUST NOT bundle INIT, INIT ACK or
|
|
|
|
* SHUTDOWN COMPLETE with any other chunks.
|
|
|
|
*/
|
|
|
|
if (!chunk->singleton)
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunk(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-09-07 20:30:54 +00:00
|
|
|
/* Make sure that the SHUTDOWN_COMPLETE chunk has a valid length. */
|
2017-06-30 03:52:13 +00:00
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_chunkhdr)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2007-09-07 20:30:54 +00:00
|
|
|
commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* RFC 2960 10.2 SCTP-to-ULP
|
|
|
|
*
|
|
|
|
* H) SHUTDOWN COMPLETE notification
|
|
|
|
*
|
|
|
|
* When SCTP completes the shutdown procedures (section 9.2) this
|
|
|
|
* notification is passed to the upper layer.
|
|
|
|
*/
|
|
|
|
ev = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_SHUTDOWN_COMP,
|
2007-03-23 18:34:08 +00:00
|
|
|
0, 0, 0, NULL, GFP_ATOMIC);
|
2006-08-22 07:19:51 +00:00
|
|
|
if (ev)
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
|
2007-02-09 14:25:18 +00:00
|
|
|
SCTP_ULPEVENT(ev));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Upon reception of the SHUTDOWN COMPLETE chunk the endpoint
|
|
|
|
* will verify that it is in SHUTDOWN-ACK-SENT state, if it is
|
|
|
|
* not the chunk should be discarded. If the endpoint is in
|
|
|
|
* the SHUTDOWN-ACK-SENT state the endpoint should stop the
|
|
|
|
* T2-shutdown timer and remove all knowledge of the
|
|
|
|
* association (and thus the association enters the CLOSED
|
|
|
|
* state).
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN));
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD));
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
|
|
|
|
SCTP_STATE(SCTP_STATE_CLOSED));
|
|
|
|
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_SHUTDOWNS);
|
|
|
|
SCTP_DEC_STATS(net, SCTP_MIB_CURRESTAB);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_DELETE_TCB;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Respond to a normal INIT chunk.
|
|
|
|
* We are the side that is being asked for an association.
|
|
|
|
*
|
|
|
|
* Section: 5.1 Normal Establishment of an Association, B
|
|
|
|
* B) "Z" shall respond immediately with an INIT ACK chunk. The
|
|
|
|
* destination IP address of the INIT ACK MUST be set to the source
|
|
|
|
* IP address of the INIT to which this INIT ACK is responding. In
|
|
|
|
* the response, besides filling in other parameters, "Z" must set the
|
|
|
|
* Verification Tag field to Tag_A, and also provide its own
|
|
|
|
* Verification Tag (Tag_Z) in the Initiate Tag field.
|
|
|
|
*
|
2007-02-09 14:25:18 +00:00
|
|
|
* Verification Tag: Must be 0.
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_5_1B_init(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
2017-07-23 01:34:28 +00:00
|
|
|
struct sctp_chunk *chunk = arg, *repl, *err_chunk;
|
|
|
|
struct sctp_unrecognized_param *unk_param;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct sctp_association *new_asoc;
|
|
|
|
struct sctp_packet *packet;
|
|
|
|
int len;
|
|
|
|
|
|
|
|
/* 6.10 Bundling
|
|
|
|
* An endpoint MUST NOT bundle INIT, INIT ACK or
|
|
|
|
* SHUTDOWN COMPLETE with any other chunks.
|
2007-02-09 14:25:18 +00:00
|
|
|
*
|
2005-04-16 22:20:36 +00:00
|
|
|
* IG Section 2.11.2
|
|
|
|
* Furthermore, we require that the receiver of an INIT chunk MUST
|
|
|
|
* enforce these rules by silently discarding an arriving packet
|
|
|
|
* with an INIT chunk that is bundled with other chunks.
|
|
|
|
*/
|
|
|
|
if (!chunk->singleton)
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* If the packet is an OOTB packet which is temporarily on the
|
|
|
|
* control endpoint, respond with an ABORT.
|
|
|
|
*/
|
2012-08-06 08:43:06 +00:00
|
|
|
if (ep == sctp_sk(net->sctp.ctl_sock)->ep) {
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_tabort_8_4_8(net, ep, asoc, type, arg, commands);
|
2008-09-08 04:13:55 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* 3.1 A packet containing an INIT chunk MUST have a zero Verification
|
2007-02-09 14:25:18 +00:00
|
|
|
* Tag.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
if (chunk->sctp_hdr->vtag != 0)
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_tabort_8_4_8(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Make sure that the INIT chunk has a valid length.
|
|
|
|
* Normally, this would cause an ABORT with a Protocol Violation
|
|
|
|
* error, but since we don't have an association, we'll
|
|
|
|
* just discard the packet.
|
|
|
|
*/
|
2017-06-30 03:52:22 +00:00
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_init_chunk)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2009-07-30 22:08:28 +00:00
|
|
|
/* If the INIT is coming toward a closing socket, we'll send back
|
|
|
|
* and ABORT. Essentially, this catches the race of INIT being
|
|
|
|
* backloged to the socket at the same time as the user isses close().
|
|
|
|
* Since the socket and all its associations are going away, we
|
|
|
|
* can treat this OOTB
|
|
|
|
*/
|
|
|
|
if (sctp_sstate(ep->base.sk, CLOSING))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_tabort_8_4_8(net, ep, asoc, type, arg, commands);
|
2009-07-30 22:08:28 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Verify the INIT chunk before processing it. */
|
|
|
|
err_chunk = NULL;
|
net: sctp: cache auth_enable per endpoint
Currently, it is possible to create an SCTP socket, then switch
auth_enable via sysctl setting to 1 and crash the system on connect:
Oops[#1]:
CPU: 0 PID: 0 Comm: swapper Not tainted 3.14.1-mipsgit-20140415 #1
task: ffffffff8056ce80 ti: ffffffff8055c000 task.ti: ffffffff8055c000
[...]
Call Trace:
[<ffffffff8043c4e8>] sctp_auth_asoc_set_default_hmac+0x68/0x80
[<ffffffff8042b300>] sctp_process_init+0x5e0/0x8a4
[<ffffffff8042188c>] sctp_sf_do_5_1B_init+0x234/0x34c
[<ffffffff804228c8>] sctp_do_sm+0xb4/0x1e8
[<ffffffff80425a08>] sctp_endpoint_bh_rcv+0x1c4/0x214
[<ffffffff8043af68>] sctp_rcv+0x588/0x630
[<ffffffff8043e8e8>] sctp6_rcv+0x10/0x24
[<ffffffff803acb50>] ip6_input+0x2c0/0x440
[<ffffffff8030fc00>] __netif_receive_skb_core+0x4a8/0x564
[<ffffffff80310650>] process_backlog+0xb4/0x18c
[<ffffffff80313cbc>] net_rx_action+0x12c/0x210
[<ffffffff80034254>] __do_softirq+0x17c/0x2ac
[<ffffffff800345e0>] irq_exit+0x54/0xb0
[<ffffffff800075a4>] ret_from_irq+0x0/0x4
[<ffffffff800090ec>] rm7k_wait_irqoff+0x24/0x48
[<ffffffff8005e388>] cpu_startup_entry+0xc0/0x148
[<ffffffff805a88b0>] start_kernel+0x37c/0x398
Code: dd0900b8 000330f8 0126302d <dcc60000> 50c0fff1 0047182a a48306a0
03e00008 00000000
---[ end trace b530b0551467f2fd ]---
Kernel panic - not syncing: Fatal exception in interrupt
What happens while auth_enable=0 in that case is, that
ep->auth_hmacs is initialized to NULL in sctp_auth_init_hmacs()
when endpoint is being created.
After that point, if an admin switches over to auth_enable=1,
the machine can crash due to NULL pointer dereference during
reception of an INIT chunk. When we enter sctp_process_init()
via sctp_sf_do_5_1B_init() in order to respond to an INIT chunk,
the INIT verification succeeds and while we walk and process
all INIT params via sctp_process_param() we find that
net->sctp.auth_enable is set, therefore do not fall through,
but invoke sctp_auth_asoc_set_default_hmac() instead, and thus,
dereference what we have set to NULL during endpoint
initialization phase.
The fix is to make auth_enable immutable by caching its value
during endpoint initialization, so that its original value is
being carried along until destruction. The bug seems to originate
from the very first days.
Fix in joint work with Daniel Borkmann.
Reported-by: Joshua Kinard <kumba@gentoo.org>
Signed-off-by: Vlad Yasevich <vyasevic@redhat.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Tested-by: Joshua Kinard <kumba@gentoo.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-17 15:26:50 +00:00
|
|
|
if (!sctp_verify_init(net, ep, asoc, chunk->chunk_hdr->type,
|
2017-06-30 03:52:22 +00:00
|
|
|
(struct sctp_init_chunk *)chunk->chunk_hdr, chunk,
|
2005-04-16 22:20:36 +00:00
|
|
|
&err_chunk)) {
|
|
|
|
/* This chunk contains fatal error. It is to be discarded.
|
|
|
|
* Send an ABORT, with causes if there is any.
|
|
|
|
*/
|
|
|
|
if (err_chunk) {
|
2012-08-07 07:28:09 +00:00
|
|
|
packet = sctp_abort_pkt_new(net, ep, asoc, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
(__u8 *)(err_chunk->chunk_hdr) +
|
2017-06-30 03:52:13 +00:00
|
|
|
sizeof(struct sctp_chunkhdr),
|
2005-04-16 22:20:36 +00:00
|
|
|
ntohs(err_chunk->chunk_hdr->length) -
|
2017-06-30 03:52:13 +00:00
|
|
|
sizeof(struct sctp_chunkhdr));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
sctp_chunk_free(err_chunk);
|
|
|
|
|
|
|
|
if (packet) {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT,
|
|
|
|
SCTP_PACKET(packet));
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
} else {
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
}
|
|
|
|
} else {
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_tabort_8_4_8(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2007-02-09 14:25:18 +00:00
|
|
|
/* Grab the INIT header. */
|
2017-06-30 03:52:21 +00:00
|
|
|
chunk->subh.init_hdr = (struct sctp_inithdr *)chunk->skb->data;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Tag the variable length parameters. */
|
2017-06-30 03:52:21 +00:00
|
|
|
chunk->param_hdr.v = skb_pull(chunk->skb, sizeof(struct sctp_inithdr));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
new_asoc = sctp_make_temp_asoc(ep, chunk, GFP_ATOMIC);
|
|
|
|
if (!new_asoc)
|
|
|
|
goto nomem;
|
|
|
|
|
2009-11-10 08:57:34 +00:00
|
|
|
if (sctp_assoc_set_bind_addr_from_ep(new_asoc,
|
|
|
|
sctp_scope(sctp_source(chunk)),
|
|
|
|
GFP_ATOMIC) < 0)
|
|
|
|
goto nomem_init;
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* The call, sctp_process_init(), can fail on memory allocation. */
|
2011-04-19 21:30:51 +00:00
|
|
|
if (!sctp_process_init(new_asoc, chunk, sctp_source(chunk),
|
2017-06-30 03:52:22 +00:00
|
|
|
(struct sctp_init_chunk *)chunk->chunk_hdr,
|
2005-04-16 22:20:36 +00:00
|
|
|
GFP_ATOMIC))
|
|
|
|
goto nomem_init;
|
|
|
|
|
|
|
|
/* B) "Z" shall respond immediately with an INIT ACK chunk. */
|
|
|
|
|
|
|
|
/* If there are errors need to be reported for unknown parameters,
|
|
|
|
* make sure to reserve enough room in the INIT ACK for them.
|
|
|
|
*/
|
|
|
|
len = 0;
|
|
|
|
if (err_chunk)
|
|
|
|
len = ntohs(err_chunk->chunk_hdr->length) -
|
2017-06-30 03:52:13 +00:00
|
|
|
sizeof(struct sctp_chunkhdr);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
repl = sctp_make_init_ack(new_asoc, chunk, GFP_ATOMIC, len);
|
|
|
|
if (!repl)
|
2006-08-22 07:19:51 +00:00
|
|
|
goto nomem_init;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* If there are errors need to be reported for unknown parameters,
|
|
|
|
* include them in the outgoing INIT ACK as "Unrecognized parameter"
|
|
|
|
* parameter.
|
|
|
|
*/
|
|
|
|
if (err_chunk) {
|
|
|
|
/* Get the "Unrecognized parameter" parameter(s) out of the
|
|
|
|
* ERROR chunk generated by sctp_verify_init(). Since the
|
|
|
|
* error cause code for "unknown parameter" and the
|
|
|
|
* "Unrecognized parameter" type is the same, we can
|
|
|
|
* construct the parameters in INIT ACK by copying the
|
|
|
|
* ERROR causes over.
|
|
|
|
*/
|
2017-07-23 01:34:28 +00:00
|
|
|
unk_param = (struct sctp_unrecognized_param *)
|
2005-04-16 22:20:36 +00:00
|
|
|
((__u8 *)(err_chunk->chunk_hdr) +
|
2017-06-30 03:52:13 +00:00
|
|
|
sizeof(struct sctp_chunkhdr));
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Replace the cause code with the "Unrecognized parameter"
|
|
|
|
* parameter type.
|
|
|
|
*/
|
|
|
|
sctp_addto_chunk(repl, len, unk_param);
|
|
|
|
sctp_chunk_free(err_chunk);
|
|
|
|
}
|
|
|
|
|
2006-08-22 07:19:51 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_ASOC, SCTP_ASOC(new_asoc));
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Note: After sending out INIT ACK with the State Cookie parameter,
|
|
|
|
* "Z" MUST NOT allocate any resources, nor keep any states for the
|
|
|
|
* new association. Otherwise, "Z" will be vulnerable to resource
|
|
|
|
* attacks.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_DELETE_TCB;
|
|
|
|
|
|
|
|
nomem_init:
|
|
|
|
sctp_association_free(new_asoc);
|
|
|
|
nomem:
|
2006-08-22 07:19:51 +00:00
|
|
|
if (err_chunk)
|
|
|
|
sctp_chunk_free(err_chunk);
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Respond to a normal INIT ACK chunk.
|
|
|
|
* We are the side that is initiating the association.
|
|
|
|
*
|
|
|
|
* Section: 5.1 Normal Establishment of an Association, C
|
|
|
|
* C) Upon reception of the INIT ACK from "Z", "A" shall stop the T1-init
|
|
|
|
* timer and leave COOKIE-WAIT state. "A" shall then send the State
|
|
|
|
* Cookie received in the INIT ACK chunk in a COOKIE ECHO chunk, start
|
|
|
|
* the T1-cookie timer, and enter the COOKIE-ECHOED state.
|
|
|
|
*
|
|
|
|
* Note: The COOKIE ECHO chunk can be bundled with any pending outbound
|
|
|
|
* DATA chunks, but it MUST be the first chunk in the packet and
|
|
|
|
* until the COOKIE ACK is returned the sender MUST NOT send any
|
|
|
|
* other packets to the peer.
|
|
|
|
*
|
|
|
|
* Verification Tag: 3.3.3
|
|
|
|
* If the value of the Initiate Tag in a received INIT ACK chunk is
|
|
|
|
* found to be 0, the receiver MUST treat it as an error and close the
|
|
|
|
* association by transmitting an ABORT.
|
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_5_1C_ack(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
2017-06-30 03:52:22 +00:00
|
|
|
struct sctp_init_chunk *initchunk;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct sctp_chunk *err_chunk;
|
|
|
|
struct sctp_packet *packet;
|
|
|
|
|
|
|
|
if (!sctp_vtag_verify(chunk, asoc))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* 6.10 Bundling
|
|
|
|
* An endpoint MUST NOT bundle INIT, INIT ACK or
|
|
|
|
* SHUTDOWN COMPLETE with any other chunks.
|
|
|
|
*/
|
|
|
|
if (!chunk->singleton)
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunk(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-09-07 20:30:54 +00:00
|
|
|
/* Make sure that the INIT-ACK chunk has a valid length */
|
2017-07-23 01:34:26 +00:00
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_initack_chunk)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2007-09-07 20:30:54 +00:00
|
|
|
commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Grab the INIT header. */
|
2017-06-30 03:52:21 +00:00
|
|
|
chunk->subh.init_hdr = (struct sctp_inithdr *)chunk->skb->data;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Verify the INIT chunk before processing it. */
|
|
|
|
err_chunk = NULL;
|
net: sctp: cache auth_enable per endpoint
Currently, it is possible to create an SCTP socket, then switch
auth_enable via sysctl setting to 1 and crash the system on connect:
Oops[#1]:
CPU: 0 PID: 0 Comm: swapper Not tainted 3.14.1-mipsgit-20140415 #1
task: ffffffff8056ce80 ti: ffffffff8055c000 task.ti: ffffffff8055c000
[...]
Call Trace:
[<ffffffff8043c4e8>] sctp_auth_asoc_set_default_hmac+0x68/0x80
[<ffffffff8042b300>] sctp_process_init+0x5e0/0x8a4
[<ffffffff8042188c>] sctp_sf_do_5_1B_init+0x234/0x34c
[<ffffffff804228c8>] sctp_do_sm+0xb4/0x1e8
[<ffffffff80425a08>] sctp_endpoint_bh_rcv+0x1c4/0x214
[<ffffffff8043af68>] sctp_rcv+0x588/0x630
[<ffffffff8043e8e8>] sctp6_rcv+0x10/0x24
[<ffffffff803acb50>] ip6_input+0x2c0/0x440
[<ffffffff8030fc00>] __netif_receive_skb_core+0x4a8/0x564
[<ffffffff80310650>] process_backlog+0xb4/0x18c
[<ffffffff80313cbc>] net_rx_action+0x12c/0x210
[<ffffffff80034254>] __do_softirq+0x17c/0x2ac
[<ffffffff800345e0>] irq_exit+0x54/0xb0
[<ffffffff800075a4>] ret_from_irq+0x0/0x4
[<ffffffff800090ec>] rm7k_wait_irqoff+0x24/0x48
[<ffffffff8005e388>] cpu_startup_entry+0xc0/0x148
[<ffffffff805a88b0>] start_kernel+0x37c/0x398
Code: dd0900b8 000330f8 0126302d <dcc60000> 50c0fff1 0047182a a48306a0
03e00008 00000000
---[ end trace b530b0551467f2fd ]---
Kernel panic - not syncing: Fatal exception in interrupt
What happens while auth_enable=0 in that case is, that
ep->auth_hmacs is initialized to NULL in sctp_auth_init_hmacs()
when endpoint is being created.
After that point, if an admin switches over to auth_enable=1,
the machine can crash due to NULL pointer dereference during
reception of an INIT chunk. When we enter sctp_process_init()
via sctp_sf_do_5_1B_init() in order to respond to an INIT chunk,
the INIT verification succeeds and while we walk and process
all INIT params via sctp_process_param() we find that
net->sctp.auth_enable is set, therefore do not fall through,
but invoke sctp_auth_asoc_set_default_hmac() instead, and thus,
dereference what we have set to NULL during endpoint
initialization phase.
The fix is to make auth_enable immutable by caching its value
during endpoint initialization, so that its original value is
being carried along until destruction. The bug seems to originate
from the very first days.
Fix in joint work with Daniel Borkmann.
Reported-by: Joshua Kinard <kumba@gentoo.org>
Signed-off-by: Vlad Yasevich <vyasevic@redhat.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Tested-by: Joshua Kinard <kumba@gentoo.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-17 15:26:50 +00:00
|
|
|
if (!sctp_verify_init(net, ep, asoc, chunk->chunk_hdr->type,
|
2017-06-30 03:52:22 +00:00
|
|
|
(struct sctp_init_chunk *)chunk->chunk_hdr, chunk,
|
2005-04-16 22:20:36 +00:00
|
|
|
&err_chunk)) {
|
|
|
|
|
2008-01-20 14:10:46 +00:00
|
|
|
sctp_error_t error = SCTP_ERROR_NO_RESOURCE;
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* This chunk contains fatal error. It is to be discarded.
|
2007-12-20 22:13:31 +00:00
|
|
|
* Send an ABORT, with causes. If there are no causes,
|
|
|
|
* then there wasn't enough memory. Just terminate
|
|
|
|
* the association.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
if (err_chunk) {
|
2012-08-07 07:28:09 +00:00
|
|
|
packet = sctp_abort_pkt_new(net, ep, asoc, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
(__u8 *)(err_chunk->chunk_hdr) +
|
2017-06-30 03:52:13 +00:00
|
|
|
sizeof(struct sctp_chunkhdr),
|
2005-04-16 22:20:36 +00:00
|
|
|
ntohs(err_chunk->chunk_hdr->length) -
|
2017-06-30 03:52:13 +00:00
|
|
|
sizeof(struct sctp_chunkhdr));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
sctp_chunk_free(err_chunk);
|
|
|
|
|
|
|
|
if (packet) {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT,
|
|
|
|
SCTP_PACKET(packet));
|
2012-08-07 07:28:09 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
|
2006-05-19 17:58:12 +00:00
|
|
|
error = SCTP_ERROR_INV_PARAM;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
}
|
2007-10-04 00:51:34 +00:00
|
|
|
|
|
|
|
/* SCTP-AUTH, Section 6.3:
|
|
|
|
* It should be noted that if the receiver wants to tear
|
|
|
|
* down an association in an authenticated way only, the
|
|
|
|
* handling of malformed packets should not result in
|
|
|
|
* tearing down the association.
|
|
|
|
*
|
|
|
|
* This means that if we only want to abort associations
|
|
|
|
* in an authenticated way (i.e AUTH+ABORT), then we
|
2011-03-31 01:57:33 +00:00
|
|
|
* can't destroy this association just because the packet
|
2007-10-04 00:51:34 +00:00
|
|
|
* was malformed.
|
|
|
|
*/
|
|
|
|
if (sctp_auth_recv_cid(SCTP_CID_ABORT, asoc))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2007-10-04 00:51:34 +00:00
|
|
|
|
2012-08-07 07:28:09 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_ABORTEDS);
|
|
|
|
return sctp_stop_t1_and_abort(net, commands, error, ECONNREFUSED,
|
2006-05-19 17:58:12 +00:00
|
|
|
asoc, chunk->transport);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Tag the variable length parameters. Note that we never
|
|
|
|
* convert the parameters in an INIT chunk.
|
|
|
|
*/
|
2017-06-30 03:52:21 +00:00
|
|
|
chunk->param_hdr.v = skb_pull(chunk->skb, sizeof(struct sctp_inithdr));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2017-06-30 03:52:22 +00:00
|
|
|
initchunk = (struct sctp_init_chunk *)chunk->chunk_hdr;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_PEER_INIT,
|
|
|
|
SCTP_PEER_INIT(initchunk));
|
|
|
|
|
2005-06-20 20:14:57 +00:00
|
|
|
/* Reset init error count upon receipt of INIT-ACK. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_COUNTER_RESET, SCTP_NULL());
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* 5.1 C) "A" shall stop the T1-init timer and leave
|
|
|
|
* COOKIE-WAIT state. "A" shall then ... start the T1-cookie
|
|
|
|
* timer, and enter the COOKIE-ECHOED state.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE));
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
|
|
|
|
SCTP_STATE(SCTP_STATE_COOKIE_ECHOED));
|
|
|
|
|
2007-09-17 02:32:11 +00:00
|
|
|
/* SCTP-AUTH: genereate the assocition shared keys so that
|
|
|
|
* we can potentially signe the COOKIE-ECHO.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_SHKEY, SCTP_NULL());
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* 5.1 C) "A" shall then send the State Cookie received in the
|
|
|
|
* INIT ACK chunk in a COOKIE ECHO chunk, ...
|
|
|
|
*/
|
|
|
|
/* If there is any errors to report, send the ERROR chunk generated
|
|
|
|
* for unknown parameters as well.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_GEN_COOKIE_ECHO,
|
|
|
|
SCTP_CHUNK(err_chunk));
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Respond to a normal COOKIE ECHO chunk.
|
|
|
|
* We are the side that is being asked for an association.
|
|
|
|
*
|
|
|
|
* Section: 5.1 Normal Establishment of an Association, D
|
|
|
|
* D) Upon reception of the COOKIE ECHO chunk, Endpoint "Z" will reply
|
|
|
|
* with a COOKIE ACK chunk after building a TCB and moving to
|
|
|
|
* the ESTABLISHED state. A COOKIE ACK chunk may be bundled with
|
|
|
|
* any pending DATA chunks (and/or SACK chunks), but the COOKIE ACK
|
|
|
|
* chunk MUST be the first chunk in the packet.
|
|
|
|
*
|
|
|
|
* IMPLEMENTATION NOTE: An implementation may choose to send the
|
|
|
|
* Communication Up notification to the SCTP user upon reception
|
|
|
|
* of a valid COOKIE ECHO chunk.
|
|
|
|
*
|
|
|
|
* Verification Tag: 8.5.1 Exceptions in Verification Tag Rules
|
|
|
|
* D) Rules for packet carrying a COOKIE ECHO
|
|
|
|
*
|
|
|
|
* - When sending a COOKIE ECHO, the endpoint MUST use the value of the
|
|
|
|
* Initial Tag received in the INIT ACK.
|
|
|
|
*
|
|
|
|
* - The receiver of a COOKIE ECHO follows the procedures in Section 5.
|
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_5_1D_ce(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type, void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
struct sctp_association *new_asoc;
|
2017-06-30 03:52:22 +00:00
|
|
|
struct sctp_init_chunk *peer_init;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct sctp_chunk *repl;
|
2006-08-22 07:19:51 +00:00
|
|
|
struct sctp_ulpevent *ev, *ai_ev = NULL;
|
2005-04-16 22:20:36 +00:00
|
|
|
int error = 0;
|
|
|
|
struct sctp_chunk *err_chk_p;
|
2007-08-30 18:10:59 +00:00
|
|
|
struct sock *sk;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* If the packet is an OOTB packet which is temporarily on the
|
|
|
|
* control endpoint, respond with an ABORT.
|
|
|
|
*/
|
2012-08-06 08:43:06 +00:00
|
|
|
if (ep == sctp_sk(net->sctp.ctl_sock)->ep) {
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_tabort_8_4_8(net, ep, asoc, type, arg, commands);
|
2008-09-08 04:13:55 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Make sure that the COOKIE_ECHO chunk has a valid length.
|
|
|
|
* In this case, we check that we have enough for at least a
|
|
|
|
* chunk header. More detailed verification is done
|
|
|
|
* in sctp_unpack_cookie().
|
|
|
|
*/
|
2017-06-30 03:52:13 +00:00
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_chunkhdr)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-08-30 18:10:59 +00:00
|
|
|
/* If the endpoint is not listening or if the number of associations
|
|
|
|
* on the TCP-style socket exceed the max backlog, respond with an
|
|
|
|
* ABORT.
|
|
|
|
*/
|
|
|
|
sk = ep->base.sk;
|
|
|
|
if (!sctp_sstate(sk, LISTENING) ||
|
|
|
|
(sctp_style(sk, TCP) && sk_acceptq_is_full(sk)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_tabort_8_4_8(net, ep, asoc, type, arg, commands);
|
2007-08-30 18:10:59 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* "Decode" the chunk. We have no optional parameters so we
|
|
|
|
* are in good shape.
|
|
|
|
*/
|
2007-02-09 14:25:18 +00:00
|
|
|
chunk->subh.cookie_hdr =
|
2005-04-16 22:20:36 +00:00
|
|
|
(struct sctp_signed_cookie *)chunk->skb->data;
|
2006-05-06 00:04:43 +00:00
|
|
|
if (!pskb_pull(chunk->skb, ntohs(chunk->chunk_hdr->length) -
|
2017-06-30 03:52:13 +00:00
|
|
|
sizeof(struct sctp_chunkhdr)))
|
2006-05-06 00:04:43 +00:00
|
|
|
goto nomem;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* 5.1 D) Upon reception of the COOKIE ECHO chunk, Endpoint
|
|
|
|
* "Z" will reply with a COOKIE ACK chunk after building a TCB
|
|
|
|
* and moving to the ESTABLISHED state.
|
|
|
|
*/
|
|
|
|
new_asoc = sctp_unpack_cookie(ep, asoc, chunk, GFP_ATOMIC, &error,
|
|
|
|
&err_chk_p);
|
|
|
|
|
|
|
|
/* FIXME:
|
|
|
|
* If the re-build failed, what is the proper error path
|
|
|
|
* from here?
|
|
|
|
*
|
|
|
|
* [We should abort the association. --piggy]
|
|
|
|
*/
|
|
|
|
if (!new_asoc) {
|
|
|
|
/* FIXME: Several errors are possible. A bad cookie should
|
|
|
|
* be silently discarded, but think about logging it too.
|
|
|
|
*/
|
|
|
|
switch (error) {
|
|
|
|
case -SCTP_IERROR_NOMEM:
|
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
case -SCTP_IERROR_STALE_COOKIE:
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_send_stale_cookie_err(net, ep, asoc, chunk, commands,
|
2005-04-16 22:20:36 +00:00
|
|
|
err_chk_p);
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
case -SCTP_IERROR_BAD_SIG:
|
|
|
|
default:
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2007-04-21 00:09:22 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2006-08-22 07:19:51 +00:00
|
|
|
/* Delay state machine commands until later.
|
|
|
|
*
|
|
|
|
* Re-build the bind address for the association is done in
|
2005-04-16 22:20:36 +00:00
|
|
|
* the sctp_unpack_cookie() already.
|
|
|
|
*/
|
|
|
|
/* This is a brand-new association, so these are not yet side
|
|
|
|
* effects--it is safe to run them here.
|
|
|
|
*/
|
|
|
|
peer_init = &chunk->subh.cookie_hdr->c.peer_init[0];
|
|
|
|
|
2011-04-19 21:30:51 +00:00
|
|
|
if (!sctp_process_init(new_asoc, chunk,
|
2006-11-21 01:12:25 +00:00
|
|
|
&chunk->subh.cookie_hdr->c.peer_addr,
|
2005-04-16 22:20:36 +00:00
|
|
|
peer_init, GFP_ATOMIC))
|
|
|
|
goto nomem_init;
|
|
|
|
|
2007-09-17 02:32:11 +00:00
|
|
|
/* SCTP-AUTH: Now that we've populate required fields in
|
|
|
|
* sctp_process_init, set up the assocaition shared keys as
|
|
|
|
* necessary so that we can potentially authenticate the ACK
|
|
|
|
*/
|
|
|
|
error = sctp_auth_asoc_init_active_key(new_asoc, GFP_ATOMIC);
|
|
|
|
if (error)
|
|
|
|
goto nomem_init;
|
|
|
|
|
2007-10-04 00:51:34 +00:00
|
|
|
/* SCTP-AUTH: auth_chunk pointer is only set when the cookie-echo
|
|
|
|
* is supposed to be authenticated and we have to do delayed
|
|
|
|
* authentication. We've just recreated the association using
|
|
|
|
* the information in the cookie and now it's much easier to
|
|
|
|
* do the authentication.
|
|
|
|
*/
|
|
|
|
if (chunk->auth_chunk) {
|
|
|
|
struct sctp_chunk auth;
|
|
|
|
sctp_ierror_t ret;
|
|
|
|
|
net: sctp: fix sctp_sf_do_5_1D_ce to verify if we/peer is AUTH capable
RFC4895 introduced AUTH chunks for SCTP; during the SCTP
handshake RANDOM; CHUNKS; HMAC-ALGO are negotiated (CHUNKS
being optional though):
---------- INIT[RANDOM; CHUNKS; HMAC-ALGO] ---------->
<------- INIT-ACK[RANDOM; CHUNKS; HMAC-ALGO] ---------
-------------------- COOKIE-ECHO -------------------->
<-------------------- COOKIE-ACK ---------------------
A special case is when an endpoint requires COOKIE-ECHO
chunks to be authenticated:
---------- INIT[RANDOM; CHUNKS; HMAC-ALGO] ---------->
<------- INIT-ACK[RANDOM; CHUNKS; HMAC-ALGO] ---------
------------------ AUTH; COOKIE-ECHO ---------------->
<-------------------- COOKIE-ACK ---------------------
RFC4895, section 6.3. Receiving Authenticated Chunks says:
The receiver MUST use the HMAC algorithm indicated in
the HMAC Identifier field. If this algorithm was not
specified by the receiver in the HMAC-ALGO parameter in
the INIT or INIT-ACK chunk during association setup, the
AUTH chunk and all the chunks after it MUST be discarded
and an ERROR chunk SHOULD be sent with the error cause
defined in Section 4.1. [...] If no endpoint pair shared
key has been configured for that Shared Key Identifier,
all authenticated chunks MUST be silently discarded. [...]
When an endpoint requires COOKIE-ECHO chunks to be
authenticated, some special procedures have to be followed
because the reception of a COOKIE-ECHO chunk might result
in the creation of an SCTP association. If a packet arrives
containing an AUTH chunk as a first chunk, a COOKIE-ECHO
chunk as the second chunk, and possibly more chunks after
them, and the receiver does not have an STCB for that
packet, then authentication is based on the contents of
the COOKIE-ECHO chunk. In this situation, the receiver MUST
authenticate the chunks in the packet by using the RANDOM
parameters, CHUNKS parameters and HMAC_ALGO parameters
obtained from the COOKIE-ECHO chunk, and possibly a local
shared secret as inputs to the authentication procedure
specified in Section 6.3. If authentication fails, then
the packet is discarded. If the authentication is successful,
the COOKIE-ECHO and all the chunks after the COOKIE-ECHO
MUST be processed. If the receiver has an STCB, it MUST
process the AUTH chunk as described above using the STCB
from the existing association to authenticate the
COOKIE-ECHO chunk and all the chunks after it. [...]
Commit bbd0d59809f9 introduced the possibility to receive
and verification of AUTH chunk, including the edge case for
authenticated COOKIE-ECHO. On reception of COOKIE-ECHO,
the function sctp_sf_do_5_1D_ce() handles processing,
unpacks and creates a new association if it passed sanity
checks and also tests for authentication chunks being
present. After a new association has been processed, it
invokes sctp_process_init() on the new association and
walks through the parameter list it received from the INIT
chunk. It checks SCTP_PARAM_RANDOM, SCTP_PARAM_HMAC_ALGO
and SCTP_PARAM_CHUNKS, and copies them into asoc->peer
meta data (peer_random, peer_hmacs, peer_chunks) in case
sysctl -w net.sctp.auth_enable=1 is set. If in INIT's
SCTP_PARAM_SUPPORTED_EXT parameter SCTP_CID_AUTH is set,
peer_random != NULL and peer_hmacs != NULL the peer is to be
assumed asoc->peer.auth_capable=1, in any other case
asoc->peer.auth_capable=0.
Now, if in sctp_sf_do_5_1D_ce() chunk->auth_chunk is
available, we set up a fake auth chunk and pass that on to
sctp_sf_authenticate(), which at latest in
sctp_auth_calculate_hmac() reliably dereferences a NULL pointer
at position 0..0008 when setting up the crypto key in
crypto_hash_setkey() by using asoc->asoc_shared_key that is
NULL as condition key_id == asoc->active_key_id is true if
the AUTH chunk was injected correctly from remote. This
happens no matter what net.sctp.auth_enable sysctl says.
The fix is to check for net->sctp.auth_enable and for
asoc->peer.auth_capable before doing any operations like
sctp_sf_authenticate() as no key is activated in
sctp_auth_asoc_init_active_key() for each case.
Now as RFC4895 section 6.3 states that if the used HMAC-ALGO
passed from the INIT chunk was not used in the AUTH chunk, we
SHOULD send an error; however in this case it would be better
to just silently discard such a maliciously prepared handshake
as we didn't even receive a parameter at all. Also, as our
endpoint has no shared key configured, section 6.3 says that
MUST silently discard, which we are doing from now onwards.
Before calling sctp_sf_pdiscard(), we need not only to free
the association, but also the chunk->auth_chunk skb, as
commit bbd0d59809f9 created a skb clone in that case.
I have tested this locally by using netfilter's nfqueue and
re-injecting packets into the local stack after maliciously
modifying the INIT chunk (removing RANDOM; HMAC-ALGO param)
and the SCTP packet containing the COOKIE_ECHO (injecting
AUTH chunk before COOKIE_ECHO). Fixed with this patch applied.
Fixes: bbd0d59809f9 ("[SCTP]: Implement the receive and verification of AUTH chunk")
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Cc: Vlad Yasevich <yasevich@gmail.com>
Cc: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-03-03 16:23:04 +00:00
|
|
|
/* Make sure that we and the peer are AUTH capable */
|
|
|
|
if (!net->sctp.auth_enable || !new_asoc->peer.auth_capable) {
|
|
|
|
sctp_association_free(new_asoc);
|
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
|
|
|
}
|
|
|
|
|
2007-10-04 00:51:34 +00:00
|
|
|
/* set-up our fake chunk so that we can process it */
|
|
|
|
auth.skb = chunk->auth_chunk;
|
|
|
|
auth.asoc = chunk->asoc;
|
|
|
|
auth.sctp_hdr = chunk->sctp_hdr;
|
2017-06-30 03:52:13 +00:00
|
|
|
auth.chunk_hdr = (struct sctp_chunkhdr *)
|
|
|
|
skb_push(chunk->auth_chunk,
|
|
|
|
sizeof(struct sctp_chunkhdr));
|
|
|
|
skb_pull(chunk->auth_chunk, sizeof(struct sctp_chunkhdr));
|
2007-10-04 00:51:34 +00:00
|
|
|
auth.transport = chunk->transport;
|
|
|
|
|
2012-08-07 07:28:09 +00:00
|
|
|
ret = sctp_sf_authenticate(net, ep, new_asoc, type, &auth);
|
2007-10-04 00:51:34 +00:00
|
|
|
if (ret != SCTP_IERROR_NO_ERROR) {
|
|
|
|
sctp_association_free(new_asoc);
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2007-10-04 00:51:34 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
repl = sctp_make_cookie_ack(new_asoc, chunk);
|
|
|
|
if (!repl)
|
2006-08-22 07:19:51 +00:00
|
|
|
goto nomem_init;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* RFC 2960 5.1 Normal Establishment of an Association
|
|
|
|
*
|
|
|
|
* D) IMPLEMENTATION NOTE: An implementation may choose to
|
|
|
|
* send the Communication Up notification to the SCTP user
|
|
|
|
* upon reception of a valid COOKIE ECHO chunk.
|
|
|
|
*/
|
|
|
|
ev = sctp_ulpevent_make_assoc_change(new_asoc, 0, SCTP_COMM_UP, 0,
|
|
|
|
new_asoc->c.sinit_num_ostreams,
|
|
|
|
new_asoc->c.sinit_max_instreams,
|
2007-03-23 18:34:08 +00:00
|
|
|
NULL, GFP_ATOMIC);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (!ev)
|
|
|
|
goto nomem_ev;
|
|
|
|
|
2007-02-09 14:25:18 +00:00
|
|
|
/* Sockets API Draft Section 5.3.1.6
|
2006-12-21 00:07:04 +00:00
|
|
|
* When a peer sends a Adaptation Layer Indication parameter , SCTP
|
2005-04-16 22:20:36 +00:00
|
|
|
* delivers this notification to inform the application that of the
|
2006-12-21 00:07:04 +00:00
|
|
|
* peers requested adaptation layer.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2006-12-21 00:07:04 +00:00
|
|
|
if (new_asoc->peer.adaptation_ind) {
|
|
|
|
ai_ev = sctp_ulpevent_make_adaptation_indication(new_asoc,
|
2005-04-16 22:20:36 +00:00
|
|
|
GFP_ATOMIC);
|
2006-08-22 07:19:51 +00:00
|
|
|
if (!ai_ev)
|
|
|
|
goto nomem_aiev;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Add all the state machine commands now since we've created
|
|
|
|
* everything. This way we don't introduce memory corruptions
|
|
|
|
* during side-effect processing and correclty count established
|
|
|
|
* associations.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_ASOC, SCTP_ASOC(new_asoc));
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
|
|
|
|
SCTP_STATE(SCTP_STATE_ESTABLISHED));
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_CURRESTAB);
|
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_PASSIVEESTABS);
|
2006-08-22 07:19:51 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMERS_START, SCTP_NULL());
|
|
|
|
|
2013-12-10 11:48:15 +00:00
|
|
|
if (new_asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE])
|
2006-08-22 07:19:51 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_AUTOCLOSE));
|
|
|
|
|
|
|
|
/* This will send the COOKIE ACK */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl));
|
|
|
|
|
|
|
|
/* Queue the ASSOC_CHANGE event */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, SCTP_ULPEVENT(ev));
|
|
|
|
|
|
|
|
/* Send up the Adaptation Layer Indication event */
|
|
|
|
if (ai_ev)
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
|
2006-08-22 07:19:51 +00:00
|
|
|
SCTP_ULPEVENT(ai_ev));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
|
2006-08-22 07:19:51 +00:00
|
|
|
nomem_aiev:
|
|
|
|
sctp_ulpevent_free(ev);
|
2005-04-16 22:20:36 +00:00
|
|
|
nomem_ev:
|
|
|
|
sctp_chunk_free(repl);
|
|
|
|
nomem_init:
|
|
|
|
sctp_association_free(new_asoc);
|
|
|
|
nomem:
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Respond to a normal COOKIE ACK chunk.
|
2015-07-17 16:50:21 +00:00
|
|
|
* We are the side that is asking for an association.
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
|
|
|
* RFC 2960 5.1 Normal Establishment of an Association
|
|
|
|
*
|
|
|
|
* E) Upon reception of the COOKIE ACK, endpoint "A" will move from the
|
|
|
|
* COOKIE-ECHOED state to the ESTABLISHED state, stopping the T1-cookie
|
|
|
|
* timer. It may also notify its ULP about the successful
|
|
|
|
* establishment of the association with a Communication Up
|
|
|
|
* notification (see Section 10).
|
|
|
|
*
|
|
|
|
* Verification Tag:
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_5_1E_ca(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type, void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
struct sctp_ulpevent *ev;
|
|
|
|
|
|
|
|
if (!sctp_vtag_verify(chunk, asoc))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Verify that the chunk length for the COOKIE-ACK is OK.
|
|
|
|
* If we don't do this, any bundled chunks may be junked.
|
|
|
|
*/
|
2017-06-30 03:52:13 +00:00
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_chunkhdr)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
|
|
|
|
|
|
|
/* Reset init error count upon receipt of COOKIE-ACK,
|
|
|
|
* to avoid problems with the managemement of this
|
|
|
|
* counter in stale cookie situations when a transition back
|
|
|
|
* from the COOKIE-ECHOED state to the COOKIE-WAIT
|
|
|
|
* state is performed.
|
|
|
|
*/
|
2005-06-20 20:14:57 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_COUNTER_RESET, SCTP_NULL());
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* RFC 2960 5.1 Normal Establishment of an Association
|
|
|
|
*
|
|
|
|
* E) Upon reception of the COOKIE ACK, endpoint "A" will move
|
|
|
|
* from the COOKIE-ECHOED state to the ESTABLISHED state,
|
|
|
|
* stopping the T1-cookie timer.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE));
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
|
|
|
|
SCTP_STATE(SCTP_STATE_ESTABLISHED));
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_CURRESTAB);
|
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_ACTIVEESTABS);
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMERS_START, SCTP_NULL());
|
2013-12-10 11:48:15 +00:00
|
|
|
if (asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE])
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_AUTOCLOSE));
|
|
|
|
|
|
|
|
/* It may also notify its ULP about the successful
|
|
|
|
* establishment of the association with a Communication Up
|
|
|
|
* notification (see Section 10).
|
|
|
|
*/
|
|
|
|
ev = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_UP,
|
|
|
|
0, asoc->c.sinit_num_ostreams,
|
|
|
|
asoc->c.sinit_max_instreams,
|
2007-03-23 18:34:08 +00:00
|
|
|
NULL, GFP_ATOMIC);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (!ev)
|
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, SCTP_ULPEVENT(ev));
|
|
|
|
|
|
|
|
/* Sockets API Draft Section 5.3.1.6
|
2006-12-21 00:07:04 +00:00
|
|
|
* When a peer sends a Adaptation Layer Indication parameter , SCTP
|
2005-04-16 22:20:36 +00:00
|
|
|
* delivers this notification to inform the application that of the
|
2006-12-21 00:07:04 +00:00
|
|
|
* peers requested adaptation layer.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2006-12-21 00:07:04 +00:00
|
|
|
if (asoc->peer.adaptation_ind) {
|
|
|
|
ev = sctp_ulpevent_make_adaptation_indication(asoc, GFP_ATOMIC);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (!ev)
|
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
|
|
|
|
SCTP_ULPEVENT(ev));
|
|
|
|
}
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
nomem:
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Generate and sendout a heartbeat packet. */
|
|
|
|
static sctp_disposition_t sctp_sf_heartbeat(const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_transport *transport = (struct sctp_transport *) arg;
|
|
|
|
struct sctp_chunk *reply;
|
|
|
|
|
|
|
|
/* Send a heartbeat to our peer. */
|
2011-04-19 21:31:47 +00:00
|
|
|
reply = sctp_make_heartbeat(asoc, transport);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (!reply)
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
|
|
|
|
/* Set rto_pending indicating that an RTT measurement
|
|
|
|
* is started with this heartbeat chunk.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_RTO_PENDING,
|
|
|
|
SCTP_TRANSPORT(transport));
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply));
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Generate a HEARTBEAT packet on the given transport. */
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_sendbeat_8_3(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_transport *transport = (struct sctp_transport *) arg;
|
|
|
|
|
2009-08-26 13:36:25 +00:00
|
|
|
if (asoc->overall_error_count >= asoc->max_retrans) {
|
2006-05-19 17:58:12 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
|
|
|
|
SCTP_ERROR(ETIMEDOUT));
|
2005-04-16 22:20:36 +00:00
|
|
|
/* CMD_ASSOC_FAILED calls CMD_DELETE_TCB. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
|
2006-11-21 01:01:06 +00:00
|
|
|
SCTP_PERR(SCTP_ERROR_NO_ERROR));
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_ABORTEDS);
|
|
|
|
SCTP_DEC_STATS(net, SCTP_MIB_CURRESTAB);
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_DELETE_TCB;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Section 3.3.5.
|
|
|
|
* The Sender-specific Heartbeat Info field should normally include
|
|
|
|
* information about the sender's current time when this HEARTBEAT
|
|
|
|
* chunk is sent and the destination transport address to which this
|
|
|
|
* HEARTBEAT is sent (see Section 8.3).
|
|
|
|
*/
|
|
|
|
|
2005-12-22 19:36:46 +00:00
|
|
|
if (transport->param_flags & SPP_HB_ENABLE) {
|
2005-04-16 22:20:36 +00:00
|
|
|
if (SCTP_DISPOSITION_NOMEM ==
|
|
|
|
sctp_sf_heartbeat(ep, asoc, type, arg,
|
|
|
|
commands))
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
2009-11-23 20:53:58 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Set transport error counter and association error counter
|
|
|
|
* when sending heartbeat.
|
|
|
|
*/
|
2009-03-02 09:46:14 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TRANSPORT_HB_SENT,
|
2005-04-16 22:20:36 +00:00
|
|
|
SCTP_TRANSPORT(transport));
|
|
|
|
}
|
2009-11-23 20:53:58 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TRANSPORT_IDLE,
|
|
|
|
SCTP_TRANSPORT(transport));
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMER_UPDATE,
|
|
|
|
SCTP_TRANSPORT(transport));
|
|
|
|
|
2007-02-09 14:25:18 +00:00
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2017-01-17 16:44:43 +00:00
|
|
|
/* resend asoc strreset_chunk. */
|
|
|
|
sctp_disposition_t sctp_sf_send_reconf(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type, void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_transport *transport = arg;
|
|
|
|
|
|
|
|
if (asoc->overall_error_count >= asoc->max_retrans) {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
|
|
|
|
SCTP_ERROR(ETIMEDOUT));
|
|
|
|
/* CMD_ASSOC_FAILED calls CMD_DELETE_TCB. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
|
|
|
|
SCTP_PERR(SCTP_ERROR_NO_ERROR));
|
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_ABORTEDS);
|
|
|
|
SCTP_DEC_STATS(net, SCTP_MIB_CURRESTAB);
|
|
|
|
return SCTP_DISPOSITION_DELETE_TCB;
|
|
|
|
}
|
|
|
|
|
|
|
|
sctp_chunk_hold(asoc->strreset_chunk);
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
|
|
|
|
SCTP_CHUNK(asoc->strreset_chunk));
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_STRIKE, SCTP_TRANSPORT(transport));
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* Process an heartbeat request.
|
|
|
|
*
|
|
|
|
* Section: 8.3 Path Heartbeat
|
|
|
|
* The receiver of the HEARTBEAT should immediately respond with a
|
|
|
|
* HEARTBEAT ACK that contains the Heartbeat Information field copied
|
|
|
|
* from the received HEARTBEAT chunk.
|
|
|
|
*
|
|
|
|
* Verification Tag: 8.5 Verification Tag [Normal verification]
|
|
|
|
* When receiving an SCTP packet, the endpoint MUST ensure that the
|
|
|
|
* value in the Verification Tag field of the received SCTP packet
|
|
|
|
* matches its own Tag. If the received Verification Tag value does not
|
|
|
|
* match the receiver's own tag value, the receiver shall silently
|
|
|
|
* discard the packet and shall not process it any further except for
|
|
|
|
* those cases listed in Section 8.5.1 below.
|
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_beat_8_3(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
2017-06-30 03:52:16 +00:00
|
|
|
struct sctp_paramhdr *param_hdr;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
struct sctp_chunk *reply;
|
|
|
|
size_t paylen = 0;
|
|
|
|
|
|
|
|
if (!sctp_vtag_verify(chunk, asoc))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Make sure that the HEARTBEAT chunk has a valid length. */
|
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_heartbeat_chunk_t)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
|
|
|
|
|
|
|
/* 8.3 The receiver of the HEARTBEAT should immediately
|
|
|
|
* respond with a HEARTBEAT ACK that contains the Heartbeat
|
|
|
|
* Information field copied from the received HEARTBEAT chunk.
|
|
|
|
*/
|
2017-07-23 01:34:34 +00:00
|
|
|
chunk->subh.hb_hdr = (struct sctp_heartbeathdr *)chunk->skb->data;
|
2017-06-30 03:52:16 +00:00
|
|
|
param_hdr = (struct sctp_paramhdr *)chunk->subh.hb_hdr;
|
2017-06-30 03:52:13 +00:00
|
|
|
paylen = ntohs(chunk->chunk_hdr->length) - sizeof(struct sctp_chunkhdr);
|
2012-11-30 02:16:27 +00:00
|
|
|
|
|
|
|
if (ntohs(param_hdr->length) > paylen)
|
|
|
|
return sctp_sf_violation_paramlen(net, ep, asoc, type, arg,
|
|
|
|
param_hdr, commands);
|
|
|
|
|
2006-05-06 00:04:43 +00:00
|
|
|
if (!pskb_pull(chunk->skb, paylen))
|
|
|
|
goto nomem;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2012-11-30 02:16:27 +00:00
|
|
|
reply = sctp_make_heartbeat_ack(asoc, chunk, param_hdr, paylen);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (!reply)
|
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply));
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
|
|
|
|
nomem:
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process the returning HEARTBEAT ACK.
|
|
|
|
*
|
|
|
|
* Section: 8.3 Path Heartbeat
|
|
|
|
* Upon the receipt of the HEARTBEAT ACK, the sender of the HEARTBEAT
|
|
|
|
* should clear the error counter of the destination transport
|
|
|
|
* address to which the HEARTBEAT was sent, and mark the destination
|
|
|
|
* transport address as active if it is not so marked. The endpoint may
|
|
|
|
* optionally report to the upper layer when an inactive destination
|
|
|
|
* address is marked as active due to the reception of the latest
|
|
|
|
* HEARTBEAT ACK. The receiver of the HEARTBEAT ACK must also
|
|
|
|
* clear the association overall error count as well (as defined
|
|
|
|
* in section 8.1).
|
|
|
|
*
|
|
|
|
* The receiver of the HEARTBEAT ACK should also perform an RTT
|
|
|
|
* measurement for that destination transport address using the time
|
|
|
|
* value carried in the HEARTBEAT ACK chunk.
|
|
|
|
*
|
|
|
|
* Verification Tag: 8.5 Verification Tag [Normal verification]
|
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_backbeat_8_3(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
union sctp_addr from_addr;
|
|
|
|
struct sctp_transport *link;
|
|
|
|
sctp_sender_hb_info_t *hbinfo;
|
|
|
|
unsigned long max_interval;
|
|
|
|
|
|
|
|
if (!sctp_vtag_verify(chunk, asoc))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Make sure that the HEARTBEAT-ACK chunk has a valid length. */
|
2017-06-30 03:52:13 +00:00
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_chunkhdr) +
|
2009-08-22 03:27:37 +00:00
|
|
|
sizeof(sctp_sender_hb_info_t)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
|
|
|
|
|
|
|
hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data;
|
2006-05-19 21:25:53 +00:00
|
|
|
/* Make sure that the length of the parameter is what we expect */
|
|
|
|
if (ntohs(hbinfo->param_hdr.length) !=
|
|
|
|
sizeof(sctp_sender_hb_info_t)) {
|
|
|
|
return SCTP_DISPOSITION_DISCARD;
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
from_addr = hbinfo->daddr;
|
2006-11-21 01:07:25 +00:00
|
|
|
link = sctp_assoc_lookup_paddr(asoc, &from_addr);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* This should never happen, but lets log it if so. */
|
2005-06-20 20:14:57 +00:00
|
|
|
if (unlikely(!link)) {
|
|
|
|
if (from_addr.sa.sa_family == AF_INET6) {
|
2012-05-13 21:56:26 +00:00
|
|
|
net_warn_ratelimited("%s association %p could not find address %pI6\n",
|
|
|
|
__func__,
|
|
|
|
asoc,
|
|
|
|
&from_addr.v6.sin6_addr);
|
2005-06-20 20:14:57 +00:00
|
|
|
} else {
|
2012-05-13 21:56:26 +00:00
|
|
|
net_warn_ratelimited("%s association %p could not find address %pI4\n",
|
|
|
|
__func__,
|
|
|
|
asoc,
|
|
|
|
&from_addr.v4.sin_addr.s_addr);
|
2005-06-20 20:14:57 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_DISCARD;
|
|
|
|
}
|
|
|
|
|
2006-07-21 21:48:50 +00:00
|
|
|
/* Validate the 64-bit random nonce. */
|
|
|
|
if (hbinfo->hb_nonce != link->hb_nonce)
|
|
|
|
return SCTP_DISPOSITION_DISCARD;
|
|
|
|
|
2005-12-22 19:36:46 +00:00
|
|
|
max_interval = link->hbinterval + link->rto;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Check if the timestamp looks valid. */
|
|
|
|
if (time_after(hbinfo->sent_at, jiffies) ||
|
|
|
|
time_after(jiffies, hbinfo->sent_at + max_interval)) {
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
pr_debug("%s: HEARTBEAT ACK with invalid timestamp received "
|
|
|
|
"for transport:%p\n", __func__, link);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_DISCARD;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of
|
|
|
|
* the HEARTBEAT should clear the error counter of the
|
|
|
|
* destination transport address to which the HEARTBEAT was
|
|
|
|
* sent and mark the destination transport address as active if
|
|
|
|
* it is not so marked.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TRANSPORT_ON, SCTP_TRANSPORT(link));
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Helper function to send out an abort for the restart
|
|
|
|
* condition.
|
|
|
|
*/
|
2012-08-06 08:43:06 +00:00
|
|
|
static int sctp_sf_send_restart_abort(struct net *net, union sctp_addr *ssa,
|
2005-04-16 22:20:36 +00:00
|
|
|
struct sctp_chunk *init,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
int len;
|
|
|
|
struct sctp_packet *pkt;
|
|
|
|
union sctp_addr_param *addrparm;
|
|
|
|
struct sctp_errhdr *errhdr;
|
|
|
|
struct sctp_endpoint *ep;
|
|
|
|
char buffer[sizeof(struct sctp_errhdr)+sizeof(union sctp_addr_param)];
|
|
|
|
struct sctp_af *af = sctp_get_af_specific(ssa->v4.sin_family);
|
|
|
|
|
|
|
|
/* Build the error on the stack. We are way to malloc crazy
|
|
|
|
* throughout the code today.
|
|
|
|
*/
|
|
|
|
errhdr = (struct sctp_errhdr *)buffer;
|
|
|
|
addrparm = (union sctp_addr_param *)errhdr->variable;
|
|
|
|
|
|
|
|
/* Copy into a parm format. */
|
|
|
|
len = af->to_addr_param(ssa, addrparm);
|
|
|
|
len += sizeof(sctp_errhdr_t);
|
|
|
|
|
|
|
|
errhdr->cause = SCTP_ERROR_RESTART;
|
|
|
|
errhdr->length = htons(len);
|
|
|
|
|
|
|
|
/* Assign to the control socket. */
|
2012-08-06 08:43:06 +00:00
|
|
|
ep = sctp_sk(net->sctp.ctl_sock)->ep;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Association is NULL since this may be a restart attack and we
|
|
|
|
* want to send back the attacker's vtag.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
pkt = sctp_abort_pkt_new(net, ep, NULL, init, errhdr, len);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (!pkt)
|
|
|
|
goto out;
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT, SCTP_PACKET(pkt));
|
|
|
|
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Discard the rest of the inbound packet. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_DISCARD_PACKET, SCTP_NULL());
|
|
|
|
|
|
|
|
out:
|
|
|
|
/* Even if there is no memory, treat as a failure so
|
|
|
|
* the packet will get dropped.
|
|
|
|
*/
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2010-09-08 11:04:21 +00:00
|
|
|
static bool list_has_sctp_addr(const struct list_head *list,
|
|
|
|
union sctp_addr *ipaddr)
|
|
|
|
{
|
|
|
|
struct sctp_transport *addr;
|
|
|
|
|
|
|
|
list_for_each_entry(addr, list, transports) {
|
|
|
|
if (sctp_cmp_addr_exact(ipaddr, &addr->ipaddr))
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
/* A restart is occurring, check to make sure no new addresses
|
|
|
|
* are being added as we may be under a takeover attack.
|
|
|
|
*/
|
|
|
|
static int sctp_sf_check_restart_addrs(const struct sctp_association *new_asoc,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
struct sctp_chunk *init,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
2012-08-06 08:43:06 +00:00
|
|
|
struct net *net = sock_net(new_asoc->base.sk);
|
2010-09-08 11:04:21 +00:00
|
|
|
struct sctp_transport *new_addr;
|
|
|
|
int ret = 1;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2010-09-08 11:04:21 +00:00
|
|
|
/* Implementor's Guide - Section 5.2.2
|
2005-04-16 22:20:36 +00:00
|
|
|
* ...
|
|
|
|
* Before responding the endpoint MUST check to see if the
|
|
|
|
* unexpected INIT adds new addresses to the association. If new
|
|
|
|
* addresses are added to the association, the endpoint MUST respond
|
|
|
|
* with an ABORT..
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Search through all current addresses and make sure
|
|
|
|
* we aren't adding any new ones.
|
|
|
|
*/
|
2008-04-13 01:54:24 +00:00
|
|
|
list_for_each_entry(new_addr, &new_asoc->peer.transport_addr_list,
|
2010-09-08 11:04:21 +00:00
|
|
|
transports) {
|
|
|
|
if (!list_has_sctp_addr(&asoc->peer.transport_addr_list,
|
|
|
|
&new_addr->ipaddr)) {
|
2012-08-06 08:43:06 +00:00
|
|
|
sctp_sf_send_restart_abort(net, &new_addr->ipaddr, init,
|
2010-09-08 11:04:21 +00:00
|
|
|
commands);
|
|
|
|
ret = 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
break;
|
2010-09-08 11:04:21 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Return success if all addresses were found. */
|
2010-09-08 11:04:21 +00:00
|
|
|
return ret;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Populate the verification/tie tags based on overlapping INIT
|
|
|
|
* scenario.
|
|
|
|
*
|
|
|
|
* Note: Do not use in CLOSED or SHUTDOWN-ACK-SENT state.
|
|
|
|
*/
|
|
|
|
static void sctp_tietags_populate(struct sctp_association *new_asoc,
|
|
|
|
const struct sctp_association *asoc)
|
|
|
|
{
|
|
|
|
switch (asoc->state) {
|
|
|
|
|
|
|
|
/* 5.2.1 INIT received in COOKIE-WAIT or COOKIE-ECHOED State */
|
|
|
|
|
|
|
|
case SCTP_STATE_COOKIE_WAIT:
|
|
|
|
new_asoc->c.my_vtag = asoc->c.my_vtag;
|
|
|
|
new_asoc->c.my_ttag = asoc->c.my_vtag;
|
|
|
|
new_asoc->c.peer_ttag = 0;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case SCTP_STATE_COOKIE_ECHOED:
|
|
|
|
new_asoc->c.my_vtag = asoc->c.my_vtag;
|
|
|
|
new_asoc->c.my_ttag = asoc->c.my_vtag;
|
|
|
|
new_asoc->c.peer_ttag = asoc->c.peer_vtag;
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* 5.2.2 Unexpected INIT in States Other than CLOSED, COOKIE-ECHOED,
|
|
|
|
* COOKIE-WAIT and SHUTDOWN-ACK-SENT
|
|
|
|
*/
|
|
|
|
default:
|
|
|
|
new_asoc->c.my_ttag = asoc->c.my_vtag;
|
|
|
|
new_asoc->c.peer_ttag = asoc->c.peer_vtag;
|
|
|
|
break;
|
2007-04-21 00:09:22 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Other parameters for the endpoint SHOULD be copied from the
|
|
|
|
* existing parameters of the association (e.g. number of
|
|
|
|
* outbound streams) into the INIT ACK and cookie.
|
|
|
|
*/
|
|
|
|
new_asoc->rwnd = asoc->rwnd;
|
|
|
|
new_asoc->c.sinit_num_ostreams = asoc->c.sinit_num_ostreams;
|
|
|
|
new_asoc->c.sinit_max_instreams = asoc->c.sinit_max_instreams;
|
|
|
|
new_asoc->c.initial_tsn = asoc->c.initial_tsn;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Compare vtag/tietag values to determine unexpected COOKIE-ECHO
|
|
|
|
* handling action.
|
|
|
|
*
|
|
|
|
* RFC 2960 5.2.4 Handle a COOKIE ECHO when a TCB exists.
|
|
|
|
*
|
|
|
|
* Returns value representing action to be taken. These action values
|
|
|
|
* correspond to Action/Description values in RFC 2960, Table 2.
|
|
|
|
*/
|
|
|
|
static char sctp_tietags_compare(struct sctp_association *new_asoc,
|
|
|
|
const struct sctp_association *asoc)
|
|
|
|
{
|
|
|
|
/* In this case, the peer may have restarted. */
|
|
|
|
if ((asoc->c.my_vtag != new_asoc->c.my_vtag) &&
|
|
|
|
(asoc->c.peer_vtag != new_asoc->c.peer_vtag) &&
|
|
|
|
(asoc->c.my_vtag == new_asoc->c.my_ttag) &&
|
|
|
|
(asoc->c.peer_vtag == new_asoc->c.peer_ttag))
|
|
|
|
return 'A';
|
|
|
|
|
|
|
|
/* Collision case B. */
|
|
|
|
if ((asoc->c.my_vtag == new_asoc->c.my_vtag) &&
|
|
|
|
((asoc->c.peer_vtag != new_asoc->c.peer_vtag) ||
|
|
|
|
(0 == asoc->c.peer_vtag))) {
|
|
|
|
return 'B';
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Collision case D. */
|
|
|
|
if ((asoc->c.my_vtag == new_asoc->c.my_vtag) &&
|
|
|
|
(asoc->c.peer_vtag == new_asoc->c.peer_vtag))
|
|
|
|
return 'D';
|
|
|
|
|
|
|
|
/* Collision case C. */
|
|
|
|
if ((asoc->c.my_vtag != new_asoc->c.my_vtag) &&
|
|
|
|
(asoc->c.peer_vtag == new_asoc->c.peer_vtag) &&
|
|
|
|
(0 == new_asoc->c.my_ttag) &&
|
|
|
|
(0 == new_asoc->c.peer_ttag))
|
|
|
|
return 'C';
|
|
|
|
|
|
|
|
/* No match to any of the special cases; discard this packet. */
|
|
|
|
return 'E';
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Common helper routine for both duplicate and simulataneous INIT
|
|
|
|
* chunk handling.
|
|
|
|
*/
|
|
|
|
static sctp_disposition_t sctp_sf_do_unexpected_init(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg, sctp_cmd_seq_t *commands)
|
|
|
|
{
|
2017-07-23 01:34:28 +00:00
|
|
|
struct sctp_chunk *chunk = arg, *repl, *err_chunk;
|
|
|
|
struct sctp_unrecognized_param *unk_param;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct sctp_association *new_asoc;
|
|
|
|
struct sctp_packet *packet;
|
2017-07-23 01:34:28 +00:00
|
|
|
sctp_disposition_t retval;
|
2005-04-16 22:20:36 +00:00
|
|
|
int len;
|
|
|
|
|
|
|
|
/* 6.10 Bundling
|
|
|
|
* An endpoint MUST NOT bundle INIT, INIT ACK or
|
|
|
|
* SHUTDOWN COMPLETE with any other chunks.
|
|
|
|
*
|
|
|
|
* IG Section 2.11.2
|
|
|
|
* Furthermore, we require that the receiver of an INIT chunk MUST
|
|
|
|
* enforce these rules by silently discarding an arriving packet
|
|
|
|
* with an INIT chunk that is bundled with other chunks.
|
|
|
|
*/
|
|
|
|
if (!chunk->singleton)
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* 3.1 A packet containing an INIT chunk MUST have a zero Verification
|
2007-02-09 14:25:18 +00:00
|
|
|
* Tag.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
if (chunk->sctp_hdr->vtag != 0)
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_tabort_8_4_8(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Make sure that the INIT chunk has a valid length.
|
|
|
|
* In this case, we generate a protocol violation since we have
|
|
|
|
* an association established.
|
|
|
|
*/
|
2017-06-30 03:52:22 +00:00
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_init_chunk)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
|
|
|
/* Grab the INIT header. */
|
2017-06-30 03:52:21 +00:00
|
|
|
chunk->subh.init_hdr = (struct sctp_inithdr *)chunk->skb->data;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Tag the variable length parameters. */
|
2017-06-30 03:52:21 +00:00
|
|
|
chunk->param_hdr.v = skb_pull(chunk->skb, sizeof(struct sctp_inithdr));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Verify the INIT chunk before processing it. */
|
|
|
|
err_chunk = NULL;
|
net: sctp: cache auth_enable per endpoint
Currently, it is possible to create an SCTP socket, then switch
auth_enable via sysctl setting to 1 and crash the system on connect:
Oops[#1]:
CPU: 0 PID: 0 Comm: swapper Not tainted 3.14.1-mipsgit-20140415 #1
task: ffffffff8056ce80 ti: ffffffff8055c000 task.ti: ffffffff8055c000
[...]
Call Trace:
[<ffffffff8043c4e8>] sctp_auth_asoc_set_default_hmac+0x68/0x80
[<ffffffff8042b300>] sctp_process_init+0x5e0/0x8a4
[<ffffffff8042188c>] sctp_sf_do_5_1B_init+0x234/0x34c
[<ffffffff804228c8>] sctp_do_sm+0xb4/0x1e8
[<ffffffff80425a08>] sctp_endpoint_bh_rcv+0x1c4/0x214
[<ffffffff8043af68>] sctp_rcv+0x588/0x630
[<ffffffff8043e8e8>] sctp6_rcv+0x10/0x24
[<ffffffff803acb50>] ip6_input+0x2c0/0x440
[<ffffffff8030fc00>] __netif_receive_skb_core+0x4a8/0x564
[<ffffffff80310650>] process_backlog+0xb4/0x18c
[<ffffffff80313cbc>] net_rx_action+0x12c/0x210
[<ffffffff80034254>] __do_softirq+0x17c/0x2ac
[<ffffffff800345e0>] irq_exit+0x54/0xb0
[<ffffffff800075a4>] ret_from_irq+0x0/0x4
[<ffffffff800090ec>] rm7k_wait_irqoff+0x24/0x48
[<ffffffff8005e388>] cpu_startup_entry+0xc0/0x148
[<ffffffff805a88b0>] start_kernel+0x37c/0x398
Code: dd0900b8 000330f8 0126302d <dcc60000> 50c0fff1 0047182a a48306a0
03e00008 00000000
---[ end trace b530b0551467f2fd ]---
Kernel panic - not syncing: Fatal exception in interrupt
What happens while auth_enable=0 in that case is, that
ep->auth_hmacs is initialized to NULL in sctp_auth_init_hmacs()
when endpoint is being created.
After that point, if an admin switches over to auth_enable=1,
the machine can crash due to NULL pointer dereference during
reception of an INIT chunk. When we enter sctp_process_init()
via sctp_sf_do_5_1B_init() in order to respond to an INIT chunk,
the INIT verification succeeds and while we walk and process
all INIT params via sctp_process_param() we find that
net->sctp.auth_enable is set, therefore do not fall through,
but invoke sctp_auth_asoc_set_default_hmac() instead, and thus,
dereference what we have set to NULL during endpoint
initialization phase.
The fix is to make auth_enable immutable by caching its value
during endpoint initialization, so that its original value is
being carried along until destruction. The bug seems to originate
from the very first days.
Fix in joint work with Daniel Borkmann.
Reported-by: Joshua Kinard <kumba@gentoo.org>
Signed-off-by: Vlad Yasevich <vyasevic@redhat.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Tested-by: Joshua Kinard <kumba@gentoo.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-17 15:26:50 +00:00
|
|
|
if (!sctp_verify_init(net, ep, asoc, chunk->chunk_hdr->type,
|
2017-06-30 03:52:22 +00:00
|
|
|
(struct sctp_init_chunk *)chunk->chunk_hdr, chunk,
|
2005-04-16 22:20:36 +00:00
|
|
|
&err_chunk)) {
|
|
|
|
/* This chunk contains fatal error. It is to be discarded.
|
|
|
|
* Send an ABORT, with causes if there is any.
|
|
|
|
*/
|
|
|
|
if (err_chunk) {
|
2012-08-07 07:28:09 +00:00
|
|
|
packet = sctp_abort_pkt_new(net, ep, asoc, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
(__u8 *)(err_chunk->chunk_hdr) +
|
2017-06-30 03:52:13 +00:00
|
|
|
sizeof(struct sctp_chunkhdr),
|
2005-04-16 22:20:36 +00:00
|
|
|
ntohs(err_chunk->chunk_hdr->length) -
|
2017-06-30 03:52:13 +00:00
|
|
|
sizeof(struct sctp_chunkhdr));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (packet) {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT,
|
|
|
|
SCTP_PACKET(packet));
|
2012-08-07 07:28:09 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
|
2005-04-16 22:20:36 +00:00
|
|
|
retval = SCTP_DISPOSITION_CONSUME;
|
|
|
|
} else {
|
|
|
|
retval = SCTP_DISPOSITION_NOMEM;
|
|
|
|
}
|
|
|
|
goto cleanup;
|
|
|
|
} else {
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_tabort_8_4_8(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Other parameters for the endpoint SHOULD be copied from the
|
|
|
|
* existing parameters of the association (e.g. number of
|
|
|
|
* outbound streams) into the INIT ACK and cookie.
|
|
|
|
* FIXME: We are copying parameters from the endpoint not the
|
|
|
|
* association.
|
|
|
|
*/
|
|
|
|
new_asoc = sctp_make_temp_asoc(ep, chunk, GFP_ATOMIC);
|
|
|
|
if (!new_asoc)
|
|
|
|
goto nomem;
|
|
|
|
|
2009-11-10 08:57:34 +00:00
|
|
|
if (sctp_assoc_set_bind_addr_from_ep(new_asoc,
|
|
|
|
sctp_scope(sctp_source(chunk)), GFP_ATOMIC) < 0)
|
|
|
|
goto nomem;
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* In the outbound INIT ACK the endpoint MUST copy its current
|
|
|
|
* Verification Tag and Peers Verification tag into a reserved
|
|
|
|
* place (local tie-tag and per tie-tag) within the state cookie.
|
|
|
|
*/
|
2011-04-19 21:30:51 +00:00
|
|
|
if (!sctp_process_init(new_asoc, chunk, sctp_source(chunk),
|
2017-06-30 03:52:22 +00:00
|
|
|
(struct sctp_init_chunk *)chunk->chunk_hdr,
|
2006-08-22 07:19:51 +00:00
|
|
|
GFP_ATOMIC))
|
|
|
|
goto nomem;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Make sure no new addresses are being added during the
|
|
|
|
* restart. Do not do this check for COOKIE-WAIT state,
|
|
|
|
* since there are no peer addresses to check against.
|
|
|
|
* Upon return an ABORT will have been sent if needed.
|
|
|
|
*/
|
|
|
|
if (!sctp_state(asoc, COOKIE_WAIT)) {
|
|
|
|
if (!sctp_sf_check_restart_addrs(new_asoc, asoc, chunk,
|
|
|
|
commands)) {
|
|
|
|
retval = SCTP_DISPOSITION_CONSUME;
|
2006-08-22 07:19:51 +00:00
|
|
|
goto nomem_retval;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
sctp_tietags_populate(new_asoc, asoc);
|
|
|
|
|
|
|
|
/* B) "Z" shall respond immediately with an INIT ACK chunk. */
|
|
|
|
|
|
|
|
/* If there are errors need to be reported for unknown parameters,
|
|
|
|
* make sure to reserve enough room in the INIT ACK for them.
|
|
|
|
*/
|
|
|
|
len = 0;
|
|
|
|
if (err_chunk) {
|
|
|
|
len = ntohs(err_chunk->chunk_hdr->length) -
|
2017-06-30 03:52:13 +00:00
|
|
|
sizeof(struct sctp_chunkhdr);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
repl = sctp_make_init_ack(new_asoc, chunk, GFP_ATOMIC, len);
|
|
|
|
if (!repl)
|
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
/* If there are errors need to be reported for unknown parameters,
|
|
|
|
* include them in the outgoing INIT ACK as "Unrecognized parameter"
|
|
|
|
* parameter.
|
|
|
|
*/
|
|
|
|
if (err_chunk) {
|
|
|
|
/* Get the "Unrecognized parameter" parameter(s) out of the
|
|
|
|
* ERROR chunk generated by sctp_verify_init(). Since the
|
|
|
|
* error cause code for "unknown parameter" and the
|
|
|
|
* "Unrecognized parameter" type is the same, we can
|
|
|
|
* construct the parameters in INIT ACK by copying the
|
|
|
|
* ERROR causes over.
|
|
|
|
*/
|
2017-07-23 01:34:28 +00:00
|
|
|
unk_param = (struct sctp_unrecognized_param *)
|
2005-04-16 22:20:36 +00:00
|
|
|
((__u8 *)(err_chunk->chunk_hdr) +
|
2017-06-30 03:52:13 +00:00
|
|
|
sizeof(struct sctp_chunkhdr));
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Replace the cause code with the "Unrecognized parameter"
|
|
|
|
* parameter type.
|
|
|
|
*/
|
|
|
|
sctp_addto_chunk(repl, len, unk_param);
|
|
|
|
}
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_ASOC, SCTP_ASOC(new_asoc));
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Note: After sending out INIT ACK with the State Cookie parameter,
|
|
|
|
* "Z" MUST NOT allocate any resources for this new association.
|
|
|
|
* Otherwise, "Z" will be vulnerable to resource attacks.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
|
|
|
|
retval = SCTP_DISPOSITION_CONSUME;
|
|
|
|
|
2006-08-22 07:19:51 +00:00
|
|
|
return retval;
|
|
|
|
|
|
|
|
nomem:
|
|
|
|
retval = SCTP_DISPOSITION_NOMEM;
|
|
|
|
nomem_retval:
|
|
|
|
if (new_asoc)
|
|
|
|
sctp_association_free(new_asoc);
|
2005-04-16 22:20:36 +00:00
|
|
|
cleanup:
|
|
|
|
if (err_chunk)
|
|
|
|
sctp_chunk_free(err_chunk);
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2011-03-31 01:57:33 +00:00
|
|
|
* Handle simultaneous INIT.
|
2005-04-16 22:20:36 +00:00
|
|
|
* This means we started an INIT and then we got an INIT request from
|
|
|
|
* our peer.
|
|
|
|
*
|
|
|
|
* Section: 5.2.1 INIT received in COOKIE-WAIT or COOKIE-ECHOED State (Item B)
|
|
|
|
* This usually indicates an initialization collision, i.e., each
|
|
|
|
* endpoint is attempting, at about the same time, to establish an
|
|
|
|
* association with the other endpoint.
|
|
|
|
*
|
|
|
|
* Upon receipt of an INIT in the COOKIE-WAIT or COOKIE-ECHOED state, an
|
|
|
|
* endpoint MUST respond with an INIT ACK using the same parameters it
|
|
|
|
* sent in its original INIT chunk (including its Verification Tag,
|
|
|
|
* unchanged). These original parameters are combined with those from the
|
|
|
|
* newly received INIT chunk. The endpoint shall also generate a State
|
|
|
|
* Cookie with the INIT ACK. The endpoint uses the parameters sent in its
|
|
|
|
* INIT to calculate the State Cookie.
|
|
|
|
*
|
|
|
|
* After that, the endpoint MUST NOT change its state, the T1-init
|
|
|
|
* timer shall be left running and the corresponding TCB MUST NOT be
|
|
|
|
* destroyed. The normal procedures for handling State Cookies when
|
|
|
|
* a TCB exists will resolve the duplicate INITs to a single association.
|
|
|
|
*
|
|
|
|
* For an endpoint that is in the COOKIE-ECHOED state it MUST populate
|
|
|
|
* its Tie-Tags with the Tag information of itself and its peer (see
|
|
|
|
* section 5.2.2 for a description of the Tie-Tags).
|
|
|
|
*
|
|
|
|
* Verification Tag: Not explicit, but an INIT can not have a valid
|
|
|
|
* verification tag, so we skip the check.
|
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_5_2_1_siminit(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
/* Call helper to do the real work for both simulataneous and
|
|
|
|
* duplicate INIT chunk handling.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_do_unexpected_init(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Handle duplicated INIT messages. These are usually delayed
|
|
|
|
* restransmissions.
|
|
|
|
*
|
|
|
|
* Section: 5.2.2 Unexpected INIT in States Other than CLOSED,
|
|
|
|
* COOKIE-ECHOED and COOKIE-WAIT
|
|
|
|
*
|
|
|
|
* Unless otherwise stated, upon reception of an unexpected INIT for
|
|
|
|
* this association, the endpoint shall generate an INIT ACK with a
|
|
|
|
* State Cookie. In the outbound INIT ACK the endpoint MUST copy its
|
|
|
|
* current Verification Tag and peer's Verification Tag into a reserved
|
|
|
|
* place within the state cookie. We shall refer to these locations as
|
|
|
|
* the Peer's-Tie-Tag and the Local-Tie-Tag. The outbound SCTP packet
|
|
|
|
* containing this INIT ACK MUST carry a Verification Tag value equal to
|
|
|
|
* the Initiation Tag found in the unexpected INIT. And the INIT ACK
|
|
|
|
* MUST contain a new Initiation Tag (randomly generated see Section
|
|
|
|
* 5.3.1). Other parameters for the endpoint SHOULD be copied from the
|
|
|
|
* existing parameters of the association (e.g. number of outbound
|
|
|
|
* streams) into the INIT ACK and cookie.
|
|
|
|
*
|
|
|
|
* After sending out the INIT ACK, the endpoint shall take no further
|
|
|
|
* actions, i.e., the existing association, including its current state,
|
|
|
|
* and the corresponding TCB MUST NOT be changed.
|
|
|
|
*
|
|
|
|
* Note: Only when a TCB exists and the association is not in a COOKIE-
|
|
|
|
* WAIT state are the Tie-Tags populated. For a normal association INIT
|
|
|
|
* (i.e. the endpoint is in a COOKIE-WAIT state), the Tie-Tags MUST be
|
|
|
|
* set to 0 (indicating that no previous TCB existed). The INIT ACK and
|
|
|
|
* State Cookie are populated as specified in section 5.2.1.
|
|
|
|
*
|
|
|
|
* Verification Tag: Not specified, but an INIT has no way of knowing
|
|
|
|
* what the verification tag could be, so we ignore it.
|
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_5_2_2_dupinit(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
/* Call helper to do the real work for both simulataneous and
|
|
|
|
* duplicate INIT chunk handling.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_do_unexpected_init(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2007-01-16 03:18:30 +00:00
|
|
|
/*
|
|
|
|
* Unexpected INIT-ACK handler.
|
|
|
|
*
|
|
|
|
* Section 5.2.3
|
|
|
|
* If an INIT ACK received by an endpoint in any state other than the
|
|
|
|
* COOKIE-WAIT state, the endpoint should discard the INIT ACK chunk.
|
|
|
|
* An unexpected INIT ACK usually indicates the processing of an old or
|
|
|
|
* duplicated INIT chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_5_2_3_initack(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2007-01-16 03:18:30 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg, sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
/* Per the above section, we'll discard the chunk if we have an
|
|
|
|
* endpoint. If this is an OOTB INIT-ACK, treat it as such.
|
|
|
|
*/
|
2012-08-06 08:43:06 +00:00
|
|
|
if (ep == sctp_sk(net->sctp.ctl_sock)->ep)
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_ootb(net, ep, asoc, type, arg, commands);
|
2007-01-16 03:18:30 +00:00
|
|
|
else
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_discard_chunk(net, ep, asoc, type, arg, commands);
|
2007-01-16 03:18:30 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Unexpected COOKIE-ECHO handler for peer restart (Table 2, action 'A')
|
|
|
|
*
|
|
|
|
* Section 5.2.4
|
|
|
|
* A) In this case, the peer may have restarted.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
static sctp_disposition_t sctp_sf_do_dupcook_a(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
struct sctp_chunk *chunk,
|
|
|
|
sctp_cmd_seq_t *commands,
|
|
|
|
struct sctp_association *new_asoc)
|
|
|
|
{
|
2017-06-30 03:52:22 +00:00
|
|
|
struct sctp_init_chunk *peer_init;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct sctp_ulpevent *ev;
|
|
|
|
struct sctp_chunk *repl;
|
|
|
|
struct sctp_chunk *err;
|
|
|
|
sctp_disposition_t disposition;
|
|
|
|
|
|
|
|
/* new_asoc is a brand-new association, so these are not yet
|
|
|
|
* side effects--it is safe to run them here.
|
|
|
|
*/
|
|
|
|
peer_init = &chunk->subh.cookie_hdr->c.peer_init[0];
|
|
|
|
|
2011-04-19 21:30:51 +00:00
|
|
|
if (!sctp_process_init(new_asoc, chunk, sctp_source(chunk), peer_init,
|
2005-04-16 22:20:36 +00:00
|
|
|
GFP_ATOMIC))
|
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
/* Make sure no new addresses are being added during the
|
|
|
|
* restart. Though this is a pretty complicated attack
|
|
|
|
* since you'd have to get inside the cookie.
|
|
|
|
*/
|
|
|
|
if (!sctp_sf_check_restart_addrs(new_asoc, asoc, chunk, commands)) {
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If the endpoint is in the SHUTDOWN-ACK-SENT state and recognizes
|
|
|
|
* the peer has restarted (Action A), it MUST NOT setup a new
|
|
|
|
* association but instead resend the SHUTDOWN ACK and send an ERROR
|
|
|
|
* chunk with a "Cookie Received while Shutting Down" error cause to
|
|
|
|
* its peer.
|
|
|
|
*/
|
|
|
|
if (sctp_state(asoc, SHUTDOWN_ACK_SENT)) {
|
2012-08-07 07:28:09 +00:00
|
|
|
disposition = sctp_sf_do_9_2_reshutack(net, ep, asoc,
|
2005-04-16 22:20:36 +00:00
|
|
|
SCTP_ST_CHUNK(chunk->chunk_hdr->type),
|
|
|
|
chunk, commands);
|
|
|
|
if (SCTP_DISPOSITION_NOMEM == disposition)
|
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
err = sctp_make_op_error(asoc, chunk,
|
|
|
|
SCTP_ERROR_COOKIE_IN_SHUTDOWN,
|
2009-11-23 20:53:56 +00:00
|
|
|
NULL, 0, 0);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (err)
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
|
|
|
|
SCTP_CHUNK(err));
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
2011-05-29 23:23:36 +00:00
|
|
|
/* For now, stop pending T3-rtx and SACK timers, fail any unsent/unacked
|
|
|
|
* data. Consider the optional choice of resending of this data.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2011-05-29 23:23:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_T3_RTX_TIMERS_STOP, SCTP_NULL());
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_SACK));
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_PURGE_OUTQUEUE, SCTP_NULL());
|
|
|
|
|
2011-05-29 23:23:36 +00:00
|
|
|
/* Stop pending T4-rto timer, teardown ASCONF queue, ASCONF-ACK queue
|
|
|
|
* and ASCONF-ACK cache.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO));
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_PURGE_ASCONF_QUEUE, SCTP_NULL());
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
repl = sctp_make_cookie_ack(new_asoc, chunk);
|
|
|
|
if (!repl)
|
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
/* Report association restart to upper layer. */
|
|
|
|
ev = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_RESTART, 0,
|
|
|
|
new_asoc->c.sinit_num_ostreams,
|
|
|
|
new_asoc->c.sinit_max_instreams,
|
2007-03-23 18:34:08 +00:00
|
|
|
NULL, GFP_ATOMIC);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (!ev)
|
|
|
|
goto nomem_ev;
|
|
|
|
|
2006-08-22 07:19:51 +00:00
|
|
|
/* Update the content of current association. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_UPDATE_ASSOC, SCTP_ASOC(new_asoc));
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, SCTP_ULPEVENT(ev));
|
2014-10-03 22:16:20 +00:00
|
|
|
if (sctp_state(asoc, SHUTDOWN_PENDING) &&
|
|
|
|
(sctp_sstate(asoc->base.sk, CLOSING) ||
|
|
|
|
sock_flag(asoc->base.sk, SOCK_DEAD))) {
|
|
|
|
/* if were currently in SHUTDOWN_PENDING, but the socket
|
|
|
|
* has been closed by user, don't transition to ESTABLISHED.
|
|
|
|
* Instead trigger SHUTDOWN bundled with COOKIE_ACK.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl));
|
|
|
|
return sctp_sf_do_9_2_start_shutdown(net, ep, asoc,
|
|
|
|
SCTP_ST_CHUNK(0), NULL,
|
|
|
|
commands);
|
|
|
|
} else {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
|
|
|
|
SCTP_STATE(SCTP_STATE_ESTABLISHED));
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl));
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
|
|
|
|
nomem_ev:
|
|
|
|
sctp_chunk_free(repl);
|
|
|
|
nomem:
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Unexpected COOKIE-ECHO handler for setup collision (Table 2, action 'B')
|
|
|
|
*
|
|
|
|
* Section 5.2.4
|
|
|
|
* B) In this case, both sides may be attempting to start an association
|
|
|
|
* at about the same time but the peer endpoint started its INIT
|
|
|
|
* after responding to the local endpoint's INIT
|
|
|
|
*/
|
|
|
|
/* This case represents an initialization collision. */
|
2012-08-07 07:28:09 +00:00
|
|
|
static sctp_disposition_t sctp_sf_do_dupcook_b(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
struct sctp_chunk *chunk,
|
|
|
|
sctp_cmd_seq_t *commands,
|
|
|
|
struct sctp_association *new_asoc)
|
|
|
|
{
|
2017-06-30 03:52:22 +00:00
|
|
|
struct sctp_init_chunk *peer_init;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct sctp_chunk *repl;
|
|
|
|
|
|
|
|
/* new_asoc is a brand-new association, so these are not yet
|
|
|
|
* side effects--it is safe to run them here.
|
|
|
|
*/
|
|
|
|
peer_init = &chunk->subh.cookie_hdr->c.peer_init[0];
|
2011-04-19 21:30:51 +00:00
|
|
|
if (!sctp_process_init(new_asoc, chunk, sctp_source(chunk), peer_init,
|
2005-04-16 22:20:36 +00:00
|
|
|
GFP_ATOMIC))
|
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
/* Update the content of current association. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_UPDATE_ASSOC, SCTP_ASOC(new_asoc));
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
|
|
|
|
SCTP_STATE(SCTP_STATE_ESTABLISHED));
|
2012-08-07 07:28:09 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_CURRESTAB);
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMERS_START, SCTP_NULL());
|
|
|
|
|
|
|
|
repl = sctp_make_cookie_ack(new_asoc, chunk);
|
|
|
|
if (!repl)
|
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl));
|
|
|
|
|
|
|
|
/* RFC 2960 5.1 Normal Establishment of an Association
|
|
|
|
*
|
|
|
|
* D) IMPLEMENTATION NOTE: An implementation may choose to
|
|
|
|
* send the Communication Up notification to the SCTP user
|
|
|
|
* upon reception of a valid COOKIE ECHO chunk.
|
2007-05-04 20:55:27 +00:00
|
|
|
*
|
|
|
|
* Sadly, this needs to be implemented as a side-effect, because
|
|
|
|
* we are not guaranteed to have set the association id of the real
|
|
|
|
* association and so these notifications need to be delayed until
|
|
|
|
* the association id is allocated.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
|
2007-05-04 20:55:27 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_CHANGE, SCTP_U8(SCTP_COMM_UP));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Sockets API Draft Section 5.3.1.6
|
2006-12-21 00:07:04 +00:00
|
|
|
* When a peer sends a Adaptation Layer Indication parameter , SCTP
|
2005-04-16 22:20:36 +00:00
|
|
|
* delivers this notification to inform the application that of the
|
2006-12-21 00:07:04 +00:00
|
|
|
* peers requested adaptation layer.
|
2007-05-04 20:55:27 +00:00
|
|
|
*
|
|
|
|
* This also needs to be done as a side effect for the same reason as
|
|
|
|
* above.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2007-05-04 20:55:27 +00:00
|
|
|
if (asoc->peer.adaptation_ind)
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_ADAPTATION_IND, SCTP_NULL());
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
|
|
|
|
nomem:
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Unexpected COOKIE-ECHO handler for setup collision (Table 2, action 'C')
|
|
|
|
*
|
|
|
|
* Section 5.2.4
|
|
|
|
* C) In this case, the local endpoint's cookie has arrived late.
|
|
|
|
* Before it arrived, the local endpoint sent an INIT and received an
|
|
|
|
* INIT-ACK and finally sent a COOKIE ECHO with the peer's same tag
|
|
|
|
* but a new tag of its own.
|
|
|
|
*/
|
|
|
|
/* This case represents an initialization collision. */
|
2012-08-07 07:28:09 +00:00
|
|
|
static sctp_disposition_t sctp_sf_do_dupcook_c(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
struct sctp_chunk *chunk,
|
|
|
|
sctp_cmd_seq_t *commands,
|
|
|
|
struct sctp_association *new_asoc)
|
|
|
|
{
|
|
|
|
/* The cookie should be silently discarded.
|
|
|
|
* The endpoint SHOULD NOT change states and should leave
|
|
|
|
* any timers running.
|
|
|
|
*/
|
|
|
|
return SCTP_DISPOSITION_DISCARD;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Unexpected COOKIE-ECHO handler lost chunk (Table 2, action 'D')
|
|
|
|
*
|
|
|
|
* Section 5.2.4
|
|
|
|
*
|
|
|
|
* D) When both local and remote tags match the endpoint should always
|
|
|
|
* enter the ESTABLISHED state, if it has not already done so.
|
|
|
|
*/
|
|
|
|
/* This case represents an initialization collision. */
|
2012-08-07 07:28:09 +00:00
|
|
|
static sctp_disposition_t sctp_sf_do_dupcook_d(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
struct sctp_chunk *chunk,
|
|
|
|
sctp_cmd_seq_t *commands,
|
|
|
|
struct sctp_association *new_asoc)
|
|
|
|
{
|
2006-08-22 07:19:51 +00:00
|
|
|
struct sctp_ulpevent *ev = NULL, *ai_ev = NULL;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct sctp_chunk *repl;
|
|
|
|
|
|
|
|
/* Clarification from Implementor's Guide:
|
|
|
|
* D) When both local and remote tags match the endpoint should
|
2007-02-09 14:25:18 +00:00
|
|
|
* enter the ESTABLISHED state, if it is in the COOKIE-ECHOED state.
|
|
|
|
* It should stop any cookie timer that may be running and send
|
|
|
|
* a COOKIE ACK.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
/* Don't accidentally move back into established state. */
|
|
|
|
if (asoc->state < SCTP_STATE_ESTABLISHED) {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE));
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
|
|
|
|
SCTP_STATE(SCTP_STATE_ESTABLISHED));
|
2012-08-07 07:28:09 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_CURRESTAB);
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMERS_START,
|
|
|
|
SCTP_NULL());
|
|
|
|
|
|
|
|
/* RFC 2960 5.1 Normal Establishment of an Association
|
|
|
|
*
|
|
|
|
* D) IMPLEMENTATION NOTE: An implementation may choose
|
|
|
|
* to send the Communication Up notification to the
|
|
|
|
* SCTP user upon reception of a valid COOKIE
|
|
|
|
* ECHO chunk.
|
|
|
|
*/
|
2006-08-22 07:19:51 +00:00
|
|
|
ev = sctp_ulpevent_make_assoc_change(asoc, 0,
|
2005-04-16 22:20:36 +00:00
|
|
|
SCTP_COMM_UP, 0,
|
2006-08-22 07:19:51 +00:00
|
|
|
asoc->c.sinit_num_ostreams,
|
|
|
|
asoc->c.sinit_max_instreams,
|
2007-07-19 01:44:50 +00:00
|
|
|
NULL, GFP_ATOMIC);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (!ev)
|
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
/* Sockets API Draft Section 5.3.1.6
|
2006-12-21 00:07:04 +00:00
|
|
|
* When a peer sends a Adaptation Layer Indication parameter,
|
2005-04-16 22:20:36 +00:00
|
|
|
* SCTP delivers this notification to inform the application
|
2006-12-21 00:07:04 +00:00
|
|
|
* that of the peers requested adaptation layer.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2006-12-21 00:07:04 +00:00
|
|
|
if (asoc->peer.adaptation_ind) {
|
|
|
|
ai_ev = sctp_ulpevent_make_adaptation_indication(asoc,
|
2005-04-16 22:20:36 +00:00
|
|
|
GFP_ATOMIC);
|
2006-08-22 07:19:51 +00:00
|
|
|
if (!ai_ev)
|
2005-04-16 22:20:36 +00:00
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
repl = sctp_make_cookie_ack(new_asoc, chunk);
|
|
|
|
if (!repl)
|
|
|
|
goto nomem;
|
|
|
|
|
2008-06-19 23:08:18 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl));
|
|
|
|
|
2006-08-22 07:19:51 +00:00
|
|
|
if (ev)
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
|
|
|
|
SCTP_ULPEVENT(ev));
|
|
|
|
if (ai_ev)
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
|
|
|
|
SCTP_ULPEVENT(ai_ev));
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
|
|
|
|
nomem:
|
2006-08-22 07:19:51 +00:00
|
|
|
if (ai_ev)
|
|
|
|
sctp_ulpevent_free(ai_ev);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (ev)
|
|
|
|
sctp_ulpevent_free(ev);
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Handle a duplicate COOKIE-ECHO. This usually means a cookie-carrying
|
|
|
|
* chunk was retransmitted and then delayed in the network.
|
|
|
|
*
|
|
|
|
* Section: 5.2.4 Handle a COOKIE ECHO when a TCB exists
|
|
|
|
*
|
|
|
|
* Verification Tag: None. Do cookie validation.
|
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_5_2_4_dupcook(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
sctp_disposition_t retval;
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
struct sctp_association *new_asoc;
|
|
|
|
int error = 0;
|
|
|
|
char action;
|
|
|
|
struct sctp_chunk *err_chk_p;
|
|
|
|
|
|
|
|
/* Make sure that the chunk has a valid length from the protocol
|
|
|
|
* perspective. In this case check to make sure we have at least
|
|
|
|
* enough for the chunk header. Cookie length verification is
|
|
|
|
* done later.
|
|
|
|
*/
|
2017-06-30 03:52:13 +00:00
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_chunkhdr)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
|
|
|
|
|
|
|
/* "Decode" the chunk. We have no optional parameters so we
|
|
|
|
* are in good shape.
|
|
|
|
*/
|
2007-02-09 14:25:18 +00:00
|
|
|
chunk->subh.cookie_hdr = (struct sctp_signed_cookie *)chunk->skb->data;
|
2006-05-06 00:04:43 +00:00
|
|
|
if (!pskb_pull(chunk->skb, ntohs(chunk->chunk_hdr->length) -
|
2017-06-30 03:52:13 +00:00
|
|
|
sizeof(struct sctp_chunkhdr)))
|
2006-05-06 00:04:43 +00:00
|
|
|
goto nomem;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* In RFC 2960 5.2.4 3, if both Verification Tags in the State Cookie
|
|
|
|
* of a duplicate COOKIE ECHO match the Verification Tags of the
|
|
|
|
* current association, consider the State Cookie valid even if
|
|
|
|
* the lifespan is exceeded.
|
|
|
|
*/
|
|
|
|
new_asoc = sctp_unpack_cookie(ep, asoc, chunk, GFP_ATOMIC, &error,
|
|
|
|
&err_chk_p);
|
|
|
|
|
|
|
|
/* FIXME:
|
|
|
|
* If the re-build failed, what is the proper error path
|
|
|
|
* from here?
|
|
|
|
*
|
|
|
|
* [We should abort the association. --piggy]
|
|
|
|
*/
|
|
|
|
if (!new_asoc) {
|
|
|
|
/* FIXME: Several errors are possible. A bad cookie should
|
|
|
|
* be silently discarded, but think about logging it too.
|
|
|
|
*/
|
|
|
|
switch (error) {
|
|
|
|
case -SCTP_IERROR_NOMEM:
|
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
case -SCTP_IERROR_STALE_COOKIE:
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_send_stale_cookie_err(net, ep, asoc, chunk, commands,
|
2005-04-16 22:20:36 +00:00
|
|
|
err_chk_p);
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
case -SCTP_IERROR_BAD_SIG:
|
|
|
|
default:
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2007-04-21 00:09:22 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2017-05-23 05:28:55 +00:00
|
|
|
/* Set temp so that it won't be added into hashtable */
|
|
|
|
new_asoc->temp = 1;
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Compare the tie_tag in cookie with the verification tag of
|
|
|
|
* current association.
|
|
|
|
*/
|
|
|
|
action = sctp_tietags_compare(new_asoc, asoc);
|
|
|
|
|
|
|
|
switch (action) {
|
|
|
|
case 'A': /* Association restart. */
|
2012-08-07 07:28:09 +00:00
|
|
|
retval = sctp_sf_do_dupcook_a(net, ep, asoc, chunk, commands,
|
2005-04-16 22:20:36 +00:00
|
|
|
new_asoc);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 'B': /* Collision case B. */
|
2012-08-07 07:28:09 +00:00
|
|
|
retval = sctp_sf_do_dupcook_b(net, ep, asoc, chunk, commands,
|
2005-04-16 22:20:36 +00:00
|
|
|
new_asoc);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 'C': /* Collision case C. */
|
2012-08-07 07:28:09 +00:00
|
|
|
retval = sctp_sf_do_dupcook_c(net, ep, asoc, chunk, commands,
|
2005-04-16 22:20:36 +00:00
|
|
|
new_asoc);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 'D': /* Collision case D. */
|
2012-08-07 07:28:09 +00:00
|
|
|
retval = sctp_sf_do_dupcook_d(net, ep, asoc, chunk, commands,
|
2005-04-16 22:20:36 +00:00
|
|
|
new_asoc);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default: /* Discard packet for all others. */
|
2012-08-07 07:28:09 +00:00
|
|
|
retval = sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
break;
|
2007-04-21 00:09:22 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Delete the tempory new association. */
|
2013-03-12 15:53:23 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SET_ASOC, SCTP_ASOC(new_asoc));
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
|
|
|
|
|
2011-08-29 21:02:24 +00:00
|
|
|
/* Restore association pointer to provide SCTP command interpeter
|
|
|
|
* with a valid context in case it needs to manipulate
|
|
|
|
* the queues */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SET_ASOC,
|
|
|
|
SCTP_ASOC((struct sctp_association *)asoc));
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
return retval;
|
|
|
|
|
|
|
|
nomem:
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process an ABORT. (SHUTDOWN-PENDING state)
|
|
|
|
*
|
|
|
|
* See sctp_sf_do_9_1_abort().
|
|
|
|
*/
|
|
|
|
sctp_disposition_t sctp_sf_shutdown_pending_abort(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
|
|
|
|
if (!sctp_vtag_verify_either(chunk, asoc))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Make sure that the ABORT chunk has a valid length.
|
|
|
|
* Since this is an ABORT chunk, we have to discard it
|
|
|
|
* because of the following text:
|
|
|
|
* RFC 2960, Section 3.3.7
|
|
|
|
* If an endpoint receives an ABORT with a format error or for an
|
|
|
|
* association that doesn't exist, it MUST silently discard it.
|
2011-03-31 01:57:33 +00:00
|
|
|
* Because the length is "invalid", we can't really discard just
|
2005-04-16 22:20:36 +00:00
|
|
|
* as we do not know its true length. So, to be safe, discard the
|
|
|
|
* packet.
|
|
|
|
*/
|
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_abort_chunk_t)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-12-20 22:12:59 +00:00
|
|
|
/* ADD-IP: Special case for ABORT chunks
|
|
|
|
* F4) One special consideration is that ABORT Chunks arriving
|
|
|
|
* destined to the IP address being deleted MUST be
|
|
|
|
* ignored (see Section 5.3.1 for further details).
|
|
|
|
*/
|
|
|
|
if (SCTP_ADDR_DEL ==
|
|
|
|
sctp_bind_addr_state(&asoc->base.bind_addr, &chunk->dest))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_discard_chunk(net, ep, asoc, type, arg, commands);
|
2007-12-20 22:12:59 +00:00
|
|
|
|
2012-08-07 07:28:09 +00:00
|
|
|
return __sctp_sf_do_9_1_abort(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process an ABORT. (SHUTDOWN-SENT state)
|
|
|
|
*
|
|
|
|
* See sctp_sf_do_9_1_abort().
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_shutdown_sent_abort(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
|
|
|
|
if (!sctp_vtag_verify_either(chunk, asoc))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Make sure that the ABORT chunk has a valid length.
|
|
|
|
* Since this is an ABORT chunk, we have to discard it
|
|
|
|
* because of the following text:
|
|
|
|
* RFC 2960, Section 3.3.7
|
|
|
|
* If an endpoint receives an ABORT with a format error or for an
|
|
|
|
* association that doesn't exist, it MUST silently discard it.
|
2011-03-31 01:57:33 +00:00
|
|
|
* Because the length is "invalid", we can't really discard just
|
2005-04-16 22:20:36 +00:00
|
|
|
* as we do not know its true length. So, to be safe, discard the
|
|
|
|
* packet.
|
|
|
|
*/
|
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_abort_chunk_t)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-12-20 22:12:59 +00:00
|
|
|
/* ADD-IP: Special case for ABORT chunks
|
|
|
|
* F4) One special consideration is that ABORT Chunks arriving
|
|
|
|
* destined to the IP address being deleted MUST be
|
|
|
|
* ignored (see Section 5.3.1 for further details).
|
|
|
|
*/
|
|
|
|
if (SCTP_ADDR_DEL ==
|
|
|
|
sctp_bind_addr_state(&asoc->base.bind_addr, &chunk->dest))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_discard_chunk(net, ep, asoc, type, arg, commands);
|
2007-12-20 22:12:59 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Stop the T2-shutdown timer. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN));
|
|
|
|
|
|
|
|
/* Stop the T5-shutdown guard timer. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD));
|
|
|
|
|
2012-08-07 07:28:09 +00:00
|
|
|
return __sctp_sf_do_9_1_abort(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process an ABORT. (SHUTDOWN-ACK-SENT state)
|
|
|
|
*
|
|
|
|
* See sctp_sf_do_9_1_abort().
|
|
|
|
*/
|
|
|
|
sctp_disposition_t sctp_sf_shutdown_ack_sent_abort(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
/* The same T2 timer, so we should be able to use
|
|
|
|
* common function with the SHUTDOWN-SENT state.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_shutdown_sent_abort(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Handle an Error received in COOKIE_ECHOED state.
|
|
|
|
*
|
|
|
|
* Only handle the error type of stale COOKIE Error, the other errors will
|
|
|
|
* be ignored.
|
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_cookie_echoed_err(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
sctp_errhdr_t *err;
|
|
|
|
|
|
|
|
if (!sctp_vtag_verify(chunk, asoc))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Make sure that the ERROR chunk has a valid length.
|
|
|
|
* The parameter walking depends on this as well.
|
|
|
|
*/
|
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_operr_chunk_t)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
|
|
|
|
|
|
|
/* Process the error here */
|
|
|
|
/* FUTURE FIXME: When PR-SCTP related and other optional
|
|
|
|
* parms are emitted, this will have to change to handle multiple
|
|
|
|
* errors.
|
|
|
|
*/
|
|
|
|
sctp_walk_errors(err, chunk->chunk_hdr) {
|
|
|
|
if (SCTP_ERROR_STALE_COOKIE == err->cause)
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_do_5_2_6_stale(net, ep, asoc, type,
|
2005-04-16 22:20:36 +00:00
|
|
|
arg, commands);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* It is possible to have malformed error causes, and that
|
|
|
|
* will cause us to end the walk early. However, since
|
|
|
|
* we are discarding the packet, there should be no adverse
|
|
|
|
* affects.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Handle a Stale COOKIE Error
|
|
|
|
*
|
|
|
|
* Section: 5.2.6 Handle Stale COOKIE Error
|
|
|
|
* If the association is in the COOKIE-ECHOED state, the endpoint may elect
|
|
|
|
* one of the following three alternatives.
|
|
|
|
* ...
|
|
|
|
* 3) Send a new INIT chunk to the endpoint, adding a Cookie
|
|
|
|
* Preservative parameter requesting an extension to the lifetime of
|
|
|
|
* the State Cookie. When calculating the time extension, an
|
|
|
|
* implementation SHOULD use the RTT information measured based on the
|
|
|
|
* previous COOKIE ECHO / ERROR exchange, and should add no more
|
|
|
|
* than 1 second beyond the measured RTT, due to long State Cookie
|
|
|
|
* lifetimes making the endpoint more subject to a replay attack.
|
|
|
|
*
|
|
|
|
* Verification Tag: Not explicit, but safe to ignore.
|
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
static sctp_disposition_t sctp_sf_do_5_2_6_stale(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
2005-06-20 20:14:57 +00:00
|
|
|
int attempts = asoc->init_err_counter + 1;
|
2017-07-17 03:29:51 +00:00
|
|
|
struct sctp_chunk *chunk = arg, *reply;
|
|
|
|
struct sctp_cookie_preserve_param bht;
|
|
|
|
struct sctp_bind_addr *bp;
|
|
|
|
sctp_errhdr_t *err;
|
|
|
|
u32 stale;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2006-01-30 23:59:54 +00:00
|
|
|
if (attempts > asoc->max_init_attempts) {
|
2006-05-19 17:58:12 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
|
|
|
|
SCTP_ERROR(ETIMEDOUT));
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED,
|
2006-11-21 01:00:44 +00:00
|
|
|
SCTP_PERR(SCTP_ERROR_STALE_COOKIE));
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_DELETE_TCB;
|
|
|
|
}
|
|
|
|
|
|
|
|
err = (sctp_errhdr_t *)(chunk->skb->data);
|
|
|
|
|
|
|
|
/* When calculating the time extension, an implementation
|
|
|
|
* SHOULD use the RTT information measured based on the
|
|
|
|
* previous COOKIE ECHO / ERROR exchange, and should add no
|
|
|
|
* more than 1 second beyond the measured RTT, due to long
|
|
|
|
* State Cookie lifetimes making the endpoint more subject to
|
|
|
|
* a replay attack.
|
|
|
|
* Measure of Staleness's unit is usec. (1/1000000 sec)
|
|
|
|
* Suggested Cookie Life-span Increment's unit is msec.
|
|
|
|
* (1/1000 sec)
|
|
|
|
* In general, if you use the suggested cookie life, the value
|
|
|
|
* found in the field of measure of staleness should be doubled
|
|
|
|
* to give ample time to retransmit the new cookie and thus
|
|
|
|
* yield a higher probability of success on the reattempt.
|
|
|
|
*/
|
2006-11-21 01:27:15 +00:00
|
|
|
stale = ntohl(*(__be32 *)((u8 *)err + sizeof(sctp_errhdr_t)));
|
2005-04-16 22:20:36 +00:00
|
|
|
stale = (stale * 2) / 1000;
|
|
|
|
|
|
|
|
bht.param_hdr.type = SCTP_PARAM_COOKIE_PRESERVATIVE;
|
|
|
|
bht.param_hdr.length = htons(sizeof(bht));
|
|
|
|
bht.lifespan_increment = htonl(stale);
|
|
|
|
|
|
|
|
/* Build that new INIT chunk. */
|
|
|
|
bp = (struct sctp_bind_addr *) &asoc->base.bind_addr;
|
|
|
|
reply = sctp_make_init(asoc, bp, GFP_ATOMIC, sizeof(bht));
|
|
|
|
if (!reply)
|
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
sctp_addto_chunk(reply, sizeof(bht), &bht);
|
|
|
|
|
|
|
|
/* Clear peer's init_tag cached in assoc as we are sending a new INIT */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_CLEAR_INIT_TAG, SCTP_NULL());
|
|
|
|
|
|
|
|
/* Stop pending T3-rtx and heartbeat timers */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_T3_RTX_TIMERS_STOP, SCTP_NULL());
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMERS_STOP, SCTP_NULL());
|
|
|
|
|
|
|
|
/* Delete non-primary peer ip addresses since we are transitioning
|
|
|
|
* back to the COOKIE-WAIT state
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_DEL_NON_PRIMARY, SCTP_NULL());
|
|
|
|
|
2007-02-09 14:25:18 +00:00
|
|
|
/* If we've sent any data bundled with COOKIE-ECHO we will need to
|
|
|
|
* resend
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2007-10-24 19:59:16 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_T1_RETRAN,
|
2005-04-16 22:20:36 +00:00
|
|
|
SCTP_TRANSPORT(asoc->peer.primary_path));
|
|
|
|
|
|
|
|
/* Cast away the const modifier, as we want to just
|
|
|
|
* rerun it through as a sideffect.
|
|
|
|
*/
|
2005-06-20 20:14:57 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_COUNTER_INC, SCTP_NULL());
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE));
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
|
|
|
|
SCTP_STATE(SCTP_STATE_COOKIE_WAIT));
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply));
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
|
|
|
|
nomem:
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process an ABORT.
|
|
|
|
*
|
|
|
|
* Section: 9.1
|
|
|
|
* After checking the Verification Tag, the receiving endpoint shall
|
|
|
|
* remove the association from its record, and shall report the
|
|
|
|
* termination to its upper layer.
|
|
|
|
*
|
|
|
|
* Verification Tag: 8.5.1 Exceptions in Verification Tag Rules
|
|
|
|
* B) Rules for packet carrying ABORT:
|
|
|
|
*
|
|
|
|
* - The endpoint shall always fill in the Verification Tag field of the
|
|
|
|
* outbound packet with the destination endpoint's tag value if it
|
|
|
|
* is known.
|
|
|
|
*
|
|
|
|
* - If the ABORT is sent in response to an OOTB packet, the endpoint
|
|
|
|
* MUST follow the procedure described in Section 8.4.
|
|
|
|
*
|
|
|
|
* - The receiver MUST accept the packet if the Verification Tag
|
|
|
|
* matches either its own tag, OR the tag of its peer. Otherwise, the
|
|
|
|
* receiver MUST silently discard the packet and take no further
|
|
|
|
* action.
|
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_9_1_abort(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
|
|
|
|
if (!sctp_vtag_verify_either(chunk, asoc))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Make sure that the ABORT chunk has a valid length.
|
|
|
|
* Since this is an ABORT chunk, we have to discard it
|
|
|
|
* because of the following text:
|
|
|
|
* RFC 2960, Section 3.3.7
|
|
|
|
* If an endpoint receives an ABORT with a format error or for an
|
|
|
|
* association that doesn't exist, it MUST silently discard it.
|
2011-03-31 01:57:33 +00:00
|
|
|
* Because the length is "invalid", we can't really discard just
|
2005-04-16 22:20:36 +00:00
|
|
|
* as we do not know its true length. So, to be safe, discard the
|
|
|
|
* packet.
|
|
|
|
*/
|
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_abort_chunk_t)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-12-20 22:12:59 +00:00
|
|
|
/* ADD-IP: Special case for ABORT chunks
|
|
|
|
* F4) One special consideration is that ABORT Chunks arriving
|
|
|
|
* destined to the IP address being deleted MUST be
|
|
|
|
* ignored (see Section 5.3.1 for further details).
|
|
|
|
*/
|
|
|
|
if (SCTP_ADDR_DEL ==
|
|
|
|
sctp_bind_addr_state(&asoc->base.bind_addr, &chunk->dest))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_discard_chunk(net, ep, asoc, type, arg, commands);
|
2007-12-20 22:12:59 +00:00
|
|
|
|
2012-08-07 07:28:09 +00:00
|
|
|
return __sctp_sf_do_9_1_abort(net, ep, asoc, type, arg, commands);
|
2007-12-20 22:12:59 +00:00
|
|
|
}
|
|
|
|
|
2012-08-07 07:28:09 +00:00
|
|
|
static sctp_disposition_t __sctp_sf_do_9_1_abort(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2007-12-20 22:12:59 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
2012-04-15 05:58:06 +00:00
|
|
|
unsigned int len;
|
2007-12-20 22:12:59 +00:00
|
|
|
__be16 error = SCTP_ERROR_NO_ERROR;
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* See if we have an error cause code in the chunk. */
|
|
|
|
len = ntohs(chunk->chunk_hdr->length);
|
2011-04-19 21:26:26 +00:00
|
|
|
if (len >= sizeof(struct sctp_chunkhdr) + sizeof(struct sctp_errhdr)) {
|
|
|
|
|
|
|
|
sctp_errhdr_t *err;
|
|
|
|
sctp_walk_errors(err, chunk->chunk_hdr);
|
|
|
|
if ((void *)err != (void *)chunk->chunk_end)
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2011-04-19 21:26:26 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
error = ((sctp_errhdr_t *)chunk->skb->data)->cause;
|
2011-04-19 21:26:26 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2006-05-19 17:58:12 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, SCTP_ERROR(ECONNRESET));
|
2007-02-09 14:25:18 +00:00
|
|
|
/* ASSOC_FAILED will DELETE_TCB. */
|
2006-11-21 01:01:06 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, SCTP_PERR(error));
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_ABORTEDS);
|
|
|
|
SCTP_DEC_STATS(net, SCTP_MIB_CURRESTAB);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
return SCTP_DISPOSITION_ABORT;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process an ABORT. (COOKIE-WAIT state)
|
|
|
|
*
|
|
|
|
* See sctp_sf_do_9_1_abort() above.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_cookie_wait_abort(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
2012-04-15 05:58:06 +00:00
|
|
|
unsigned int len;
|
2006-11-21 01:00:25 +00:00
|
|
|
__be16 error = SCTP_ERROR_NO_ERROR;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (!sctp_vtag_verify_either(chunk, asoc))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Make sure that the ABORT chunk has a valid length.
|
|
|
|
* Since this is an ABORT chunk, we have to discard it
|
|
|
|
* because of the following text:
|
|
|
|
* RFC 2960, Section 3.3.7
|
|
|
|
* If an endpoint receives an ABORT with a format error or for an
|
|
|
|
* association that doesn't exist, it MUST silently discard it.
|
2011-03-31 01:57:33 +00:00
|
|
|
* Because the length is "invalid", we can't really discard just
|
2005-04-16 22:20:36 +00:00
|
|
|
* as we do not know its true length. So, to be safe, discard the
|
|
|
|
* packet.
|
|
|
|
*/
|
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_abort_chunk_t)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* See if we have an error cause code in the chunk. */
|
|
|
|
len = ntohs(chunk->chunk_hdr->length);
|
|
|
|
if (len >= sizeof(struct sctp_chunkhdr) + sizeof(struct sctp_errhdr))
|
|
|
|
error = ((sctp_errhdr_t *)chunk->skb->data)->cause;
|
|
|
|
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_stop_t1_and_abort(net, commands, error, ECONNREFUSED, asoc,
|
2006-05-19 17:58:12 +00:00
|
|
|
chunk->transport);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process an incoming ICMP as an ABORT. (COOKIE-WAIT state)
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_cookie_wait_icmp_abort(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_stop_t1_and_abort(net, commands, SCTP_ERROR_NO_ERROR,
|
2006-05-19 17:58:12 +00:00
|
|
|
ENOPROTOOPT, asoc,
|
2005-06-20 20:14:57 +00:00
|
|
|
(struct sctp_transport *)arg);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process an ABORT. (COOKIE-ECHOED state)
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_cookie_echoed_abort(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
/* There is a single T1 timer, so we should be able to use
|
|
|
|
* common function with the COOKIE-WAIT state.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_cookie_wait_abort(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Stop T1 timer and abort association with "INIT failed".
|
|
|
|
*
|
|
|
|
* This is common code called by several sctp_sf_*_abort() functions above.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
static sctp_disposition_t sctp_stop_t1_and_abort(struct net *net,
|
|
|
|
sctp_cmd_seq_t *commands,
|
2006-11-21 01:00:25 +00:00
|
|
|
__be16 error, int sk_err,
|
2005-06-20 20:14:57 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
struct sctp_transport *transport)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
pr_debug("%s: ABORT received (INIT)\n", __func__);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
|
|
|
|
SCTP_STATE(SCTP_STATE_CLOSED));
|
2012-08-07 07:28:09 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_ABORTEDS);
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
|
2006-05-19 17:58:12 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, SCTP_ERROR(sk_err));
|
2005-04-16 22:20:36 +00:00
|
|
|
/* CMD_INIT_FAILED will DELETE_TCB. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED,
|
2006-11-21 01:00:44 +00:00
|
|
|
SCTP_PERR(error));
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
|
2005-06-20 20:14:57 +00:00
|
|
|
return SCTP_DISPOSITION_ABORT;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sctp_sf_do_9_2_shut
|
|
|
|
*
|
|
|
|
* Section: 9.2
|
|
|
|
* Upon the reception of the SHUTDOWN, the peer endpoint shall
|
|
|
|
* - enter the SHUTDOWN-RECEIVED state,
|
|
|
|
*
|
|
|
|
* - stop accepting new data from its SCTP user
|
|
|
|
*
|
|
|
|
* - verify, by checking the Cumulative TSN Ack field of the chunk,
|
|
|
|
* that all its outstanding DATA chunks have been received by the
|
|
|
|
* SHUTDOWN sender.
|
|
|
|
*
|
|
|
|
* Once an endpoint as reached the SHUTDOWN-RECEIVED state it MUST NOT
|
|
|
|
* send a SHUTDOWN in response to a ULP request. And should discard
|
|
|
|
* subsequent SHUTDOWN chunks.
|
|
|
|
*
|
|
|
|
* If there are still outstanding DATA chunks left, the SHUTDOWN
|
|
|
|
* receiver shall continue to follow normal data transmission
|
|
|
|
* procedures defined in Section 6 until all outstanding DATA chunks
|
|
|
|
* are acknowledged; however, the SHUTDOWN receiver MUST NOT accept
|
|
|
|
* new data from its SCTP user.
|
|
|
|
*
|
|
|
|
* Verification Tag: 8.5 Verification Tag [Normal verification]
|
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_9_2_shutdown(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
sctp_shutdownhdr_t *sdh;
|
|
|
|
sctp_disposition_t disposition;
|
|
|
|
struct sctp_ulpevent *ev;
|
2008-10-23 08:00:21 +00:00
|
|
|
__u32 ctsn;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (!sctp_vtag_verify(chunk, asoc))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Make sure that the SHUTDOWN chunk has a valid length. */
|
|
|
|
if (!sctp_chunk_length_valid(chunk,
|
|
|
|
sizeof(struct sctp_shutdown_chunk_t)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
|
|
|
|
|
|
|
/* Convert the elaborate header. */
|
|
|
|
sdh = (sctp_shutdownhdr_t *)chunk->skb->data;
|
|
|
|
skb_pull(chunk->skb, sizeof(sctp_shutdownhdr_t));
|
|
|
|
chunk->subh.shutdown_hdr = sdh;
|
2008-10-23 08:00:21 +00:00
|
|
|
ctsn = ntohl(sdh->cum_tsn_ack);
|
|
|
|
|
2009-08-22 03:24:00 +00:00
|
|
|
if (TSN_lt(ctsn, asoc->ctsn_ack_point)) {
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
pr_debug("%s: ctsn:%x, ctsn_ack_point:%x\n", __func__, ctsn,
|
|
|
|
asoc->ctsn_ack_point);
|
|
|
|
|
2009-08-22 03:24:00 +00:00
|
|
|
return SCTP_DISPOSITION_DISCARD;
|
|
|
|
}
|
|
|
|
|
2008-10-23 08:00:21 +00:00
|
|
|
/* If Cumulative TSN Ack beyond the max tsn currently
|
|
|
|
* send, terminating the association and respond to the
|
|
|
|
* sender with an ABORT.
|
|
|
|
*/
|
|
|
|
if (!TSN_lt(ctsn, asoc->next_tsn))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_ctsn(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2005-09-23 06:48:38 +00:00
|
|
|
/* API 5.3.1.5 SCTP_SHUTDOWN_EVENT
|
|
|
|
* When a peer sends a SHUTDOWN, SCTP delivers this notification to
|
|
|
|
* inform the application that it should cease sending data.
|
|
|
|
*/
|
|
|
|
ev = sctp_ulpevent_make_shutdown_event(asoc, 0, GFP_ATOMIC);
|
|
|
|
if (!ev) {
|
|
|
|
disposition = SCTP_DISPOSITION_NOMEM;
|
2007-02-09 14:25:18 +00:00
|
|
|
goto out;
|
2005-09-23 06:48:38 +00:00
|
|
|
}
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, SCTP_ULPEVENT(ev));
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Upon the reception of the SHUTDOWN, the peer endpoint shall
|
|
|
|
* - enter the SHUTDOWN-RECEIVED state,
|
|
|
|
* - stop accepting new data from its SCTP user
|
|
|
|
*
|
|
|
|
* [This is implicit in the new state.]
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
|
|
|
|
SCTP_STATE(SCTP_STATE_SHUTDOWN_RECEIVED));
|
|
|
|
disposition = SCTP_DISPOSITION_CONSUME;
|
|
|
|
|
|
|
|
if (sctp_outq_is_empty(&asoc->outqueue)) {
|
2012-08-07 07:28:09 +00:00
|
|
|
disposition = sctp_sf_do_9_2_shutdown_ack(net, ep, asoc, type,
|
2005-04-16 22:20:36 +00:00
|
|
|
arg, commands);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (SCTP_DISPOSITION_NOMEM == disposition)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* - verify, by checking the Cumulative TSN Ack field of the
|
|
|
|
* chunk, that all its outstanding DATA chunks have been
|
|
|
|
* received by the SHUTDOWN sender.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_CTSN,
|
2006-11-21 01:26:53 +00:00
|
|
|
SCTP_BE32(chunk->subh.shutdown_hdr->cum_tsn_ack));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
out:
|
|
|
|
return disposition;
|
|
|
|
}
|
|
|
|
|
2008-10-23 08:01:18 +00:00
|
|
|
/*
|
|
|
|
* sctp_sf_do_9_2_shut_ctsn
|
|
|
|
*
|
|
|
|
* Once an endpoint has reached the SHUTDOWN-RECEIVED state,
|
|
|
|
* it MUST NOT send a SHUTDOWN in response to a ULP request.
|
|
|
|
* The Cumulative TSN Ack of the received SHUTDOWN chunk
|
|
|
|
* MUST be processed.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_9_2_shut_ctsn(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2008-10-23 08:01:18 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
sctp_shutdownhdr_t *sdh;
|
2009-08-22 03:24:00 +00:00
|
|
|
__u32 ctsn;
|
2008-10-23 08:01:18 +00:00
|
|
|
|
|
|
|
if (!sctp_vtag_verify(chunk, asoc))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2008-10-23 08:01:18 +00:00
|
|
|
|
|
|
|
/* Make sure that the SHUTDOWN chunk has a valid length. */
|
|
|
|
if (!sctp_chunk_length_valid(chunk,
|
|
|
|
sizeof(struct sctp_shutdown_chunk_t)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2008-10-23 08:01:18 +00:00
|
|
|
commands);
|
|
|
|
|
|
|
|
sdh = (sctp_shutdownhdr_t *)chunk->skb->data;
|
2009-08-22 03:24:00 +00:00
|
|
|
ctsn = ntohl(sdh->cum_tsn_ack);
|
|
|
|
|
|
|
|
if (TSN_lt(ctsn, asoc->ctsn_ack_point)) {
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
pr_debug("%s: ctsn:%x, ctsn_ack_point:%x\n", __func__, ctsn,
|
|
|
|
asoc->ctsn_ack_point);
|
|
|
|
|
2009-08-22 03:24:00 +00:00
|
|
|
return SCTP_DISPOSITION_DISCARD;
|
|
|
|
}
|
2008-10-23 08:01:18 +00:00
|
|
|
|
|
|
|
/* If Cumulative TSN Ack beyond the max tsn currently
|
|
|
|
* send, terminating the association and respond to the
|
|
|
|
* sender with an ABORT.
|
|
|
|
*/
|
2009-08-22 03:24:00 +00:00
|
|
|
if (!TSN_lt(ctsn, asoc->next_tsn))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_ctsn(net, ep, asoc, type, arg, commands);
|
2008-10-23 08:01:18 +00:00
|
|
|
|
|
|
|
/* verify, by checking the Cumulative TSN Ack field of the
|
|
|
|
* chunk, that all its outstanding DATA chunks have been
|
|
|
|
* received by the SHUTDOWN sender.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_CTSN,
|
|
|
|
SCTP_BE32(sdh->cum_tsn_ack));
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* RFC 2960 9.2
|
|
|
|
* If an endpoint is in SHUTDOWN-ACK-SENT state and receives an INIT chunk
|
|
|
|
* (e.g., if the SHUTDOWN COMPLETE was lost) with source and destination
|
|
|
|
* transport addresses (either in the IP addresses or in the INIT chunk)
|
|
|
|
* that belong to this association, it should discard the INIT chunk and
|
|
|
|
* retransmit the SHUTDOWN ACK chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_9_2_reshutack(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = (struct sctp_chunk *) arg;
|
|
|
|
struct sctp_chunk *reply;
|
|
|
|
|
2007-09-07 20:30:54 +00:00
|
|
|
/* Make sure that the chunk has a valid length */
|
2017-06-30 03:52:13 +00:00
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_chunkhdr)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2007-09-07 20:30:54 +00:00
|
|
|
commands);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Since we are not going to really process this INIT, there
|
|
|
|
* is no point in verifying chunk boundries. Just generate
|
|
|
|
* the SHUTDOWN ACK.
|
|
|
|
*/
|
|
|
|
reply = sctp_make_shutdown_ack(asoc, chunk);
|
|
|
|
if (NULL == reply)
|
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
/* Set the transport for the SHUTDOWN ACK chunk and the timeout for
|
|
|
|
* the T2-SHUTDOWN timer.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SETUP_T2, SCTP_CHUNK(reply));
|
|
|
|
|
|
|
|
/* and restart the T2-shutdown timer. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN));
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply));
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
nomem:
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sctp_sf_do_ecn_cwr
|
|
|
|
*
|
|
|
|
* Section: Appendix A: Explicit Congestion Notification
|
|
|
|
*
|
|
|
|
* CWR:
|
|
|
|
*
|
|
|
|
* RFC 2481 details a specific bit for a sender to send in the header of
|
|
|
|
* its next outbound TCP segment to indicate to its peer that it has
|
|
|
|
* reduced its congestion window. This is termed the CWR bit. For
|
|
|
|
* SCTP the same indication is made by including the CWR chunk.
|
|
|
|
* This chunk contains one data element, i.e. the TSN number that
|
|
|
|
* was sent in the ECNE chunk. This element represents the lowest
|
|
|
|
* TSN number in the datagram that was originally marked with the
|
|
|
|
* CE bit.
|
|
|
|
*
|
|
|
|
* Verification Tag: 8.5 Verification Tag [Normal verification]
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_ecn_cwr(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
sctp_cwrhdr_t *cwr;
|
|
|
|
struct sctp_chunk *chunk = arg;
|
2006-11-21 01:27:15 +00:00
|
|
|
u32 lowest_tsn;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (!sctp_vtag_verify(chunk, asoc))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_ecne_chunk_t)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
2007-02-09 14:25:18 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
cwr = (sctp_cwrhdr_t *) chunk->skb->data;
|
|
|
|
skb_pull(chunk->skb, sizeof(sctp_cwrhdr_t));
|
|
|
|
|
2006-11-21 01:27:15 +00:00
|
|
|
lowest_tsn = ntohl(cwr->lowest_tsn);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Does this CWR ack the last sent congestion notification? */
|
2006-11-21 01:27:15 +00:00
|
|
|
if (TSN_lte(asoc->last_ecne_tsn, lowest_tsn)) {
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Stop sending ECNE. */
|
|
|
|
sctp_add_cmd_sf(commands,
|
|
|
|
SCTP_CMD_ECN_CWR,
|
2006-11-21 01:27:15 +00:00
|
|
|
SCTP_U32(lowest_tsn));
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sctp_sf_do_ecne
|
|
|
|
*
|
|
|
|
* Section: Appendix A: Explicit Congestion Notification
|
|
|
|
*
|
|
|
|
* ECN-Echo
|
|
|
|
*
|
|
|
|
* RFC 2481 details a specific bit for a receiver to send back in its
|
|
|
|
* TCP acknowledgements to notify the sender of the Congestion
|
|
|
|
* Experienced (CE) bit having arrived from the network. For SCTP this
|
|
|
|
* same indication is made by including the ECNE chunk. This chunk
|
|
|
|
* contains one data element, i.e. the lowest TSN associated with the IP
|
|
|
|
* datagram marked with the CE bit.....
|
|
|
|
*
|
|
|
|
* Verification Tag: 8.5 Verification Tag [Normal verification]
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_ecne(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
sctp_ecnehdr_t *ecne;
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
|
|
|
|
if (!sctp_vtag_verify(chunk, asoc))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_ecne_chunk_t)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
|
|
|
|
|
|
|
ecne = (sctp_ecnehdr_t *) chunk->skb->data;
|
|
|
|
skb_pull(chunk->skb, sizeof(sctp_ecnehdr_t));
|
|
|
|
|
|
|
|
/* If this is a newer ECNE than the last CWR packet we sent out */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_ECN_ECNE,
|
|
|
|
SCTP_U32(ntohl(ecne->lowest_tsn)));
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Section: 6.2 Acknowledgement on Reception of DATA Chunks
|
|
|
|
*
|
|
|
|
* The SCTP endpoint MUST always acknowledge the reception of each valid
|
|
|
|
* DATA chunk.
|
|
|
|
*
|
|
|
|
* The guidelines on delayed acknowledgement algorithm specified in
|
|
|
|
* Section 4.2 of [RFC2581] SHOULD be followed. Specifically, an
|
|
|
|
* acknowledgement SHOULD be generated for at least every second packet
|
|
|
|
* (not every second DATA chunk) received, and SHOULD be generated within
|
|
|
|
* 200 ms of the arrival of any unacknowledged DATA chunk. In some
|
|
|
|
* situations it may be beneficial for an SCTP transmitter to be more
|
|
|
|
* conservative than the algorithms detailed in this document allow.
|
|
|
|
* However, an SCTP transmitter MUST NOT be more aggressive than the
|
|
|
|
* following algorithms allow.
|
|
|
|
*
|
|
|
|
* A SCTP receiver MUST NOT generate more than one SACK for every
|
|
|
|
* incoming packet, other than to update the offered window as the
|
|
|
|
* receiving application consumes new data.
|
|
|
|
*
|
|
|
|
* Verification Tag: 8.5 Verification Tag [Normal verification]
|
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_eat_data_6_2(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
2009-11-23 20:53:53 +00:00
|
|
|
sctp_arg_t force = SCTP_NOFORCE();
|
2005-04-16 22:20:36 +00:00
|
|
|
int error;
|
|
|
|
|
|
|
|
if (!sctp_vtag_verify(chunk, asoc)) {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG,
|
|
|
|
SCTP_NULL());
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2007-02-09 14:25:18 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2017-06-30 03:52:20 +00:00
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_data_chunk)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
|
|
|
|
2013-12-23 04:16:50 +00:00
|
|
|
error = sctp_eat_data(asoc, chunk, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
switch (error) {
|
|
|
|
case SCTP_IERROR_NO_ERROR:
|
|
|
|
break;
|
|
|
|
case SCTP_IERROR_HIGH_TSN:
|
|
|
|
case SCTP_IERROR_BAD_STREAM:
|
2012-08-07 07:28:09 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_IN_DATA_CHUNK_DISCARDS);
|
2005-04-16 22:20:36 +00:00
|
|
|
goto discard_noforce;
|
|
|
|
case SCTP_IERROR_DUP_TSN:
|
|
|
|
case SCTP_IERROR_IGNORE_TSN:
|
2012-08-07 07:28:09 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_IN_DATA_CHUNK_DISCARDS);
|
2005-04-16 22:20:36 +00:00
|
|
|
goto discard_force;
|
|
|
|
case SCTP_IERROR_NO_DATA:
|
2016-01-08 13:00:54 +00:00
|
|
|
return SCTP_DISPOSITION_ABORT;
|
2009-09-04 22:21:03 +00:00
|
|
|
case SCTP_IERROR_PROTO_VIOLATION:
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_abort_violation(net, ep, asoc, chunk, commands,
|
2017-06-30 03:52:19 +00:00
|
|
|
(u8 *)chunk->subh.data_hdr,
|
|
|
|
sizeof(struct sctp_datahdr));
|
2005-04-16 22:20:36 +00:00
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
|
2009-11-23 20:53:53 +00:00
|
|
|
if (chunk->chunk_hdr->flags & SCTP_DATA_SACK_IMM)
|
|
|
|
force = SCTP_FORCE();
|
|
|
|
|
2013-12-10 11:48:15 +00:00
|
|
|
if (asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE]) {
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_AUTOCLOSE));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If this is the last chunk in a packet, we need to count it
|
|
|
|
* toward sack generation. Note that we need to SACK every
|
|
|
|
* OTHER packet containing data chunks, EVEN IF WE DISCARD
|
|
|
|
* THEM. We elect to NOT generate SACK's if the chunk fails
|
|
|
|
* the verification tag test.
|
|
|
|
*
|
|
|
|
* RFC 2960 6.2 Acknowledgement on Reception of DATA Chunks
|
|
|
|
*
|
|
|
|
* The SCTP endpoint MUST always acknowledge the reception of
|
|
|
|
* each valid DATA chunk.
|
|
|
|
*
|
|
|
|
* The guidelines on delayed acknowledgement algorithm
|
|
|
|
* specified in Section 4.2 of [RFC2581] SHOULD be followed.
|
|
|
|
* Specifically, an acknowledgement SHOULD be generated for at
|
|
|
|
* least every second packet (not every second DATA chunk)
|
|
|
|
* received, and SHOULD be generated within 200 ms of the
|
|
|
|
* arrival of any unacknowledged DATA chunk. In some
|
|
|
|
* situations it may be beneficial for an SCTP transmitter to
|
|
|
|
* be more conservative than the algorithms detailed in this
|
|
|
|
* document allow. However, an SCTP transmitter MUST NOT be
|
|
|
|
* more aggressive than the following algorithms allow.
|
|
|
|
*/
|
2005-12-22 19:36:46 +00:00
|
|
|
if (chunk->end_of_packet)
|
2009-11-23 20:53:53 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SACK, force);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
|
|
|
|
discard_force:
|
|
|
|
/* RFC 2960 6.2 Acknowledgement on Reception of DATA Chunks
|
|
|
|
*
|
|
|
|
* When a packet arrives with duplicate DATA chunk(s) and with
|
|
|
|
* no new DATA chunk(s), the endpoint MUST immediately send a
|
|
|
|
* SACK with no delay. If a packet arrives with duplicate
|
|
|
|
* DATA chunk(s) bundled with new DATA chunks, the endpoint
|
|
|
|
* MAY immediately send a SACK. Normally receipt of duplicate
|
|
|
|
* DATA chunks will occur when the original SACK chunk was lost
|
|
|
|
* and the peer's RTO has expired. The duplicate TSN number(s)
|
|
|
|
* SHOULD be reported in the SACK as duplicate.
|
|
|
|
*/
|
|
|
|
/* In our case, we split the MAY SACK advice up whether or not
|
|
|
|
* the last chunk is a duplicate.'
|
|
|
|
*/
|
|
|
|
if (chunk->end_of_packet)
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SACK, SCTP_FORCE());
|
|
|
|
return SCTP_DISPOSITION_DISCARD;
|
|
|
|
|
|
|
|
discard_noforce:
|
2005-12-22 19:36:46 +00:00
|
|
|
if (chunk->end_of_packet)
|
2009-11-23 20:53:53 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SACK, force);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
return SCTP_DISPOSITION_DISCARD;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sctp_sf_eat_data_fast_4_4
|
|
|
|
*
|
|
|
|
* Section: 4 (4)
|
|
|
|
* (4) In SHUTDOWN-SENT state the endpoint MUST acknowledge any received
|
|
|
|
* DATA chunks without delay.
|
|
|
|
*
|
|
|
|
* Verification Tag: 8.5 Verification Tag [Normal verification]
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_eat_data_fast_4_4(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
if (!sctp_vtag_verify(chunk, asoc)) {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG,
|
|
|
|
SCTP_NULL());
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2017-06-30 03:52:20 +00:00
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_data_chunk)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
|
|
|
|
2013-12-23 04:16:50 +00:00
|
|
|
error = sctp_eat_data(asoc, chunk, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
switch (error) {
|
|
|
|
case SCTP_IERROR_NO_ERROR:
|
|
|
|
case SCTP_IERROR_HIGH_TSN:
|
|
|
|
case SCTP_IERROR_DUP_TSN:
|
|
|
|
case SCTP_IERROR_IGNORE_TSN:
|
|
|
|
case SCTP_IERROR_BAD_STREAM:
|
|
|
|
break;
|
|
|
|
case SCTP_IERROR_NO_DATA:
|
2016-01-08 13:00:54 +00:00
|
|
|
return SCTP_DISPOSITION_ABORT;
|
2009-09-04 22:21:03 +00:00
|
|
|
case SCTP_IERROR_PROTO_VIOLATION:
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_abort_violation(net, ep, asoc, chunk, commands,
|
2017-06-30 03:52:19 +00:00
|
|
|
(u8 *)chunk->subh.data_hdr,
|
|
|
|
sizeof(struct sctp_datahdr));
|
2005-04-16 22:20:36 +00:00
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Go a head and force a SACK, since we are shutting down. */
|
|
|
|
|
|
|
|
/* Implementor's Guide.
|
|
|
|
*
|
|
|
|
* While in SHUTDOWN-SENT state, the SHUTDOWN sender MUST immediately
|
|
|
|
* respond to each received packet containing one or more DATA chunk(s)
|
|
|
|
* with a SACK, a SHUTDOWN chunk, and restart the T2-shutdown timer
|
|
|
|
*/
|
|
|
|
if (chunk->end_of_packet) {
|
|
|
|
/* We must delay the chunk creation since the cumulative
|
|
|
|
* TSN has not been updated yet.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SHUTDOWN, SCTP_NULL());
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SACK, SCTP_FORCE());
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN));
|
|
|
|
}
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Section: 6.2 Processing a Received SACK
|
|
|
|
* D) Any time a SACK arrives, the endpoint performs the following:
|
|
|
|
*
|
|
|
|
* i) If Cumulative TSN Ack is less than the Cumulative TSN Ack Point,
|
|
|
|
* then drop the SACK. Since Cumulative TSN Ack is monotonically
|
|
|
|
* increasing, a SACK whose Cumulative TSN Ack is less than the
|
|
|
|
* Cumulative TSN Ack Point indicates an out-of-order SACK.
|
|
|
|
*
|
|
|
|
* ii) Set rwnd equal to the newly received a_rwnd minus the number
|
|
|
|
* of bytes still outstanding after processing the Cumulative TSN Ack
|
|
|
|
* and the Gap Ack Blocks.
|
|
|
|
*
|
|
|
|
* iii) If the SACK is missing a TSN that was previously
|
|
|
|
* acknowledged via a Gap Ack Block (e.g., the data receiver
|
|
|
|
* reneged on the data), then mark the corresponding DATA chunk
|
|
|
|
* as available for retransmit: Mark it as missing for fast
|
|
|
|
* retransmit as described in Section 7.2.4 and if no retransmit
|
|
|
|
* timer is running for the destination address to which the DATA
|
|
|
|
* chunk was originally transmitted, then T3-rtx is started for
|
|
|
|
* that destination address.
|
|
|
|
*
|
|
|
|
* Verification Tag: 8.5 Verification Tag [Normal verification]
|
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_eat_sack_6_2(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
2017-07-23 01:34:32 +00:00
|
|
|
struct sctp_sackhdr *sackh;
|
2005-04-16 22:20:36 +00:00
|
|
|
__u32 ctsn;
|
|
|
|
|
|
|
|
if (!sctp_vtag_verify(chunk, asoc))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Make sure that the SACK chunk has a valid length. */
|
2017-07-23 01:34:33 +00:00
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_sack_chunk)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
|
|
|
|
|
|
|
/* Pull the SACK chunk from the data buffer */
|
|
|
|
sackh = sctp_sm_pull_sack(chunk);
|
|
|
|
/* Was this a bogus SACK? */
|
|
|
|
if (!sackh)
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
chunk->subh.sack_hdr = sackh;
|
|
|
|
ctsn = ntohl(sackh->cum_tsn_ack);
|
|
|
|
|
|
|
|
/* i) If Cumulative TSN Ack is less than the Cumulative TSN
|
|
|
|
* Ack Point, then drop the SACK. Since Cumulative TSN
|
|
|
|
* Ack is monotonically increasing, a SACK whose
|
|
|
|
* Cumulative TSN Ack is less than the Cumulative TSN Ack
|
|
|
|
* Point indicates an out-of-order SACK.
|
|
|
|
*/
|
|
|
|
if (TSN_lt(ctsn, asoc->ctsn_ack_point)) {
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
pr_debug("%s: ctsn:%x, ctsn_ack_point:%x\n", __func__, ctsn,
|
|
|
|
asoc->ctsn_ack_point);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_DISCARD;
|
|
|
|
}
|
|
|
|
|
2007-08-02 08:57:44 +00:00
|
|
|
/* If Cumulative TSN Ack beyond the max tsn currently
|
|
|
|
* send, terminating the association and respond to the
|
|
|
|
* sender with an ABORT.
|
|
|
|
*/
|
|
|
|
if (!TSN_lt(ctsn, asoc->next_tsn))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_ctsn(net, ep, asoc, type, arg, commands);
|
2007-08-02 08:57:44 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Return this SACK for further processing. */
|
2012-10-03 05:43:22 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK, SCTP_CHUNK(chunk));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Note: We do the rest of the work on the PROCESS_SACK
|
|
|
|
* sideeffect.
|
|
|
|
*/
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Generate an ABORT in response to a packet.
|
|
|
|
*
|
2005-04-28 18:58:43 +00:00
|
|
|
* Section: 8.4 Handle "Out of the blue" Packets, sctpimpguide 2.41
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
2005-04-28 18:58:43 +00:00
|
|
|
* 8) The receiver should respond to the sender of the OOTB packet with
|
|
|
|
* an ABORT. When sending the ABORT, the receiver of the OOTB packet
|
|
|
|
* MUST fill in the Verification Tag field of the outbound packet
|
|
|
|
* with the value found in the Verification Tag field of the OOTB
|
|
|
|
* packet and set the T-bit in the Chunk Flags to indicate that the
|
|
|
|
* Verification Tag is reflected. After sending this ABORT, the
|
|
|
|
* receiver of the OOTB packet shall discard the OOTB packet and take
|
|
|
|
* no further action.
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
|
|
|
* Verification Tag:
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
static sctp_disposition_t sctp_sf_tabort_8_4_8(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_packet *packet = NULL;
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
struct sctp_chunk *abort;
|
|
|
|
|
2012-08-06 08:43:06 +00:00
|
|
|
packet = sctp_ootb_pkt_new(net, asoc, chunk);
|
2016-12-28 11:26:31 +00:00
|
|
|
if (!packet)
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-12-28 11:26:31 +00:00
|
|
|
/* Make an ABORT. The T bit will be set if the asoc
|
|
|
|
* is NULL.
|
|
|
|
*/
|
|
|
|
abort = sctp_make_abort(asoc, chunk, 0);
|
|
|
|
if (!abort) {
|
|
|
|
sctp_ootb_pkt_free(packet);
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
}
|
2005-04-28 18:58:43 +00:00
|
|
|
|
2016-12-28 11:26:31 +00:00
|
|
|
/* Reflect vtag if T-Bit is set */
|
|
|
|
if (sctp_test_T_bit(abort))
|
|
|
|
packet->vtag = ntohl(chunk->sctp_hdr->vtag);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-12-28 11:26:31 +00:00
|
|
|
/* Set the skb to the belonging sock for accounting. */
|
|
|
|
abort->skb->sk = ep->base.sk;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-12-28 11:26:31 +00:00
|
|
|
sctp_packet_append_chunk(packet, abort);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-12-28 11:26:31 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT,
|
|
|
|
SCTP_PACKET(packet));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-12-28 11:26:31 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-12-28 11:26:31 +00:00
|
|
|
sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Received an ERROR chunk from peer. Generate SCTP_REMOTE_ERROR
|
|
|
|
* event as ULP notification for each cause included in the chunk.
|
|
|
|
*
|
|
|
|
* API 5.3.1.3 - SCTP_REMOTE_ERROR
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_operr_notify(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
2011-04-19 21:25:40 +00:00
|
|
|
sctp_errhdr_t *err;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (!sctp_vtag_verify(chunk, asoc))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Make sure that the ERROR chunk has a valid length. */
|
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_operr_chunk_t)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
2011-04-19 21:25:40 +00:00
|
|
|
sctp_walk_errors(err, chunk->chunk_hdr);
|
|
|
|
if ((void *)err != (void *)chunk->chunk_end)
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_paramlen(net, ep, asoc, type, arg,
|
2011-04-19 21:25:40 +00:00
|
|
|
(void *)err, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2009-03-02 06:46:51 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_OPERR,
|
|
|
|
SCTP_CHUNK(chunk));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process an inbound SHUTDOWN ACK.
|
|
|
|
*
|
|
|
|
* From Section 9.2:
|
|
|
|
* Upon the receipt of the SHUTDOWN ACK, the SHUTDOWN sender shall
|
|
|
|
* stop the T2-shutdown timer, send a SHUTDOWN COMPLETE chunk to its
|
|
|
|
* peer, and remove all record of the association.
|
|
|
|
*
|
|
|
|
* The return value is the disposition.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_9_2_final(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
struct sctp_chunk *reply;
|
|
|
|
struct sctp_ulpevent *ev;
|
|
|
|
|
|
|
|
if (!sctp_vtag_verify(chunk, asoc))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Make sure that the SHUTDOWN_ACK chunk has a valid length. */
|
2017-06-30 03:52:13 +00:00
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_chunkhdr)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
|
|
|
/* 10.2 H) SHUTDOWN COMPLETE notification
|
|
|
|
*
|
|
|
|
* When SCTP completes the shutdown procedures (section 9.2) this
|
|
|
|
* notification is passed to the upper layer.
|
|
|
|
*/
|
|
|
|
ev = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_SHUTDOWN_COMP,
|
2007-03-23 18:34:08 +00:00
|
|
|
0, 0, 0, NULL, GFP_ATOMIC);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (!ev)
|
|
|
|
goto nomem;
|
|
|
|
|
2006-08-22 07:19:51 +00:00
|
|
|
/* ...send a SHUTDOWN COMPLETE chunk to its peer, */
|
|
|
|
reply = sctp_make_shutdown_complete(asoc, chunk);
|
|
|
|
if (!reply)
|
|
|
|
goto nomem_chunk;
|
|
|
|
|
|
|
|
/* Do all the commands now (after allocation), so that we
|
|
|
|
* have consistent state if memory allocation failes
|
|
|
|
*/
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, SCTP_ULPEVENT(ev));
|
|
|
|
|
|
|
|
/* Upon the receipt of the SHUTDOWN ACK, the SHUTDOWN sender shall
|
|
|
|
* stop the T2-shutdown timer,
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN));
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD));
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
|
|
|
|
SCTP_STATE(SCTP_STATE_CLOSED));
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_SHUTDOWNS);
|
|
|
|
SCTP_DEC_STATS(net, SCTP_MIB_CURRESTAB);
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply));
|
|
|
|
|
|
|
|
/* ...and remove all record of the association. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
|
|
|
|
return SCTP_DISPOSITION_DELETE_TCB;
|
|
|
|
|
2006-08-22 07:19:51 +00:00
|
|
|
nomem_chunk:
|
|
|
|
sctp_ulpevent_free(ev);
|
2005-04-16 22:20:36 +00:00
|
|
|
nomem:
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2005-04-28 18:58:43 +00:00
|
|
|
* RFC 2960, 8.4 - Handle "Out of the blue" Packets, sctpimpguide 2.41.
|
|
|
|
*
|
2005-04-16 22:20:36 +00:00
|
|
|
* 5) If the packet contains a SHUTDOWN ACK chunk, the receiver should
|
|
|
|
* respond to the sender of the OOTB packet with a SHUTDOWN COMPLETE.
|
|
|
|
* When sending the SHUTDOWN COMPLETE, the receiver of the OOTB
|
|
|
|
* packet must fill in the Verification Tag field of the outbound
|
|
|
|
* packet with the Verification Tag received in the SHUTDOWN ACK and
|
2005-04-28 18:58:43 +00:00
|
|
|
* set the T-bit in the Chunk Flags to indicate that the Verification
|
|
|
|
* Tag is reflected.
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
|
|
|
* 8) The receiver should respond to the sender of the OOTB packet with
|
|
|
|
* an ABORT. When sending the ABORT, the receiver of the OOTB packet
|
|
|
|
* MUST fill in the Verification Tag field of the outbound packet
|
|
|
|
* with the value found in the Verification Tag field of the OOTB
|
2005-04-28 18:58:43 +00:00
|
|
|
* packet and set the T-bit in the Chunk Flags to indicate that the
|
|
|
|
* Verification Tag is reflected. After sending this ABORT, the
|
|
|
|
* receiver of the OOTB packet shall discard the OOTB packet and take
|
|
|
|
* no further action.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_ootb(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
struct sk_buff *skb = chunk->skb;
|
2017-06-30 03:52:13 +00:00
|
|
|
struct sctp_chunkhdr *ch;
|
2011-04-19 21:30:01 +00:00
|
|
|
sctp_errhdr_t *err;
|
2005-04-16 22:20:36 +00:00
|
|
|
__u8 *ch_end;
|
|
|
|
int ootb_shut_ack = 0;
|
2011-04-19 21:30:01 +00:00
|
|
|
int ootb_cookie_ack = 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2017-06-30 03:52:13 +00:00
|
|
|
ch = (struct sctp_chunkhdr *)chunk->chunk_hdr;
|
2005-04-16 22:20:36 +00:00
|
|
|
do {
|
2007-09-07 20:30:54 +00:00
|
|
|
/* Report violation if the chunk is less then minimal */
|
2017-06-30 03:52:13 +00:00
|
|
|
if (ntohs(ch->length) < sizeof(*ch))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2007-09-07 20:30:54 +00:00
|
|
|
commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-10-25 16:27:39 +00:00
|
|
|
/* Report violation if chunk len overflows */
|
|
|
|
ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
|
|
|
|
if (ch_end > skb_tail_pointer(skb))
|
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
|
|
|
commands);
|
|
|
|
|
2007-09-07 20:30:54 +00:00
|
|
|
/* Now that we know we at least have a chunk header,
|
|
|
|
* do things that are type appropriate.
|
|
|
|
*/
|
2005-04-16 22:20:36 +00:00
|
|
|
if (SCTP_CID_SHUTDOWN_ACK == ch->type)
|
|
|
|
ootb_shut_ack = 1;
|
|
|
|
|
|
|
|
/* RFC 2960, Section 3.3.7
|
|
|
|
* Moreover, under any circumstances, an endpoint that
|
|
|
|
* receives an ABORT MUST NOT respond to that ABORT by
|
|
|
|
* sending an ABORT of its own.
|
|
|
|
*/
|
|
|
|
if (SCTP_CID_ABORT == ch->type)
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2007-02-09 14:25:18 +00:00
|
|
|
|
2011-04-19 21:30:01 +00:00
|
|
|
/* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR
|
|
|
|
* or a COOKIE ACK the SCTP Packet should be silently
|
|
|
|
* discarded.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (SCTP_CID_COOKIE_ACK == ch->type)
|
|
|
|
ootb_cookie_ack = 1;
|
|
|
|
|
|
|
|
if (SCTP_CID_ERROR == ch->type) {
|
|
|
|
sctp_walk_errors(err, ch) {
|
|
|
|
if (SCTP_ERROR_STALE_COOKIE == err->cause) {
|
|
|
|
ootb_cookie_ack = 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-06-30 03:52:13 +00:00
|
|
|
ch = (struct sctp_chunkhdr *)ch_end;
|
2007-04-20 03:29:13 +00:00
|
|
|
} while (ch_end < skb_tail_pointer(skb));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (ootb_shut_ack)
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_shut_8_4_5(net, ep, asoc, type, arg, commands);
|
2011-04-19 21:30:01 +00:00
|
|
|
else if (ootb_cookie_ack)
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
else
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_tabort_8_4_8(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Handle an "Out of the blue" SHUTDOWN ACK.
|
|
|
|
*
|
2005-04-28 18:58:43 +00:00
|
|
|
* Section: 8.4 5, sctpimpguide 2.41.
|
|
|
|
*
|
2005-04-16 22:20:36 +00:00
|
|
|
* 5) If the packet contains a SHUTDOWN ACK chunk, the receiver should
|
2005-04-28 18:58:43 +00:00
|
|
|
* respond to the sender of the OOTB packet with a SHUTDOWN COMPLETE.
|
|
|
|
* When sending the SHUTDOWN COMPLETE, the receiver of the OOTB
|
|
|
|
* packet must fill in the Verification Tag field of the outbound
|
|
|
|
* packet with the Verification Tag received in the SHUTDOWN ACK and
|
|
|
|
* set the T-bit in the Chunk Flags to indicate that the Verification
|
|
|
|
* Tag is reflected.
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, type, arg, commands)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (sctp_disposition_t)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
static sctp_disposition_t sctp_sf_shut_8_4_5(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_packet *packet = NULL;
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
struct sctp_chunk *shut;
|
|
|
|
|
2012-08-06 08:43:06 +00:00
|
|
|
packet = sctp_ootb_pkt_new(net, asoc, chunk);
|
2016-12-28 11:26:32 +00:00
|
|
|
if (!packet)
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-12-28 11:26:32 +00:00
|
|
|
/* Make an SHUTDOWN_COMPLETE.
|
|
|
|
* The T bit will be set if the asoc is NULL.
|
|
|
|
*/
|
|
|
|
shut = sctp_make_shutdown_complete(asoc, chunk);
|
|
|
|
if (!shut) {
|
|
|
|
sctp_ootb_pkt_free(packet);
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
}
|
2005-04-28 18:58:43 +00:00
|
|
|
|
2016-12-28 11:26:32 +00:00
|
|
|
/* Reflect vtag if T-Bit is set */
|
|
|
|
if (sctp_test_T_bit(shut))
|
|
|
|
packet->vtag = ntohl(chunk->sctp_hdr->vtag);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-12-28 11:26:32 +00:00
|
|
|
/* Set the skb to the belonging sock for accounting. */
|
|
|
|
shut->skb->sk = ep->base.sk;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-12-28 11:26:32 +00:00
|
|
|
sctp_packet_append_chunk(packet, shut);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-12-28 11:26:32 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT,
|
|
|
|
SCTP_PACKET(packet));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-12-28 11:26:32 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-12-28 11:26:32 +00:00
|
|
|
/* If the chunk length is invalid, we don't want to process
|
|
|
|
* the reset of the packet.
|
|
|
|
*/
|
2017-06-30 03:52:13 +00:00
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_chunkhdr)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-12-28 11:26:32 +00:00
|
|
|
/* We need to discard the rest of the packet to prevent
|
|
|
|
* potential bomming attacks from additional bundled chunks.
|
|
|
|
* This is documented in SCTP Threats ID.
|
|
|
|
*/
|
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Handle SHUTDOWN ACK in COOKIE_ECHOED or COOKIE_WAIT state.
|
|
|
|
*
|
|
|
|
* Verification Tag: 8.5.1 E) Rules for packet carrying a SHUTDOWN ACK
|
|
|
|
* If the receiver is in COOKIE-ECHOED or COOKIE-WAIT state the
|
|
|
|
* procedures in section 8.4 SHOULD be followed, in other words it
|
|
|
|
* should be treated as an Out Of The Blue packet.
|
|
|
|
* [This means that we do NOT check the Verification Tag on these
|
|
|
|
* chunks. --piggy ]
|
|
|
|
*
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_8_5_1_E_sa(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
2007-09-07 20:30:54 +00:00
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
|
|
|
|
/* Make sure that the SHUTDOWN_ACK chunk has a valid length. */
|
2017-06-30 03:52:13 +00:00
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_chunkhdr)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2007-09-07 20:30:54 +00:00
|
|
|
commands);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Although we do have an association in this case, it corresponds
|
|
|
|
* to a restarted association. So the packet is treated as an OOTB
|
|
|
|
* packet and the state function that handles OOTB SHUTDOWN_ACK is
|
|
|
|
* called with a NULL association.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
|
2008-09-08 04:13:55 +00:00
|
|
|
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_shut_8_4_5(net, ep, NULL, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* ADDIP Section 4.2 Upon reception of an ASCONF Chunk. */
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_asconf(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type, void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
struct sctp_chunk *asconf_ack = NULL;
|
2007-09-19 09:19:52 +00:00
|
|
|
struct sctp_paramhdr *err_param = NULL;
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_addiphdr_t *hdr;
|
|
|
|
__u32 serial;
|
|
|
|
|
|
|
|
if (!sctp_vtag_verify(chunk, asoc)) {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG,
|
|
|
|
SCTP_NULL());
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2007-12-20 22:08:04 +00:00
|
|
|
/* ADD-IP: Section 4.1.1
|
|
|
|
* This chunk MUST be sent in an authenticated way by using
|
|
|
|
* the mechanism defined in [I-D.ietf-tsvwg-sctp-auth]. If this chunk
|
|
|
|
* is received unauthenticated it MUST be silently discarded as
|
|
|
|
* described in [I-D.ietf-tsvwg-sctp-auth].
|
|
|
|
*/
|
2012-08-07 07:29:57 +00:00
|
|
|
if (!net->sctp.addip_noauth && !chunk->auth)
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_discard_chunk(net, ep, asoc, type, arg, commands);
|
2007-12-20 22:08:04 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Make sure that the ASCONF ADDIP chunk has a valid length. */
|
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(sctp_addip_chunk_t)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
|
|
|
|
|
|
|
hdr = (sctp_addiphdr_t *)chunk->skb->data;
|
|
|
|
serial = ntohl(hdr->serial);
|
|
|
|
|
2007-09-19 09:19:52 +00:00
|
|
|
/* Verify the ASCONF chunk before processing it. */
|
net: sctp: fix skb_over_panic when receiving malformed ASCONF chunks
Commit 6f4c618ddb0 ("SCTP : Add paramters validity check for
ASCONF chunk") added basic verification of ASCONF chunks, however,
it is still possible to remotely crash a server by sending a
special crafted ASCONF chunk, even up to pre 2.6.12 kernels:
skb_over_panic: text:ffffffffa01ea1c3 len:31056 put:30768
head:ffff88011bd81800 data:ffff88011bd81800 tail:0x7950
end:0x440 dev:<NULL>
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:129!
[...]
Call Trace:
<IRQ>
[<ffffffff8144fb1c>] skb_put+0x5c/0x70
[<ffffffffa01ea1c3>] sctp_addto_chunk+0x63/0xd0 [sctp]
[<ffffffffa01eadaf>] sctp_process_asconf+0x1af/0x540 [sctp]
[<ffffffff8152d025>] ? _read_unlock_bh+0x15/0x20
[<ffffffffa01e0038>] sctp_sf_do_asconf+0x168/0x240 [sctp]
[<ffffffffa01e3751>] sctp_do_sm+0x71/0x1210 [sctp]
[<ffffffff8147645d>] ? fib_rules_lookup+0xad/0xf0
[<ffffffffa01e6b22>] ? sctp_cmp_addr_exact+0x32/0x40 [sctp]
[<ffffffffa01e8393>] sctp_assoc_bh_rcv+0xd3/0x180 [sctp]
[<ffffffffa01ee986>] sctp_inq_push+0x56/0x80 [sctp]
[<ffffffffa01fcc42>] sctp_rcv+0x982/0xa10 [sctp]
[<ffffffffa01d5123>] ? ipt_local_in_hook+0x23/0x28 [iptable_filter]
[<ffffffff8148bdc9>] ? nf_iterate+0x69/0xb0
[<ffffffff81496d10>] ? ip_local_deliver_finish+0x0/0x2d0
[<ffffffff8148bf86>] ? nf_hook_slow+0x76/0x120
[<ffffffff81496d10>] ? ip_local_deliver_finish+0x0/0x2d0
[<ffffffff81496ded>] ip_local_deliver_finish+0xdd/0x2d0
[<ffffffff81497078>] ip_local_deliver+0x98/0xa0
[<ffffffff8149653d>] ip_rcv_finish+0x12d/0x440
[<ffffffff81496ac5>] ip_rcv+0x275/0x350
[<ffffffff8145c88b>] __netif_receive_skb+0x4ab/0x750
[<ffffffff81460588>] netif_receive_skb+0x58/0x60
This can be triggered e.g., through a simple scripted nmap
connection scan injecting the chunk after the handshake, for
example, ...
-------------- INIT[ASCONF; ASCONF_ACK] ------------->
<----------- INIT-ACK[ASCONF; ASCONF_ACK] ------------
-------------------- COOKIE-ECHO -------------------->
<-------------------- COOKIE-ACK ---------------------
------------------ ASCONF; UNKNOWN ------------------>
... where ASCONF chunk of length 280 contains 2 parameters ...
1) Add IP address parameter (param length: 16)
2) Add/del IP address parameter (param length: 255)
... followed by an UNKNOWN chunk of e.g. 4 bytes. Here, the
Address Parameter in the ASCONF chunk is even missing, too.
This is just an example and similarly-crafted ASCONF chunks
could be used just as well.
The ASCONF chunk passes through sctp_verify_asconf() as all
parameters passed sanity checks, and after walking, we ended
up successfully at the chunk end boundary, and thus may invoke
sctp_process_asconf(). Parameter walking is done with
WORD_ROUND() to take padding into account.
In sctp_process_asconf()'s TLV processing, we may fail in
sctp_process_asconf_param() e.g., due to removal of the IP
address that is also the source address of the packet containing
the ASCONF chunk, and thus we need to add all TLVs after the
failure to our ASCONF response to remote via helper function
sctp_add_asconf_response(), which basically invokes a
sctp_addto_chunk() adding the error parameters to the given
skb.
When walking to the next parameter this time, we proceed
with ...
length = ntohs(asconf_param->param_hdr.length);
asconf_param = (void *)asconf_param + length;
... instead of the WORD_ROUND()'ed length, thus resulting here
in an off-by-one that leads to reading the follow-up garbage
parameter length of 12336, and thus throwing an skb_over_panic
for the reply when trying to sctp_addto_chunk() next time,
which implicitly calls the skb_put() with that length.
Fix it by using sctp_walk_params() [ which is also used in
INIT parameter processing ] macro in the verification *and*
in ASCONF processing: it will make sure we don't spill over,
that we walk parameters WORD_ROUND()'ed. Moreover, we're being
more defensive and guard against unknown parameter types and
missized addresses.
Joint work with Vlad Yasevich.
Fixes: b896b82be4ae ("[SCTP] ADDIP: Support for processing incoming ASCONF_ACK chunks.")
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Vlad Yasevich <vyasevich@gmail.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-09 20:55:31 +00:00
|
|
|
if (!sctp_verify_asconf(asoc, chunk, true, &err_param))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_paramlen(net, ep, asoc, type, arg,
|
2008-09-30 12:32:24 +00:00
|
|
|
(void *)err_param, commands);
|
2007-09-19 09:19:52 +00:00
|
|
|
|
2007-12-20 22:11:47 +00:00
|
|
|
/* ADDIP 5.2 E1) Compare the value of the serial number to the value
|
2005-04-16 22:20:36 +00:00
|
|
|
* the endpoint stored in a new association variable
|
2007-02-09 14:25:18 +00:00
|
|
|
* 'Peer-Serial-Number'.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
if (serial == asoc->peer.addip_serial + 1) {
|
2007-12-20 22:11:47 +00:00
|
|
|
/* If this is the first instance of ASCONF in the packet,
|
|
|
|
* we can clean our old ASCONF-ACKs.
|
|
|
|
*/
|
|
|
|
if (!chunk->has_asconf)
|
|
|
|
sctp_assoc_clean_asconf_ack_cache(asoc);
|
|
|
|
|
|
|
|
/* ADDIP 5.2 E4) When the Sequence Number matches the next one
|
|
|
|
* expected, process the ASCONF as described below and after
|
|
|
|
* processing the ASCONF Chunk, append an ASCONF-ACK Chunk to
|
|
|
|
* the response packet and cache a copy of it (in the event it
|
|
|
|
* later needs to be retransmitted).
|
|
|
|
*
|
|
|
|
* Essentially, do V1-V5.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
asconf_ack = sctp_process_asconf((struct sctp_association *)
|
|
|
|
asoc, chunk);
|
|
|
|
if (!asconf_ack)
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
2007-12-20 22:11:47 +00:00
|
|
|
} else if (serial < asoc->peer.addip_serial + 1) {
|
|
|
|
/* ADDIP 5.2 E2)
|
|
|
|
* If the value found in the Sequence Number is less than the
|
|
|
|
* ('Peer- Sequence-Number' + 1), simply skip to the next
|
|
|
|
* ASCONF, and include in the outbound response packet
|
|
|
|
* any previously cached ASCONF-ACK response that was
|
|
|
|
* sent and saved that matches the Sequence Number of the
|
|
|
|
* ASCONF. Note: It is possible that no cached ASCONF-ACK
|
|
|
|
* Chunk exists. This will occur when an older ASCONF
|
|
|
|
* arrives out of order. In such a case, the receiver
|
|
|
|
* should skip the ASCONF Chunk and not include ASCONF-ACK
|
|
|
|
* Chunk for that chunk.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2007-12-20 22:11:47 +00:00
|
|
|
asconf_ack = sctp_assoc_lookup_asconf_ack(asoc, hdr->serial);
|
|
|
|
if (!asconf_ack)
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_DISCARD;
|
2009-09-04 22:21:00 +00:00
|
|
|
|
|
|
|
/* Reset the transport so that we select the correct one
|
|
|
|
* this time around. This is to make sure that we don't
|
|
|
|
* accidentally use a stale transport that's been removed.
|
|
|
|
*/
|
|
|
|
asconf_ack->transport = NULL;
|
2005-04-16 22:20:36 +00:00
|
|
|
} else {
|
2007-12-20 22:11:47 +00:00
|
|
|
/* ADDIP 5.2 E5) Otherwise, the ASCONF Chunk is discarded since
|
2005-04-16 22:20:36 +00:00
|
|
|
* it must be either a stale packet or from an attacker.
|
2007-02-09 14:25:18 +00:00
|
|
|
*/
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_DISCARD;
|
|
|
|
}
|
|
|
|
|
2007-12-20 22:11:47 +00:00
|
|
|
/* ADDIP 5.2 E6) The destination address of the SCTP packet
|
|
|
|
* containing the ASCONF-ACK Chunks MUST be the source address of
|
|
|
|
* the SCTP packet that held the ASCONF Chunks.
|
|
|
|
*
|
|
|
|
* To do this properly, we'll set the destination address of the chunk
|
|
|
|
* and at the transmit time, will try look up the transport to use.
|
|
|
|
* Since ASCONFs may be bundled, the correct transport may not be
|
2009-10-16 13:20:49 +00:00
|
|
|
* created until we process the entire packet, thus this workaround.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2007-12-20 22:11:47 +00:00
|
|
|
asconf_ack->dest = chunk->source;
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(asconf_ack));
|
2011-06-16 08:14:34 +00:00
|
|
|
if (asoc->new_transport) {
|
2013-12-23 04:16:52 +00:00
|
|
|
sctp_sf_heartbeat(ep, asoc, type, asoc->new_transport, commands);
|
2011-06-16 08:14:34 +00:00
|
|
|
((struct sctp_association *)asoc)->new_transport = NULL;
|
|
|
|
}
|
2007-02-09 14:25:18 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ADDIP Section 4.3 General rules for address manipulation
|
|
|
|
* When building TLV parameters for the ASCONF Chunk that will add or
|
|
|
|
* delete IP addresses the D0 to D13 rules should be applied:
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_asconf_ack(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
2007-02-09 14:25:18 +00:00
|
|
|
const sctp_subtype_t type, void *arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *asconf_ack = arg;
|
|
|
|
struct sctp_chunk *last_asconf = asoc->addip_last_asconf;
|
|
|
|
struct sctp_chunk *abort;
|
2007-09-19 09:19:52 +00:00
|
|
|
struct sctp_paramhdr *err_param = NULL;
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_addiphdr_t *addip_hdr;
|
|
|
|
__u32 sent_serial, rcvd_serial;
|
|
|
|
|
|
|
|
if (!sctp_vtag_verify(asconf_ack, asoc)) {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG,
|
|
|
|
SCTP_NULL());
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2007-12-20 22:08:04 +00:00
|
|
|
/* ADD-IP, Section 4.1.2:
|
|
|
|
* This chunk MUST be sent in an authenticated way by using
|
|
|
|
* the mechanism defined in [I-D.ietf-tsvwg-sctp-auth]. If this chunk
|
|
|
|
* is received unauthenticated it MUST be silently discarded as
|
|
|
|
* described in [I-D.ietf-tsvwg-sctp-auth].
|
|
|
|
*/
|
2012-08-07 07:29:57 +00:00
|
|
|
if (!net->sctp.addip_noauth && !asconf_ack->auth)
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_discard_chunk(net, ep, asoc, type, arg, commands);
|
2007-12-20 22:08:04 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Make sure that the ADDIP chunk has a valid length. */
|
|
|
|
if (!sctp_chunk_length_valid(asconf_ack, sizeof(sctp_addip_chunk_t)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
|
|
|
|
|
|
|
addip_hdr = (sctp_addiphdr_t *)asconf_ack->skb->data;
|
|
|
|
rcvd_serial = ntohl(addip_hdr->serial);
|
|
|
|
|
2007-09-19 09:19:52 +00:00
|
|
|
/* Verify the ASCONF-ACK chunk before processing it. */
|
net: sctp: fix skb_over_panic when receiving malformed ASCONF chunks
Commit 6f4c618ddb0 ("SCTP : Add paramters validity check for
ASCONF chunk") added basic verification of ASCONF chunks, however,
it is still possible to remotely crash a server by sending a
special crafted ASCONF chunk, even up to pre 2.6.12 kernels:
skb_over_panic: text:ffffffffa01ea1c3 len:31056 put:30768
head:ffff88011bd81800 data:ffff88011bd81800 tail:0x7950
end:0x440 dev:<NULL>
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:129!
[...]
Call Trace:
<IRQ>
[<ffffffff8144fb1c>] skb_put+0x5c/0x70
[<ffffffffa01ea1c3>] sctp_addto_chunk+0x63/0xd0 [sctp]
[<ffffffffa01eadaf>] sctp_process_asconf+0x1af/0x540 [sctp]
[<ffffffff8152d025>] ? _read_unlock_bh+0x15/0x20
[<ffffffffa01e0038>] sctp_sf_do_asconf+0x168/0x240 [sctp]
[<ffffffffa01e3751>] sctp_do_sm+0x71/0x1210 [sctp]
[<ffffffff8147645d>] ? fib_rules_lookup+0xad/0xf0
[<ffffffffa01e6b22>] ? sctp_cmp_addr_exact+0x32/0x40 [sctp]
[<ffffffffa01e8393>] sctp_assoc_bh_rcv+0xd3/0x180 [sctp]
[<ffffffffa01ee986>] sctp_inq_push+0x56/0x80 [sctp]
[<ffffffffa01fcc42>] sctp_rcv+0x982/0xa10 [sctp]
[<ffffffffa01d5123>] ? ipt_local_in_hook+0x23/0x28 [iptable_filter]
[<ffffffff8148bdc9>] ? nf_iterate+0x69/0xb0
[<ffffffff81496d10>] ? ip_local_deliver_finish+0x0/0x2d0
[<ffffffff8148bf86>] ? nf_hook_slow+0x76/0x120
[<ffffffff81496d10>] ? ip_local_deliver_finish+0x0/0x2d0
[<ffffffff81496ded>] ip_local_deliver_finish+0xdd/0x2d0
[<ffffffff81497078>] ip_local_deliver+0x98/0xa0
[<ffffffff8149653d>] ip_rcv_finish+0x12d/0x440
[<ffffffff81496ac5>] ip_rcv+0x275/0x350
[<ffffffff8145c88b>] __netif_receive_skb+0x4ab/0x750
[<ffffffff81460588>] netif_receive_skb+0x58/0x60
This can be triggered e.g., through a simple scripted nmap
connection scan injecting the chunk after the handshake, for
example, ...
-------------- INIT[ASCONF; ASCONF_ACK] ------------->
<----------- INIT-ACK[ASCONF; ASCONF_ACK] ------------
-------------------- COOKIE-ECHO -------------------->
<-------------------- COOKIE-ACK ---------------------
------------------ ASCONF; UNKNOWN ------------------>
... where ASCONF chunk of length 280 contains 2 parameters ...
1) Add IP address parameter (param length: 16)
2) Add/del IP address parameter (param length: 255)
... followed by an UNKNOWN chunk of e.g. 4 bytes. Here, the
Address Parameter in the ASCONF chunk is even missing, too.
This is just an example and similarly-crafted ASCONF chunks
could be used just as well.
The ASCONF chunk passes through sctp_verify_asconf() as all
parameters passed sanity checks, and after walking, we ended
up successfully at the chunk end boundary, and thus may invoke
sctp_process_asconf(). Parameter walking is done with
WORD_ROUND() to take padding into account.
In sctp_process_asconf()'s TLV processing, we may fail in
sctp_process_asconf_param() e.g., due to removal of the IP
address that is also the source address of the packet containing
the ASCONF chunk, and thus we need to add all TLVs after the
failure to our ASCONF response to remote via helper function
sctp_add_asconf_response(), which basically invokes a
sctp_addto_chunk() adding the error parameters to the given
skb.
When walking to the next parameter this time, we proceed
with ...
length = ntohs(asconf_param->param_hdr.length);
asconf_param = (void *)asconf_param + length;
... instead of the WORD_ROUND()'ed length, thus resulting here
in an off-by-one that leads to reading the follow-up garbage
parameter length of 12336, and thus throwing an skb_over_panic
for the reply when trying to sctp_addto_chunk() next time,
which implicitly calls the skb_put() with that length.
Fix it by using sctp_walk_params() [ which is also used in
INIT parameter processing ] macro in the verification *and*
in ASCONF processing: it will make sure we don't spill over,
that we walk parameters WORD_ROUND()'ed. Moreover, we're being
more defensive and guard against unknown parameter types and
missized addresses.
Joint work with Vlad Yasevich.
Fixes: b896b82be4ae ("[SCTP] ADDIP: Support for processing incoming ASCONF_ACK chunks.")
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Vlad Yasevich <vyasevich@gmail.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-09 20:55:31 +00:00
|
|
|
if (!sctp_verify_asconf(asoc, asconf_ack, false, &err_param))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_paramlen(net, ep, asoc, type, arg,
|
2008-09-30 12:32:24 +00:00
|
|
|
(void *)err_param, commands);
|
2007-09-19 09:19:52 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
if (last_asconf) {
|
|
|
|
addip_hdr = (sctp_addiphdr_t *)last_asconf->subh.addip_hdr;
|
|
|
|
sent_serial = ntohl(addip_hdr->serial);
|
|
|
|
} else {
|
|
|
|
sent_serial = asoc->addip_serial - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* D0) If an endpoint receives an ASCONF-ACK that is greater than or
|
|
|
|
* equal to the next serial number to be used but no ASCONF chunk is
|
|
|
|
* outstanding the endpoint MUST ABORT the association. Note that a
|
|
|
|
* sequence number is greater than if it is no more than 2^^31-1
|
|
|
|
* larger than the current sequence number (using serial arithmetic).
|
|
|
|
*/
|
|
|
|
if (ADDIP_SERIAL_gte(rcvd_serial, sent_serial + 1) &&
|
|
|
|
!(asoc->addip_last_asconf)) {
|
|
|
|
abort = sctp_make_abort(asoc, asconf_ack,
|
|
|
|
sizeof(sctp_errhdr_t));
|
|
|
|
if (abort) {
|
2007-08-21 07:50:01 +00:00
|
|
|
sctp_init_cause(abort, SCTP_ERROR_ASCONF_ACK, 0);
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
|
|
|
|
SCTP_CHUNK(abort));
|
|
|
|
}
|
|
|
|
/* We are going to ABORT, so we might as well stop
|
|
|
|
* processing the rest of the chunks in the packet.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO));
|
2013-12-23 04:16:50 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_DISCARD_PACKET, SCTP_NULL());
|
2006-05-19 17:58:12 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
|
2007-02-09 14:25:18 +00:00
|
|
|
SCTP_ERROR(ECONNABORTED));
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
|
2006-11-21 01:01:06 +00:00
|
|
|
SCTP_PERR(SCTP_ERROR_ASCONF_ACK));
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_ABORTEDS);
|
|
|
|
SCTP_DEC_STATS(net, SCTP_MIB_CURRESTAB);
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_ABORT;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((rcvd_serial == sent_serial) && asoc->addip_last_asconf) {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO));
|
|
|
|
|
|
|
|
if (!sctp_process_asconf_ack((struct sctp_association *)asoc,
|
2010-04-28 08:47:22 +00:00
|
|
|
asconf_ack)) {
|
|
|
|
/* Successfully processed ASCONF_ACK. We can
|
|
|
|
* release the next asconf if we have one.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SEND_NEXT_ASCONF,
|
|
|
|
SCTP_NULL());
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
2010-04-28 08:47:22 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
abort = sctp_make_abort(asoc, asconf_ack,
|
|
|
|
sizeof(sctp_errhdr_t));
|
|
|
|
if (abort) {
|
2007-08-21 07:50:01 +00:00
|
|
|
sctp_init_cause(abort, SCTP_ERROR_RSRC_LOW, 0);
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
|
|
|
|
SCTP_CHUNK(abort));
|
|
|
|
}
|
|
|
|
/* We are going to ABORT, so we might as well stop
|
|
|
|
* processing the rest of the chunks in the packet.
|
|
|
|
*/
|
2013-12-23 04:16:50 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_DISCARD_PACKET, SCTP_NULL());
|
2006-05-19 17:58:12 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
|
2007-02-09 14:25:18 +00:00
|
|
|
SCTP_ERROR(ECONNABORTED));
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
|
2006-11-21 01:01:06 +00:00
|
|
|
SCTP_PERR(SCTP_ERROR_ASCONF_ACK));
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_ABORTEDS);
|
|
|
|
SCTP_DEC_STATS(net, SCTP_MIB_CURRESTAB);
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_ABORT;
|
|
|
|
}
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_DISCARD;
|
|
|
|
}
|
|
|
|
|
2017-02-17 04:45:42 +00:00
|
|
|
/* RE-CONFIG Section 5.2 Upon reception of an RECONF Chunk. */
|
|
|
|
sctp_disposition_t sctp_sf_do_reconf(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type, void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_paramhdr *err_param = NULL;
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
struct sctp_reconf_chunk *hdr;
|
|
|
|
union sctp_params param;
|
|
|
|
|
|
|
|
if (!sctp_vtag_verify(chunk, asoc)) {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG,
|
|
|
|
SCTP_NULL());
|
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Make sure that the RECONF chunk has a valid length. */
|
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(*hdr)))
|
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
|
|
|
commands);
|
|
|
|
|
|
|
|
if (!sctp_verify_reconf(asoc, chunk, &err_param))
|
|
|
|
return sctp_sf_violation_paramlen(net, ep, asoc, type, arg,
|
|
|
|
(void *)err_param, commands);
|
|
|
|
|
|
|
|
hdr = (struct sctp_reconf_chunk *)chunk->chunk_hdr;
|
|
|
|
sctp_walk_params(param, hdr, params) {
|
|
|
|
struct sctp_chunk *reply = NULL;
|
|
|
|
struct sctp_ulpevent *ev = NULL;
|
|
|
|
|
|
|
|
if (param.p->type == SCTP_PARAM_RESET_OUT_REQUEST)
|
|
|
|
reply = sctp_process_strreset_outreq(
|
|
|
|
(struct sctp_association *)asoc, param, &ev);
|
|
|
|
else if (param.p->type == SCTP_PARAM_RESET_IN_REQUEST)
|
|
|
|
reply = sctp_process_strreset_inreq(
|
|
|
|
(struct sctp_association *)asoc, param, &ev);
|
2017-03-10 04:11:07 +00:00
|
|
|
else if (param.p->type == SCTP_PARAM_RESET_TSN_REQUEST)
|
|
|
|
reply = sctp_process_strreset_tsnreq(
|
|
|
|
(struct sctp_association *)asoc, param, &ev);
|
2017-03-10 04:11:09 +00:00
|
|
|
else if (param.p->type == SCTP_PARAM_RESET_ADD_OUT_STREAMS)
|
|
|
|
reply = sctp_process_strreset_addstrm_out(
|
|
|
|
(struct sctp_association *)asoc, param, &ev);
|
2017-03-10 04:11:10 +00:00
|
|
|
else if (param.p->type == SCTP_PARAM_RESET_ADD_IN_STREAMS)
|
|
|
|
reply = sctp_process_strreset_addstrm_in(
|
|
|
|
(struct sctp_association *)asoc, param, &ev);
|
2017-03-10 04:11:11 +00:00
|
|
|
else if (param.p->type == SCTP_PARAM_RESET_RESPONSE)
|
|
|
|
reply = sctp_process_strreset_resp(
|
|
|
|
(struct sctp_association *)asoc, param, &ev);
|
2017-02-17 04:45:42 +00:00
|
|
|
|
|
|
|
if (ev)
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
|
|
|
|
SCTP_ULPEVENT(ev));
|
|
|
|
|
|
|
|
if (reply)
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
|
|
|
|
SCTP_CHUNK(reply));
|
|
|
|
}
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* PR-SCTP Section 3.6 Receiver Side Implementation of PR-SCTP
|
|
|
|
*
|
|
|
|
* When a FORWARD TSN chunk arrives, the data receiver MUST first update
|
|
|
|
* its cumulative TSN point to the value carried in the FORWARD TSN
|
|
|
|
* chunk, and then MUST further advance its cumulative TSN point locally
|
|
|
|
* if possible.
|
|
|
|
* After the above processing, the data receiver MUST stop reporting any
|
|
|
|
* missing TSNs earlier than or equal to the new cumulative TSN point.
|
|
|
|
*
|
|
|
|
* Verification Tag: 8.5 Verification Tag [Normal verification]
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_eat_fwd_tsn(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
struct sctp_fwdtsn_hdr *fwdtsn_hdr;
|
2008-12-26 00:58:11 +00:00
|
|
|
struct sctp_fwdtsn_skip *skip;
|
2005-04-16 22:20:36 +00:00
|
|
|
__u16 len;
|
|
|
|
__u32 tsn;
|
|
|
|
|
|
|
|
if (!sctp_vtag_verify(chunk, asoc)) {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG,
|
|
|
|
SCTP_NULL());
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2017-02-03 09:37:06 +00:00
|
|
|
if (!asoc->peer.prsctp_capable)
|
|
|
|
return sctp_sf_unk_chunk(net, ep, asoc, type, arg, commands);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Make sure that the FORWARD_TSN chunk has valid length. */
|
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_fwdtsn_chunk)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
|
|
|
|
|
|
|
fwdtsn_hdr = (struct sctp_fwdtsn_hdr *)chunk->skb->data;
|
|
|
|
chunk->subh.fwdtsn_hdr = fwdtsn_hdr;
|
|
|
|
len = ntohs(chunk->chunk_hdr->length);
|
|
|
|
len -= sizeof(struct sctp_chunkhdr);
|
|
|
|
skb_pull(chunk->skb, len);
|
|
|
|
|
|
|
|
tsn = ntohl(fwdtsn_hdr->new_cum_tsn);
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
pr_debug("%s: TSN 0x%x\n", __func__, tsn);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* The TSN is too high--silently discard the chunk and count on it
|
|
|
|
* getting retransmitted later.
|
|
|
|
*/
|
|
|
|
if (sctp_tsnmap_check(&asoc->peer.tsn_map, tsn) < 0)
|
|
|
|
goto discard_noforce;
|
|
|
|
|
2008-12-26 00:58:11 +00:00
|
|
|
/* Silently discard the chunk if stream-id is not valid */
|
|
|
|
sctp_walk_fwdtsn(skip, chunk) {
|
2017-05-31 08:36:31 +00:00
|
|
|
if (ntohs(skip->stream) >= asoc->stream.incnt)
|
2008-12-26 00:58:11 +00:00
|
|
|
goto discard_noforce;
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_FWDTSN, SCTP_U32(tsn));
|
|
|
|
if (len > sizeof(struct sctp_fwdtsn_hdr))
|
2007-02-09 14:25:18 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_FWDTSN,
|
2005-04-16 22:20:36 +00:00
|
|
|
SCTP_CHUNK(chunk));
|
2007-02-09 14:25:18 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Count this as receiving DATA. */
|
2013-12-10 11:48:15 +00:00
|
|
|
if (asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE]) {
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_AUTOCLOSE));
|
|
|
|
}
|
2007-02-09 14:25:18 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* FIXME: For now send a SACK, but DATA processing may
|
2007-02-09 14:25:18 +00:00
|
|
|
* send another.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SACK, SCTP_NOFORCE());
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
|
|
|
|
discard_noforce:
|
|
|
|
return SCTP_DISPOSITION_DISCARD;
|
|
|
|
}
|
|
|
|
|
|
|
|
sctp_disposition_t sctp_sf_eat_fwd_tsn_fast(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
struct sctp_fwdtsn_hdr *fwdtsn_hdr;
|
2008-12-26 00:58:11 +00:00
|
|
|
struct sctp_fwdtsn_skip *skip;
|
2005-04-16 22:20:36 +00:00
|
|
|
__u16 len;
|
|
|
|
__u32 tsn;
|
|
|
|
|
|
|
|
if (!sctp_vtag_verify(chunk, asoc)) {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG,
|
|
|
|
SCTP_NULL());
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2017-02-03 09:37:06 +00:00
|
|
|
if (!asoc->peer.prsctp_capable)
|
|
|
|
return sctp_sf_unk_chunk(net, ep, asoc, type, arg, commands);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Make sure that the FORWARD_TSN chunk has a valid length. */
|
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_fwdtsn_chunk)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
|
|
|
|
|
|
|
fwdtsn_hdr = (struct sctp_fwdtsn_hdr *)chunk->skb->data;
|
|
|
|
chunk->subh.fwdtsn_hdr = fwdtsn_hdr;
|
|
|
|
len = ntohs(chunk->chunk_hdr->length);
|
|
|
|
len -= sizeof(struct sctp_chunkhdr);
|
|
|
|
skb_pull(chunk->skb, len);
|
|
|
|
|
|
|
|
tsn = ntohl(fwdtsn_hdr->new_cum_tsn);
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
pr_debug("%s: TSN 0x%x\n", __func__, tsn);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* The TSN is too high--silently discard the chunk and count on it
|
|
|
|
* getting retransmitted later.
|
|
|
|
*/
|
|
|
|
if (sctp_tsnmap_check(&asoc->peer.tsn_map, tsn) < 0)
|
|
|
|
goto gen_shutdown;
|
|
|
|
|
2008-12-26 00:58:11 +00:00
|
|
|
/* Silently discard the chunk if stream-id is not valid */
|
|
|
|
sctp_walk_fwdtsn(skip, chunk) {
|
2017-05-31 08:36:31 +00:00
|
|
|
if (ntohs(skip->stream) >= asoc->stream.incnt)
|
2008-12-26 00:58:11 +00:00
|
|
|
goto gen_shutdown;
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_FWDTSN, SCTP_U32(tsn));
|
|
|
|
if (len > sizeof(struct sctp_fwdtsn_hdr))
|
2007-02-09 14:25:18 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_FWDTSN,
|
2005-04-16 22:20:36 +00:00
|
|
|
SCTP_CHUNK(chunk));
|
2007-02-09 14:25:18 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Go a head and force a SACK, since we are shutting down. */
|
|
|
|
gen_shutdown:
|
|
|
|
/* Implementor's Guide.
|
|
|
|
*
|
|
|
|
* While in SHUTDOWN-SENT state, the SHUTDOWN sender MUST immediately
|
|
|
|
* respond to each received packet containing one or more DATA chunk(s)
|
|
|
|
* with a SACK, a SHUTDOWN chunk, and restart the T2-shutdown timer
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SHUTDOWN, SCTP_NULL());
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SACK, SCTP_FORCE());
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN));
|
|
|
|
|
2007-02-09 14:25:18 +00:00
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2007-10-04 00:51:34 +00:00
|
|
|
/*
|
2011-03-31 01:57:33 +00:00
|
|
|
* SCTP-AUTH Section 6.3 Receiving authenticated chukns
|
2007-10-04 00:51:34 +00:00
|
|
|
*
|
|
|
|
* The receiver MUST use the HMAC algorithm indicated in the HMAC
|
|
|
|
* Identifier field. If this algorithm was not specified by the
|
|
|
|
* receiver in the HMAC-ALGO parameter in the INIT or INIT-ACK chunk
|
|
|
|
* during association setup, the AUTH chunk and all chunks after it MUST
|
|
|
|
* be discarded and an ERROR chunk SHOULD be sent with the error cause
|
|
|
|
* defined in Section 4.1.
|
|
|
|
*
|
|
|
|
* If an endpoint with no shared key receives a Shared Key Identifier
|
|
|
|
* other than 0, it MUST silently discard all authenticated chunks. If
|
|
|
|
* the endpoint has at least one endpoint pair shared key for the peer,
|
|
|
|
* it MUST use the key specified by the Shared Key Identifier if a
|
|
|
|
* key has been configured for that Shared Key Identifier. If no
|
|
|
|
* endpoint pair shared key has been configured for that Shared Key
|
|
|
|
* Identifier, all authenticated chunks MUST be silently discarded.
|
|
|
|
*
|
|
|
|
* Verification Tag: 8.5 Verification Tag [Normal verification]
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
static sctp_ierror_t sctp_sf_authenticate(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2007-10-04 00:51:34 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
struct sctp_chunk *chunk)
|
|
|
|
{
|
|
|
|
struct sctp_authhdr *auth_hdr;
|
|
|
|
struct sctp_hmac *hmac;
|
|
|
|
unsigned int sig_len;
|
|
|
|
__u16 key_id;
|
|
|
|
__u8 *save_digest;
|
|
|
|
__u8 *digest;
|
|
|
|
|
|
|
|
/* Pull in the auth header, so we can do some more verification */
|
|
|
|
auth_hdr = (struct sctp_authhdr *)chunk->skb->data;
|
|
|
|
chunk->subh.auth_hdr = auth_hdr;
|
|
|
|
skb_pull(chunk->skb, sizeof(struct sctp_authhdr));
|
|
|
|
|
2012-08-22 10:11:26 +00:00
|
|
|
/* Make sure that we support the HMAC algorithm from the auth
|
2007-10-04 00:51:34 +00:00
|
|
|
* chunk.
|
|
|
|
*/
|
|
|
|
if (!sctp_auth_asoc_verify_hmac_id(asoc, auth_hdr->hmac_id))
|
|
|
|
return SCTP_IERROR_AUTH_BAD_HMAC;
|
|
|
|
|
|
|
|
/* Make sure that the provided shared key identifier has been
|
|
|
|
* configured
|
|
|
|
*/
|
|
|
|
key_id = ntohs(auth_hdr->shkey_id);
|
|
|
|
if (key_id != asoc->active_key_id && !sctp_auth_get_shkey(asoc, key_id))
|
|
|
|
return SCTP_IERROR_AUTH_BAD_KEYID;
|
|
|
|
|
|
|
|
|
|
|
|
/* Make sure that the length of the signature matches what
|
|
|
|
* we expect.
|
|
|
|
*/
|
|
|
|
sig_len = ntohs(chunk->chunk_hdr->length) - sizeof(sctp_auth_chunk_t);
|
|
|
|
hmac = sctp_auth_get_hmac(ntohs(auth_hdr->hmac_id));
|
|
|
|
if (sig_len != hmac->hmac_len)
|
|
|
|
return SCTP_IERROR_PROTO_VIOLATION;
|
|
|
|
|
|
|
|
/* Now that we've done validation checks, we can compute and
|
|
|
|
* verify the hmac. The steps involved are:
|
|
|
|
* 1. Save the digest from the chunk.
|
|
|
|
* 2. Zero out the digest in the chunk.
|
|
|
|
* 3. Compute the new digest
|
|
|
|
* 4. Compare saved and new digests.
|
|
|
|
*/
|
|
|
|
digest = auth_hdr->hmac;
|
|
|
|
skb_pull(chunk->skb, sig_len);
|
|
|
|
|
|
|
|
save_digest = kmemdup(digest, sig_len, GFP_ATOMIC);
|
|
|
|
if (!save_digest)
|
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
memset(digest, 0, sig_len);
|
|
|
|
|
|
|
|
sctp_auth_calculate_hmac(asoc, chunk->skb,
|
|
|
|
(struct sctp_auth_chunk *)chunk->chunk_hdr,
|
|
|
|
GFP_ATOMIC);
|
|
|
|
|
|
|
|
/* Discard the packet if the digests do not match */
|
|
|
|
if (memcmp(save_digest, digest, sig_len)) {
|
|
|
|
kfree(save_digest);
|
|
|
|
return SCTP_IERROR_BAD_SIG;
|
|
|
|
}
|
|
|
|
|
|
|
|
kfree(save_digest);
|
|
|
|
chunk->auth = 1;
|
|
|
|
|
|
|
|
return SCTP_IERROR_NO_ERROR;
|
|
|
|
nomem:
|
|
|
|
return SCTP_IERROR_NOMEM;
|
|
|
|
}
|
|
|
|
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_eat_auth(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2007-10-04 00:51:34 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_authhdr *auth_hdr;
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
struct sctp_chunk *err_chunk;
|
|
|
|
sctp_ierror_t error;
|
|
|
|
|
2008-02-05 11:02:26 +00:00
|
|
|
/* Make sure that the peer has AUTH capable */
|
|
|
|
if (!asoc->peer.auth_capable)
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_unk_chunk(net, ep, asoc, type, arg, commands);
|
2008-02-05 11:02:26 +00:00
|
|
|
|
2007-10-04 00:51:34 +00:00
|
|
|
if (!sctp_vtag_verify(chunk, asoc)) {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG,
|
|
|
|
SCTP_NULL());
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2007-10-04 00:51:34 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Make sure that the AUTH chunk has valid length. */
|
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_auth_chunk)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2007-10-04 00:51:34 +00:00
|
|
|
commands);
|
|
|
|
|
|
|
|
auth_hdr = (struct sctp_authhdr *)chunk->skb->data;
|
2012-08-07 07:28:09 +00:00
|
|
|
error = sctp_sf_authenticate(net, ep, asoc, type, chunk);
|
2007-10-04 00:51:34 +00:00
|
|
|
switch (error) {
|
2011-07-01 09:43:11 +00:00
|
|
|
case SCTP_IERROR_AUTH_BAD_HMAC:
|
|
|
|
/* Generate the ERROR chunk and discard the rest
|
|
|
|
* of the packet
|
|
|
|
*/
|
|
|
|
err_chunk = sctp_make_op_error(asoc, chunk,
|
|
|
|
SCTP_ERROR_UNSUP_HMAC,
|
|
|
|
&auth_hdr->hmac_id,
|
|
|
|
sizeof(__u16), 0);
|
|
|
|
if (err_chunk) {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
|
|
|
|
SCTP_CHUNK(err_chunk));
|
|
|
|
}
|
|
|
|
/* Fall Through */
|
|
|
|
case SCTP_IERROR_AUTH_BAD_KEYID:
|
|
|
|
case SCTP_IERROR_BAD_SIG:
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2011-07-01 09:43:11 +00:00
|
|
|
|
|
|
|
case SCTP_IERROR_PROTO_VIOLATION:
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2011-07-01 09:43:11 +00:00
|
|
|
commands);
|
|
|
|
|
|
|
|
case SCTP_IERROR_NOMEM:
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
|
|
|
|
default: /* Prevent gcc warnings */
|
|
|
|
break;
|
2007-10-04 00:51:34 +00:00
|
|
|
}
|
|
|
|
|
2007-09-17 02:34:00 +00:00
|
|
|
if (asoc->active_key_id != ntohs(auth_hdr->shkey_id)) {
|
|
|
|
struct sctp_ulpevent *ev;
|
|
|
|
|
|
|
|
ev = sctp_ulpevent_make_authkey(asoc, ntohs(auth_hdr->shkey_id),
|
|
|
|
SCTP_AUTH_NEWKEY, GFP_ATOMIC);
|
|
|
|
|
|
|
|
if (!ev)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
|
|
|
|
SCTP_ULPEVENT(ev));
|
|
|
|
}
|
|
|
|
|
2007-10-04 00:51:34 +00:00
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* Process an unknown chunk.
|
|
|
|
*
|
|
|
|
* Section: 3.2. Also, 2.1 in the implementor's guide.
|
|
|
|
*
|
|
|
|
* Chunk Types are encoded such that the highest-order two bits specify
|
|
|
|
* the action that must be taken if the processing endpoint does not
|
|
|
|
* recognize the Chunk Type.
|
|
|
|
*
|
|
|
|
* 00 - Stop processing this SCTP packet and discard it, do not process
|
|
|
|
* any further chunks within it.
|
|
|
|
*
|
|
|
|
* 01 - Stop processing this SCTP packet and discard it, do not process
|
|
|
|
* any further chunks within it, and report the unrecognized
|
|
|
|
* chunk in an 'Unrecognized Chunk Type'.
|
|
|
|
*
|
|
|
|
* 10 - Skip this chunk and continue processing.
|
|
|
|
*
|
|
|
|
* 11 - Skip this chunk and continue processing, but report in an ERROR
|
|
|
|
* Chunk using the 'Unrecognized Chunk Type' cause of error.
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_unk_chunk(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *unk_chunk = arg;
|
|
|
|
struct sctp_chunk *err_chunk;
|
2017-06-30 03:52:13 +00:00
|
|
|
struct sctp_chunkhdr *hdr;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
pr_debug("%s: processing unknown chunk id:%d\n", __func__, type.chunk);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (!sctp_vtag_verify(unk_chunk, asoc))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Make sure that the chunk has a valid length.
|
|
|
|
* Since we don't know the chunk type, we use a general
|
|
|
|
* chunkhdr structure to make a comparison.
|
|
|
|
*/
|
2017-06-30 03:52:13 +00:00
|
|
|
if (!sctp_chunk_length_valid(unk_chunk, sizeof(*hdr)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
|
|
|
|
|
|
|
switch (type.chunk & SCTP_CID_ACTION_MASK) {
|
|
|
|
case SCTP_CID_ACTION_DISCARD:
|
|
|
|
/* Discard the packet. */
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
case SCTP_CID_ACTION_DISCARD_ERR:
|
|
|
|
/* Generate an ERROR chunk as response. */
|
|
|
|
hdr = unk_chunk->chunk_hdr;
|
|
|
|
err_chunk = sctp_make_op_error(asoc, unk_chunk,
|
|
|
|
SCTP_ERROR_UNKNOWN_CHUNK, hdr,
|
2016-09-21 11:45:55 +00:00
|
|
|
SCTP_PAD4(ntohs(hdr->length)),
|
2009-11-23 20:53:56 +00:00
|
|
|
0);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (err_chunk) {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
|
|
|
|
SCTP_CHUNK(err_chunk));
|
|
|
|
}
|
2008-06-19 23:08:18 +00:00
|
|
|
|
|
|
|
/* Discard the packet. */
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
case SCTP_CID_ACTION_SKIP:
|
|
|
|
/* Skip the chunk. */
|
|
|
|
return SCTP_DISPOSITION_DISCARD;
|
|
|
|
case SCTP_CID_ACTION_SKIP_ERR:
|
|
|
|
/* Generate an ERROR chunk as response. */
|
|
|
|
hdr = unk_chunk->chunk_hdr;
|
|
|
|
err_chunk = sctp_make_op_error(asoc, unk_chunk,
|
|
|
|
SCTP_ERROR_UNKNOWN_CHUNK, hdr,
|
2016-09-21 11:45:55 +00:00
|
|
|
SCTP_PAD4(ntohs(hdr->length)),
|
2009-11-23 20:53:56 +00:00
|
|
|
0);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (err_chunk) {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
|
|
|
|
SCTP_CHUNK(err_chunk));
|
|
|
|
}
|
|
|
|
/* Skip the chunk. */
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_DISCARD;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Discard the chunk.
|
|
|
|
*
|
|
|
|
* Section: 0.2, 5.2.3, 5.2.5, 5.2.6, 6.0, 8.4.6, 8.5.1c, 9.2
|
|
|
|
* [Too numerous to mention...]
|
|
|
|
* Verification Tag: No verification needed.
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_discard_chunk(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
2007-09-07 20:30:54 +00:00
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
|
|
|
|
/* Make sure that the chunk has a valid length.
|
|
|
|
* Since we don't know the chunk type, we use a general
|
|
|
|
* chunkhdr structure to make a comparison.
|
|
|
|
*/
|
2017-06-30 03:52:13 +00:00
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_chunkhdr)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2007-09-07 20:30:54 +00:00
|
|
|
commands);
|
|
|
|
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
pr_debug("%s: chunk:%d is discarded\n", __func__, type.chunk);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_DISCARD;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Discard the whole packet.
|
|
|
|
*
|
|
|
|
* Section: 8.4 2)
|
|
|
|
*
|
|
|
|
* 2) If the OOTB packet contains an ABORT chunk, the receiver MUST
|
|
|
|
* silently discard the OOTB packet and take no further action.
|
|
|
|
*
|
|
|
|
* Verification Tag: No verification necessary
|
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_pdiscard(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
2012-08-07 07:28:09 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_DISCARD_PACKET, SCTP_NULL());
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The other end is violating protocol.
|
|
|
|
*
|
|
|
|
* Section: Not specified
|
|
|
|
* Verification Tag: Not specified
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (asoc, reply_msg, msg_up, timers, counters)
|
|
|
|
*
|
|
|
|
* We simply tag the chunk as a violation. The state machine will log
|
|
|
|
* the violation and continue.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_violation(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
2007-09-07 20:30:54 +00:00
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
|
|
|
|
/* Make sure that the chunk has a valid length. */
|
2017-06-30 03:52:13 +00:00
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_chunkhdr)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2007-09-07 20:30:54 +00:00
|
|
|
commands);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_VIOLATION;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2007-08-02 08:57:44 +00:00
|
|
|
* Common function to handle a protocol violation.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2007-08-02 08:57:44 +00:00
|
|
|
static sctp_disposition_t sctp_sf_abort_violation(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2007-09-07 20:30:54 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
void *arg,
|
2007-08-02 08:57:44 +00:00
|
|
|
sctp_cmd_seq_t *commands,
|
|
|
|
const __u8 *payload,
|
|
|
|
const size_t paylen)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2007-09-07 20:30:54 +00:00
|
|
|
struct sctp_packet *packet = NULL;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
struct sctp_chunk *abort = NULL;
|
|
|
|
|
2007-10-04 00:51:34 +00:00
|
|
|
/* SCTP-AUTH, Section 6.3:
|
|
|
|
* It should be noted that if the receiver wants to tear
|
|
|
|
* down an association in an authenticated way only, the
|
|
|
|
* handling of malformed packets should not result in
|
|
|
|
* tearing down the association.
|
|
|
|
*
|
|
|
|
* This means that if we only want to abort associations
|
|
|
|
* in an authenticated way (i.e AUTH+ABORT), then we
|
2011-03-31 01:57:33 +00:00
|
|
|
* can't destroy this association just because the packet
|
2007-10-04 00:51:34 +00:00
|
|
|
* was malformed.
|
|
|
|
*/
|
|
|
|
if (sctp_auth_recv_cid(SCTP_CID_ABORT, asoc))
|
|
|
|
goto discard;
|
|
|
|
|
2007-11-11 22:57:49 +00:00
|
|
|
/* Make the abort chunk. */
|
|
|
|
abort = sctp_make_abort_violation(asoc, chunk, payload, paylen);
|
|
|
|
if (!abort)
|
|
|
|
goto nomem;
|
|
|
|
|
2007-09-07 20:30:54 +00:00
|
|
|
if (asoc) {
|
2008-04-13 01:39:34 +00:00
|
|
|
/* Treat INIT-ACK as a special case during COOKIE-WAIT. */
|
|
|
|
if (chunk->chunk_hdr->type == SCTP_CID_INIT_ACK &&
|
|
|
|
!asoc->peer.i.init_tag) {
|
2017-07-23 01:34:26 +00:00
|
|
|
struct sctp_initack_chunk *initack;
|
2008-04-13 01:39:34 +00:00
|
|
|
|
2017-07-23 01:34:26 +00:00
|
|
|
initack = (struct sctp_initack_chunk *)chunk->chunk_hdr;
|
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(*initack)))
|
2008-04-13 01:39:34 +00:00
|
|
|
abort->chunk_hdr->flags |= SCTP_CHUNK_FLAG_T;
|
|
|
|
else {
|
|
|
|
unsigned int inittag;
|
|
|
|
|
|
|
|
inittag = ntohl(initack->init_hdr.init_tag);
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_UPDATE_INITTAG,
|
|
|
|
SCTP_U32(inittag));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2007-09-07 20:30:54 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(abort));
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-09-07 20:30:54 +00:00
|
|
|
if (asoc->state <= SCTP_STATE_COOKIE_ECHOED) {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
|
|
|
|
SCTP_ERROR(ECONNREFUSED));
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED,
|
|
|
|
SCTP_PERR(SCTP_ERROR_PROTO_VIOLATION));
|
|
|
|
} else {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
|
|
|
|
SCTP_ERROR(ECONNABORTED));
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
|
|
|
|
SCTP_PERR(SCTP_ERROR_PROTO_VIOLATION));
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_DEC_STATS(net, SCTP_MIB_CURRESTAB);
|
2007-09-07 20:30:54 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
} else {
|
2012-08-06 08:43:06 +00:00
|
|
|
packet = sctp_ootb_pkt_new(net, asoc, chunk);
|
2007-09-07 20:30:54 +00:00
|
|
|
|
|
|
|
if (!packet)
|
|
|
|
goto nomem_pkt;
|
|
|
|
|
|
|
|
if (sctp_test_T_bit(abort))
|
|
|
|
packet->vtag = ntohl(chunk->sctp_hdr->vtag);
|
|
|
|
|
|
|
|
abort->skb->sk = ep->base.sk;
|
|
|
|
|
|
|
|
sctp_packet_append_chunk(packet, abort);
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT,
|
|
|
|
SCTP_PACKET(packet));
|
|
|
|
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_ABORTEDS);
|
2007-02-09 14:25:18 +00:00
|
|
|
|
2008-10-09 21:33:01 +00:00
|
|
|
discard:
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_sf_pdiscard(net, ep, asoc, SCTP_ST_CHUNK(0), arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_ABORT;
|
|
|
|
|
2007-09-07 20:30:54 +00:00
|
|
|
nomem_pkt:
|
|
|
|
sctp_chunk_free(abort);
|
2005-04-16 22:20:36 +00:00
|
|
|
nomem:
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
}
|
|
|
|
|
2007-08-02 08:57:44 +00:00
|
|
|
/*
|
|
|
|
* Handle a protocol violation when the chunk length is invalid.
|
2008-10-16 17:02:37 +00:00
|
|
|
* "Invalid" length is identified as smaller than the minimal length a
|
2007-08-02 08:57:44 +00:00
|
|
|
* given chunk can be. For example, a SACK chunk has invalid length
|
2017-07-23 01:34:33 +00:00
|
|
|
* if its length is set to be smaller than the size of struct sctp_sack_chunk.
|
2007-08-02 08:57:44 +00:00
|
|
|
*
|
|
|
|
* We inform the other end by sending an ABORT with a Protocol Violation
|
|
|
|
* error code.
|
|
|
|
*
|
|
|
|
* Section: Not specified
|
|
|
|
* Verification Tag: Nothing to do
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (reply_msg, msg_up, counters)
|
|
|
|
*
|
|
|
|
* Generate an ABORT chunk and terminate the association.
|
|
|
|
*/
|
|
|
|
static sctp_disposition_t sctp_sf_violation_chunklen(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2007-08-02 08:57:44 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
2013-12-23 04:16:50 +00:00
|
|
|
static const char err_str[] = "The following chunk had invalid length:";
|
2007-08-02 08:57:44 +00:00
|
|
|
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_abort_violation(net, ep, asoc, arg, commands, err_str,
|
2007-08-02 08:57:44 +00:00
|
|
|
sizeof(err_str));
|
|
|
|
}
|
|
|
|
|
2007-09-19 09:19:52 +00:00
|
|
|
/*
|
|
|
|
* Handle a protocol violation when the parameter length is invalid.
|
2011-04-18 19:11:01 +00:00
|
|
|
* If the length is smaller than the minimum length of a given parameter,
|
|
|
|
* or accumulated length in multi parameters exceeds the end of the chunk,
|
|
|
|
* the length is considered as invalid.
|
2007-09-19 09:19:52 +00:00
|
|
|
*/
|
|
|
|
static sctp_disposition_t sctp_sf_violation_paramlen(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2007-09-19 09:19:52 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
2008-09-30 12:32:24 +00:00
|
|
|
void *arg, void *ext,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
struct sctp_paramhdr *param = ext;
|
|
|
|
struct sctp_chunk *abort = NULL;
|
2007-09-19 09:19:52 +00:00
|
|
|
|
2008-09-30 12:32:24 +00:00
|
|
|
if (sctp_auth_recv_cid(SCTP_CID_ABORT, asoc))
|
|
|
|
goto discard;
|
|
|
|
|
|
|
|
/* Make the abort chunk. */
|
|
|
|
abort = sctp_make_violation_paramlen(asoc, chunk, param);
|
|
|
|
if (!abort)
|
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(abort));
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
|
2008-09-30 12:32:24 +00:00
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
|
|
|
|
SCTP_ERROR(ECONNABORTED));
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
|
|
|
|
SCTP_PERR(SCTP_ERROR_PROTO_VIOLATION));
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_DEC_STATS(net, SCTP_MIB_CURRESTAB);
|
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_ABORTEDS);
|
2008-09-30 12:32:24 +00:00
|
|
|
|
|
|
|
discard:
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_sf_pdiscard(net, ep, asoc, SCTP_ST_CHUNK(0), arg, commands);
|
2008-09-30 12:32:24 +00:00
|
|
|
return SCTP_DISPOSITION_ABORT;
|
|
|
|
nomem:
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
2007-09-19 09:19:52 +00:00
|
|
|
}
|
|
|
|
|
2007-08-02 08:57:44 +00:00
|
|
|
/* Handle a protocol violation when the peer trying to advance the
|
|
|
|
* cumulative tsn ack to a point beyond the max tsn currently sent.
|
|
|
|
*
|
|
|
|
* We inform the other end by sending an ABORT with a Protocol Violation
|
|
|
|
* error code.
|
|
|
|
*/
|
|
|
|
static sctp_disposition_t sctp_sf_violation_ctsn(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2007-08-02 08:57:44 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
2013-12-23 04:16:50 +00:00
|
|
|
static const char err_str[] = "The cumulative tsn ack beyond the max tsn currently sent:";
|
2007-08-02 08:57:44 +00:00
|
|
|
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_abort_violation(net, ep, asoc, arg, commands, err_str,
|
2007-08-02 08:57:44 +00:00
|
|
|
sizeof(err_str));
|
|
|
|
}
|
|
|
|
|
2007-09-07 20:30:54 +00:00
|
|
|
/* Handle protocol violation of an invalid chunk bundling. For example,
|
2011-03-31 01:57:33 +00:00
|
|
|
* when we have an association and we receive bundled INIT-ACK, or
|
2007-09-07 20:30:54 +00:00
|
|
|
* SHUDOWN-COMPLETE, our peer is clearly violationg the "MUST NOT bundle"
|
2011-03-31 01:57:33 +00:00
|
|
|
* statement from the specs. Additionally, there might be an attacker
|
2007-09-07 20:30:54 +00:00
|
|
|
* on the path and we may not want to continue this communication.
|
|
|
|
*/
|
|
|
|
static sctp_disposition_t sctp_sf_violation_chunk(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2007-09-07 20:30:54 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
2013-12-23 04:16:50 +00:00
|
|
|
static const char err_str[] = "The following chunk violates protocol:";
|
2007-09-07 20:30:54 +00:00
|
|
|
|
|
|
|
if (!asoc)
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation(net, ep, asoc, type, arg, commands);
|
2007-09-07 20:30:54 +00:00
|
|
|
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_abort_violation(net, ep, asoc, arg, commands, err_str,
|
2007-09-07 20:30:54 +00:00
|
|
|
sizeof(err_str));
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
/***************************************************************************
|
|
|
|
* These are the state functions for handling primitive (Section 10) events.
|
|
|
|
***************************************************************************/
|
|
|
|
/*
|
|
|
|
* sctp_sf_do_prm_asoc
|
|
|
|
*
|
|
|
|
* Section: 10.1 ULP-to-SCTP
|
|
|
|
* B) Associate
|
|
|
|
*
|
|
|
|
* Format: ASSOCIATE(local SCTP instance name, destination transport addr,
|
|
|
|
* outbound stream count)
|
|
|
|
* -> association id [,destination transport addr list] [,outbound stream
|
|
|
|
* count]
|
|
|
|
*
|
|
|
|
* This primitive allows the upper layer to initiate an association to a
|
|
|
|
* specific peer endpoint.
|
|
|
|
*
|
|
|
|
* The peer endpoint shall be specified by one of the transport addresses
|
|
|
|
* which defines the endpoint (see Section 1.4). If the local SCTP
|
|
|
|
* instance has not been initialized, the ASSOCIATE is considered an
|
|
|
|
* error.
|
|
|
|
* [This is not relevant for the kernel implementation since we do all
|
|
|
|
* initialization at boot time. It we hadn't initialized we wouldn't
|
|
|
|
* get anywhere near this code.]
|
|
|
|
*
|
|
|
|
* An association id, which is a local handle to the SCTP association,
|
|
|
|
* will be returned on successful establishment of the association. If
|
|
|
|
* SCTP is not able to open an SCTP association with the peer endpoint,
|
|
|
|
* an error is returned.
|
|
|
|
* [In the kernel implementation, the struct sctp_association needs to
|
|
|
|
* be created BEFORE causing this primitive to run.]
|
|
|
|
*
|
|
|
|
* Other association parameters may be returned, including the
|
|
|
|
* complete destination transport addresses of the peer as well as the
|
|
|
|
* outbound stream count of the local endpoint. One of the transport
|
|
|
|
* address from the returned destination addresses will be selected by
|
|
|
|
* the local endpoint as default primary path for sending SCTP packets
|
|
|
|
* to this peer. The returned "destination transport addr list" can
|
|
|
|
* be used by the ULP to change the default primary path or to force
|
|
|
|
* sending a packet to a specific transport address. [All of this
|
|
|
|
* stuff happens when the INIT ACK arrives. This is a NON-BLOCKING
|
|
|
|
* function.]
|
|
|
|
*
|
|
|
|
* Mandatory attributes:
|
|
|
|
*
|
|
|
|
* o local SCTP instance name - obtained from the INITIALIZE operation.
|
|
|
|
* [This is the argument asoc.]
|
|
|
|
* o destination transport addr - specified as one of the transport
|
|
|
|
* addresses of the peer endpoint with which the association is to be
|
|
|
|
* established.
|
|
|
|
* [This is asoc->peer.active_path.]
|
|
|
|
* o outbound stream count - the number of outbound streams the ULP
|
|
|
|
* would like to open towards this peer endpoint.
|
|
|
|
* [BUG: This is not currently implemented.]
|
|
|
|
* Optional attributes:
|
|
|
|
*
|
|
|
|
* None.
|
|
|
|
*
|
|
|
|
* The return value is a disposition.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_prm_asoc(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *repl;
|
2013-12-23 04:16:51 +00:00
|
|
|
struct sctp_association *my_asoc;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* The comment below says that we enter COOKIE-WAIT AFTER
|
|
|
|
* sending the INIT, but that doesn't actually work in our
|
|
|
|
* implementation...
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
|
|
|
|
SCTP_STATE(SCTP_STATE_COOKIE_WAIT));
|
|
|
|
|
|
|
|
/* RFC 2960 5.1 Normal Establishment of an Association
|
|
|
|
*
|
|
|
|
* A) "A" first sends an INIT chunk to "Z". In the INIT, "A"
|
|
|
|
* must provide its Verification Tag (Tag_A) in the Initiate
|
|
|
|
* Tag field. Tag_A SHOULD be a random number in the range of
|
|
|
|
* 1 to 4294967295 (see 5.3.1 for Tag value selection). ...
|
|
|
|
*/
|
|
|
|
|
|
|
|
repl = sctp_make_init(asoc, &asoc->base.bind_addr, GFP_ATOMIC, 0);
|
|
|
|
if (!repl)
|
|
|
|
goto nomem;
|
|
|
|
|
2013-06-14 16:24:05 +00:00
|
|
|
/* Choose transport for INIT. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_CHOOSE_TRANSPORT,
|
|
|
|
SCTP_CHUNK(repl));
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Cast away the const modifier, as we want to just
|
|
|
|
* rerun it through as a sideffect.
|
|
|
|
*/
|
2008-04-13 01:40:06 +00:00
|
|
|
my_asoc = (struct sctp_association *)asoc;
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_ASOC, SCTP_ASOC(my_asoc));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* After sending the INIT, "A" starts the T1-init timer and
|
|
|
|
* enters the COOKIE-WAIT state.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl));
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
|
|
|
|
nomem:
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process the SEND primitive.
|
|
|
|
*
|
|
|
|
* Section: 10.1 ULP-to-SCTP
|
|
|
|
* E) Send
|
|
|
|
*
|
|
|
|
* Format: SEND(association id, buffer address, byte count [,context]
|
|
|
|
* [,stream id] [,life time] [,destination transport address]
|
|
|
|
* [,unorder flag] [,no-bundle flag] [,payload protocol-id] )
|
|
|
|
* -> result
|
|
|
|
*
|
|
|
|
* This is the main method to send user data via SCTP.
|
|
|
|
*
|
|
|
|
* Mandatory attributes:
|
|
|
|
*
|
|
|
|
* o association id - local handle to the SCTP association
|
|
|
|
*
|
|
|
|
* o buffer address - the location where the user message to be
|
|
|
|
* transmitted is stored;
|
|
|
|
*
|
|
|
|
* o byte count - The size of the user data in number of bytes;
|
|
|
|
*
|
|
|
|
* Optional attributes:
|
|
|
|
*
|
|
|
|
* o context - an optional 32 bit integer that will be carried in the
|
|
|
|
* sending failure notification to the ULP if the transportation of
|
|
|
|
* this User Message fails.
|
|
|
|
*
|
|
|
|
* o stream id - to indicate which stream to send the data on. If not
|
|
|
|
* specified, stream 0 will be used.
|
|
|
|
*
|
|
|
|
* o life time - specifies the life time of the user data. The user data
|
|
|
|
* will not be sent by SCTP after the life time expires. This
|
|
|
|
* parameter can be used to avoid efforts to transmit stale
|
|
|
|
* user messages. SCTP notifies the ULP if the data cannot be
|
|
|
|
* initiated to transport (i.e. sent to the destination via SCTP's
|
|
|
|
* send primitive) within the life time variable. However, the
|
|
|
|
* user data will be transmitted if SCTP has attempted to transmit a
|
|
|
|
* chunk before the life time expired.
|
|
|
|
*
|
|
|
|
* o destination transport address - specified as one of the destination
|
|
|
|
* transport addresses of the peer endpoint to which this packet
|
|
|
|
* should be sent. Whenever possible, SCTP should use this destination
|
|
|
|
* transport address for sending the packets, instead of the current
|
|
|
|
* primary path.
|
|
|
|
*
|
|
|
|
* o unorder flag - this flag, if present, indicates that the user
|
|
|
|
* would like the data delivered in an unordered fashion to the peer
|
|
|
|
* (i.e., the U flag is set to 1 on all DATA chunks carrying this
|
|
|
|
* message).
|
|
|
|
*
|
|
|
|
* o no-bundle flag - instructs SCTP not to bundle this user data with
|
|
|
|
* other outbound DATA chunks. SCTP MAY still bundle even when
|
|
|
|
* this flag is present, when faced with network congestion.
|
|
|
|
*
|
|
|
|
* o payload protocol-id - A 32 bit unsigned integer that is to be
|
|
|
|
* passed to the peer indicating the type of payload protocol data
|
|
|
|
* being transmitted. This value is passed as opaque data by SCTP.
|
|
|
|
*
|
|
|
|
* The return value is the disposition.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_prm_send(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
2009-08-10 17:51:03 +00:00
|
|
|
struct sctp_datamsg *msg = arg;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2009-08-10 17:51:03 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SEND_MSG, SCTP_DATAMSG(msg));
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process the SHUTDOWN primitive.
|
|
|
|
*
|
|
|
|
* Section: 10.1:
|
|
|
|
* C) Shutdown
|
|
|
|
*
|
|
|
|
* Format: SHUTDOWN(association id)
|
|
|
|
* -> result
|
|
|
|
*
|
|
|
|
* Gracefully closes an association. Any locally queued user data
|
|
|
|
* will be delivered to the peer. The association will be terminated only
|
|
|
|
* after the peer acknowledges all the SCTP packets sent. A success code
|
|
|
|
* will be returned on successful termination of the association. If
|
|
|
|
* attempting to terminate the association results in a failure, an error
|
|
|
|
* code shall be returned.
|
|
|
|
*
|
|
|
|
* Mandatory attributes:
|
|
|
|
*
|
|
|
|
* o association id - local handle to the SCTP association
|
|
|
|
*
|
|
|
|
* Optional attributes:
|
|
|
|
*
|
|
|
|
* None.
|
|
|
|
*
|
|
|
|
* The return value is the disposition.
|
|
|
|
*/
|
|
|
|
sctp_disposition_t sctp_sf_do_9_2_prm_shutdown(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
int disposition;
|
|
|
|
|
|
|
|
/* From 9.2 Shutdown of an Association
|
|
|
|
* Upon receipt of the SHUTDOWN primitive from its upper
|
|
|
|
* layer, the endpoint enters SHUTDOWN-PENDING state and
|
|
|
|
* remains there until all outstanding data has been
|
|
|
|
* acknowledged by its peer. The endpoint accepts no new data
|
|
|
|
* from its upper layer, but retransmits data to the far end
|
|
|
|
* if necessary to fill gaps.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
|
|
|
|
SCTP_STATE(SCTP_STATE_SHUTDOWN_PENDING));
|
|
|
|
|
|
|
|
disposition = SCTP_DISPOSITION_CONSUME;
|
|
|
|
if (sctp_outq_is_empty(&asoc->outqueue)) {
|
2012-08-07 07:28:09 +00:00
|
|
|
disposition = sctp_sf_do_9_2_start_shutdown(net, ep, asoc, type,
|
2005-04-16 22:20:36 +00:00
|
|
|
arg, commands);
|
|
|
|
}
|
|
|
|
return disposition;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process the ABORT primitive.
|
|
|
|
*
|
|
|
|
* Section: 10.1:
|
|
|
|
* C) Abort
|
|
|
|
*
|
|
|
|
* Format: Abort(association id [, cause code])
|
|
|
|
* -> result
|
|
|
|
*
|
|
|
|
* Ungracefully closes an association. Any locally queued user data
|
|
|
|
* will be discarded and an ABORT chunk is sent to the peer. A success code
|
|
|
|
* will be returned on successful abortion of the association. If
|
|
|
|
* attempting to abort the association results in a failure, an error
|
|
|
|
* code shall be returned.
|
|
|
|
*
|
|
|
|
* Mandatory attributes:
|
|
|
|
*
|
|
|
|
* o association id - local handle to the SCTP association
|
|
|
|
*
|
|
|
|
* Optional attributes:
|
|
|
|
*
|
|
|
|
* o cause code - reason of the abort to be passed to the peer
|
|
|
|
*
|
|
|
|
* None.
|
|
|
|
*
|
|
|
|
* The return value is the disposition.
|
|
|
|
*/
|
|
|
|
sctp_disposition_t sctp_sf_do_9_1_prm_abort(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
/* From 9.1 Abort of an Association
|
|
|
|
* Upon receipt of the ABORT primitive from its upper
|
|
|
|
* layer, the endpoint enters CLOSED state and
|
|
|
|
* discard all outstanding data has been
|
|
|
|
* acknowledged by its peer. The endpoint accepts no new data
|
|
|
|
* from its upper layer, but retransmits data to the far end
|
|
|
|
* if necessary to fill gaps.
|
|
|
|
*/
|
2006-08-22 18:50:39 +00:00
|
|
|
struct sctp_chunk *abort = arg;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2015-12-29 09:49:25 +00:00
|
|
|
if (abort)
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(abort));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Even if we can't send the ABORT due to low memory delete the
|
|
|
|
* TCB. This is a departure from our typical NOMEM handling.
|
|
|
|
*/
|
|
|
|
|
2006-05-19 17:58:12 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
|
|
|
|
SCTP_ERROR(ECONNABORTED));
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Delete the established association. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
|
2006-11-21 01:01:06 +00:00
|
|
|
SCTP_PERR(SCTP_ERROR_USER_ABORT));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_ABORTEDS);
|
|
|
|
SCTP_DEC_STATS(net, SCTP_MIB_CURRESTAB);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-01-08 13:00:54 +00:00
|
|
|
return SCTP_DISPOSITION_ABORT;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* We tried an illegal operation on an association which is closed. */
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_error_closed(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_ERROR, SCTP_ERROR(-EINVAL));
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* We tried an illegal operation on an association which is shutting
|
|
|
|
* down.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_error_shutdown(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_ERROR,
|
|
|
|
SCTP_ERROR(-ESHUTDOWN));
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sctp_cookie_wait_prm_shutdown
|
|
|
|
*
|
|
|
|
* Section: 4 Note: 2
|
|
|
|
* Verification Tag:
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc)
|
|
|
|
*
|
|
|
|
* The RFC does not explicitly address this issue, but is the route through the
|
|
|
|
* state table when someone issues a shutdown while in COOKIE_WAIT state.
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (timers)
|
|
|
|
*/
|
|
|
|
sctp_disposition_t sctp_sf_cookie_wait_prm_shutdown(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
|
|
|
|
SCTP_STATE(SCTP_STATE_CLOSED));
|
|
|
|
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_SHUTDOWNS);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_DELETE_TCB;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sctp_cookie_echoed_prm_shutdown
|
|
|
|
*
|
|
|
|
* Section: 4 Note: 2
|
|
|
|
* Verification Tag:
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc)
|
|
|
|
*
|
|
|
|
* The RFC does not explcitly address this issue, but is the route through the
|
|
|
|
* state table when someone issues a shutdown while in COOKIE_ECHOED state.
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (timers)
|
|
|
|
*/
|
|
|
|
sctp_disposition_t sctp_sf_cookie_echoed_prm_shutdown(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg, sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
/* There is a single T1 timer, so we should be able to use
|
|
|
|
* common function with the COOKIE-WAIT state.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_cookie_wait_prm_shutdown(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sctp_sf_cookie_wait_prm_abort
|
|
|
|
*
|
|
|
|
* Section: 4 Note: 2
|
|
|
|
* Verification Tag:
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc)
|
|
|
|
*
|
|
|
|
* The RFC does not explicitly address this issue, but is the route through the
|
|
|
|
* state table when someone issues an abort while in COOKIE_WAIT state.
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (timers)
|
|
|
|
*/
|
|
|
|
sctp_disposition_t sctp_sf_cookie_wait_prm_abort(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
2006-08-22 18:50:39 +00:00
|
|
|
struct sctp_chunk *abort = arg;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Stop T1-init timer */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
|
|
|
|
|
2015-12-29 09:49:25 +00:00
|
|
|
if (abort)
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(abort));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
|
|
|
|
SCTP_STATE(SCTP_STATE_CLOSED));
|
|
|
|
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_ABORTEDS);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Even if we can't send the ABORT due to low memory delete the
|
|
|
|
* TCB. This is a departure from our typical NOMEM handling.
|
|
|
|
*/
|
|
|
|
|
2006-05-19 17:58:12 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
|
|
|
|
SCTP_ERROR(ECONNREFUSED));
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Delete the established association. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED,
|
2006-11-21 01:00:44 +00:00
|
|
|
SCTP_PERR(SCTP_ERROR_USER_ABORT));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-01-08 13:00:54 +00:00
|
|
|
return SCTP_DISPOSITION_ABORT;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sctp_sf_cookie_echoed_prm_abort
|
|
|
|
*
|
|
|
|
* Section: 4 Note: 3
|
|
|
|
* Verification Tag:
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc)
|
|
|
|
*
|
|
|
|
* The RFC does not explcitly address this issue, but is the route through the
|
|
|
|
* state table when someone issues an abort while in COOKIE_ECHOED state.
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (timers)
|
|
|
|
*/
|
|
|
|
sctp_disposition_t sctp_sf_cookie_echoed_prm_abort(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
/* There is a single T1 timer, so we should be able to use
|
|
|
|
* common function with the COOKIE-WAIT state.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_cookie_wait_prm_abort(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sctp_sf_shutdown_pending_prm_abort
|
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc)
|
|
|
|
*
|
|
|
|
* The RFC does not explicitly address this issue, but is the route through the
|
|
|
|
* state table when someone issues an abort while in SHUTDOWN-PENDING state.
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (timers)
|
|
|
|
*/
|
|
|
|
sctp_disposition_t sctp_sf_shutdown_pending_prm_abort(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
/* Stop the T5-shutdown guard timer. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD));
|
|
|
|
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_do_9_1_prm_abort(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sctp_sf_shutdown_sent_prm_abort
|
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc)
|
|
|
|
*
|
|
|
|
* The RFC does not explicitly address this issue, but is the route through the
|
|
|
|
* state table when someone issues an abort while in SHUTDOWN-SENT state.
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (timers)
|
|
|
|
*/
|
|
|
|
sctp_disposition_t sctp_sf_shutdown_sent_prm_abort(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
/* Stop the T2-shutdown timer. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN));
|
|
|
|
|
|
|
|
/* Stop the T5-shutdown guard timer. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD));
|
|
|
|
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_do_9_1_prm_abort(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sctp_sf_cookie_echoed_prm_abort
|
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc)
|
|
|
|
*
|
|
|
|
* The RFC does not explcitly address this issue, but is the route through the
|
|
|
|
* state table when someone issues an abort while in COOKIE_ECHOED state.
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (timers)
|
|
|
|
*/
|
|
|
|
sctp_disposition_t sctp_sf_shutdown_ack_sent_prm_abort(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
/* The same T2 timer, so we should be able to use
|
|
|
|
* common function with the SHUTDOWN-SENT state.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_shutdown_sent_prm_abort(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process the REQUESTHEARTBEAT primitive
|
|
|
|
*
|
|
|
|
* 10.1 ULP-to-SCTP
|
|
|
|
* J) Request Heartbeat
|
|
|
|
*
|
|
|
|
* Format: REQUESTHEARTBEAT(association id, destination transport address)
|
|
|
|
*
|
|
|
|
* -> result
|
|
|
|
*
|
|
|
|
* Instructs the local endpoint to perform a HeartBeat on the specified
|
|
|
|
* destination transport address of the given association. The returned
|
|
|
|
* result should indicate whether the transmission of the HEARTBEAT
|
|
|
|
* chunk to the destination address is successful.
|
|
|
|
*
|
|
|
|
* Mandatory attributes:
|
|
|
|
*
|
|
|
|
* o association id - local handle to the SCTP association
|
|
|
|
*
|
|
|
|
* o destination transport address - the transport address of the
|
|
|
|
* association on which a heartbeat should be issued.
|
|
|
|
*/
|
|
|
|
sctp_disposition_t sctp_sf_do_prm_requestheartbeat(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
2007-03-20 00:02:03 +00:00
|
|
|
if (SCTP_DISPOSITION_NOMEM == sctp_sf_heartbeat(ep, asoc, type,
|
|
|
|
(struct sctp_transport *)arg, commands))
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* RFC 2960 (bis), section 8.3
|
|
|
|
*
|
|
|
|
* D) Request an on-demand HEARTBEAT on a specific destination
|
|
|
|
* transport address of a given association.
|
|
|
|
*
|
|
|
|
* The endpoint should increment the respective error counter of
|
|
|
|
* the destination transport address each time a HEARTBEAT is sent
|
|
|
|
* to that address and not acknowledged within one RTO.
|
|
|
|
*
|
|
|
|
*/
|
2009-03-02 09:46:14 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TRANSPORT_HB_SENT,
|
2007-03-20 00:02:03 +00:00
|
|
|
SCTP_TRANSPORT(arg));
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ADDIP Section 4.1 ASCONF Chunk Procedures
|
|
|
|
* When an endpoint has an ASCONF signaled change to be sent to the
|
|
|
|
* remote endpoint it should do A1 to A9
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_prm_asconf(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SETUP_T4, SCTP_CHUNK(chunk));
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO));
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(chunk));
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
2017-01-17 16:44:44 +00:00
|
|
|
/* RE-CONFIG Section 5.1 RECONF Chunk Procedures */
|
|
|
|
sctp_disposition_t sctp_sf_do_prm_reconf(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg, sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = arg;
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(chunk));
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* Ignore the primitive event
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the primitive.
|
|
|
|
*/
|
|
|
|
sctp_disposition_t sctp_sf_ignore_primitive(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
pr_debug("%s: primitive type:%d is ignored\n", __func__,
|
|
|
|
type.primitive);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_DISCARD;
|
|
|
|
}
|
|
|
|
|
|
|
|
/***************************************************************************
|
|
|
|
* These are the state functions for the OTHER events.
|
|
|
|
***************************************************************************/
|
|
|
|
|
2011-04-17 17:29:03 +00:00
|
|
|
/*
|
|
|
|
* When the SCTP stack has no more user data to send or retransmit, this
|
|
|
|
* notification is given to the user. Also, at the time when a user app
|
|
|
|
* subscribes to this event, if there is no data to be sent or
|
|
|
|
* retransmit, the stack will immediately send up this notification.
|
|
|
|
*/
|
|
|
|
sctp_disposition_t sctp_sf_do_no_pending_tsn(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2011-04-17 17:29:03 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_ulpevent *event;
|
|
|
|
|
|
|
|
event = sctp_ulpevent_make_sender_dry_event(asoc, GFP_ATOMIC);
|
|
|
|
if (!event)
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, SCTP_ULPEVENT(event));
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* Start the shutdown negotiation.
|
|
|
|
*
|
|
|
|
* From Section 9.2:
|
|
|
|
* Once all its outstanding data has been acknowledged, the endpoint
|
|
|
|
* shall send a SHUTDOWN chunk to its peer including in the Cumulative
|
|
|
|
* TSN Ack field the last sequential TSN it has received from the peer.
|
|
|
|
* It shall then start the T2-shutdown timer and enter the SHUTDOWN-SENT
|
|
|
|
* state. If the timer expires, the endpoint must re-send the SHUTDOWN
|
|
|
|
* with the updated last sequential TSN received from its peer.
|
|
|
|
*
|
|
|
|
* The return value is the disposition.
|
|
|
|
*/
|
|
|
|
sctp_disposition_t sctp_sf_do_9_2_start_shutdown(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *reply;
|
|
|
|
|
|
|
|
/* Once all its outstanding data has been acknowledged, the
|
|
|
|
* endpoint shall send a SHUTDOWN chunk to its peer including
|
|
|
|
* in the Cumulative TSN Ack field the last sequential TSN it
|
|
|
|
* has received from the peer.
|
|
|
|
*/
|
|
|
|
reply = sctp_make_shutdown(asoc, NULL);
|
|
|
|
if (!reply)
|
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
/* Set the transport for the SHUTDOWN chunk and the timeout for the
|
|
|
|
* T2-shutdown timer.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SETUP_T2, SCTP_CHUNK(reply));
|
|
|
|
|
|
|
|
/* It shall then start the T2-shutdown timer */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN));
|
|
|
|
|
2008-09-05 00:55:26 +00:00
|
|
|
/* RFC 4960 Section 9.2
|
|
|
|
* The sender of the SHUTDOWN MAY also start an overall guard timer
|
|
|
|
* 'T5-shutdown-guard' to bound the overall time for shutdown sequence.
|
|
|
|
*/
|
2011-07-07 00:28:35 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
|
2008-09-05 00:55:26 +00:00
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD));
|
|
|
|
|
2013-12-10 11:48:15 +00:00
|
|
|
if (asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE])
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_AUTOCLOSE));
|
|
|
|
|
|
|
|
/* and enter the SHUTDOWN-SENT state. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
|
|
|
|
SCTP_STATE(SCTP_STATE_SHUTDOWN_SENT));
|
|
|
|
|
|
|
|
/* sctp-implguide 2.10 Issues with Heartbeating and failover
|
|
|
|
*
|
|
|
|
* HEARTBEAT ... is discontinued after sending either SHUTDOWN
|
2007-02-09 14:25:18 +00:00
|
|
|
* or SHUTDOWN-ACK.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMERS_STOP, SCTP_NULL());
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply));
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
|
|
|
|
nomem:
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Generate a SHUTDOWN ACK now that everything is SACK'd.
|
|
|
|
*
|
|
|
|
* From Section 9.2:
|
|
|
|
*
|
|
|
|
* If it has no more outstanding DATA chunks, the SHUTDOWN receiver
|
|
|
|
* shall send a SHUTDOWN ACK and start a T2-shutdown timer of its own,
|
|
|
|
* entering the SHUTDOWN-ACK-SENT state. If the timer expires, the
|
|
|
|
* endpoint must re-send the SHUTDOWN ACK.
|
|
|
|
*
|
|
|
|
* The return value is the disposition.
|
|
|
|
*/
|
|
|
|
sctp_disposition_t sctp_sf_do_9_2_shutdown_ack(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = (struct sctp_chunk *) arg;
|
|
|
|
struct sctp_chunk *reply;
|
|
|
|
|
|
|
|
/* There are 2 ways of getting here:
|
|
|
|
* 1) called in response to a SHUTDOWN chunk
|
|
|
|
* 2) called when SCTP_EVENT_NO_PENDING_TSN event is issued.
|
|
|
|
*
|
|
|
|
* For the case (2), the arg parameter is set to NULL. We need
|
|
|
|
* to check that we have a chunk before accessing it's fields.
|
|
|
|
*/
|
|
|
|
if (chunk) {
|
|
|
|
if (!sctp_vtag_verify(chunk, asoc))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_pdiscard(net, ep, asoc, type, arg, commands);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Make sure that the SHUTDOWN chunk has a valid length. */
|
|
|
|
if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_shutdown_chunk_t)))
|
2012-08-07 07:28:09 +00:00
|
|
|
return sctp_sf_violation_chunklen(net, ep, asoc, type, arg,
|
2005-04-16 22:20:36 +00:00
|
|
|
commands);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If it has no more outstanding DATA chunks, the SHUTDOWN receiver
|
|
|
|
* shall send a SHUTDOWN ACK ...
|
|
|
|
*/
|
|
|
|
reply = sctp_make_shutdown_ack(asoc, chunk);
|
|
|
|
if (!reply)
|
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
/* Set the transport for the SHUTDOWN ACK chunk and the timeout for
|
|
|
|
* the T2-shutdown timer.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SETUP_T2, SCTP_CHUNK(reply));
|
|
|
|
|
|
|
|
/* and start/restart a T2-shutdown timer of its own, */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN));
|
|
|
|
|
2013-12-10 11:48:15 +00:00
|
|
|
if (asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE])
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_AUTOCLOSE));
|
|
|
|
|
|
|
|
/* Enter the SHUTDOWN-ACK-SENT state. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
|
|
|
|
SCTP_STATE(SCTP_STATE_SHUTDOWN_ACK_SENT));
|
|
|
|
|
|
|
|
/* sctp-implguide 2.10 Issues with Heartbeating and failover
|
|
|
|
*
|
|
|
|
* HEARTBEAT ... is discontinued after sending either SHUTDOWN
|
2007-02-09 14:25:18 +00:00
|
|
|
* or SHUTDOWN-ACK.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMERS_STOP, SCTP_NULL());
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply));
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
|
|
|
|
nomem:
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Ignore the event defined as other
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the event.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_ignore_other(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
pr_debug("%s: the event other type:%d is ignored\n",
|
|
|
|
__func__, type.other);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_DISCARD;
|
|
|
|
}
|
|
|
|
|
|
|
|
/************************************************************
|
|
|
|
* These are the state functions for handling timeout events.
|
|
|
|
************************************************************/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* RTX Timeout
|
|
|
|
*
|
|
|
|
* Section: 6.3.3 Handle T3-rtx Expiration
|
|
|
|
*
|
|
|
|
* Whenever the retransmission timer T3-rtx expires for a destination
|
|
|
|
* address, do the following:
|
|
|
|
* [See below]
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_6_3_3_rtx(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_transport *transport = arg;
|
|
|
|
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_T3_RTX_EXPIREDS);
|
2006-08-22 07:15:33 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
if (asoc->overall_error_count >= asoc->max_retrans) {
|
sctp: start t5 timer only when peer rwnd is 0 and local state is SHUTDOWN_PENDING
when A sends a data to B, then A close() and enter into SHUTDOWN_PENDING
state, if B neither claim his rwnd is 0 nor send SACK for this data, A
will keep retransmitting this data until t5 timeout, Max.Retrans times
can't work anymore, which is bad.
if B's rwnd is not 0, it should send abort after Max.Retrans times, only
when B's rwnd == 0 and A's retransmitting beyonds Max.Retrans times, A
will start t5 timer, which is also commit f8d960524328 ("sctp: Enforce
retransmission limit during shutdown") means, but it lacks the condition
peer rwnd == 0.
so fix it by adding a bit (zero_window_announced) in peer to record if
the last rwnd is 0. If it was, zero_window_announced will be set. and use
this bit to decide if start t5 timer when local.state is SHUTDOWN_PENDING.
Fixes: commit f8d960524328 ("sctp: Enforce retransmission limit during shutdown")
Signed-off-by: Xin Long <lucien.xin@gmail.com>
Signed-off-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-05 07:35:36 +00:00
|
|
|
if (asoc->peer.zero_window_announced &&
|
|
|
|
asoc->state == SCTP_STATE_SHUTDOWN_PENDING) {
|
2011-07-07 00:28:35 +00:00
|
|
|
/*
|
|
|
|
* We are here likely because the receiver had its rwnd
|
|
|
|
* closed for a while and we have not been able to
|
|
|
|
* transmit the locally queued data within the maximum
|
|
|
|
* retransmission attempts limit. Start the T5
|
|
|
|
* shutdown guard timer to give the receiver one last
|
|
|
|
* chance and some additional time to recover before
|
|
|
|
* aborting.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START_ONCE,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD));
|
|
|
|
} else {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
|
|
|
|
SCTP_ERROR(ETIMEDOUT));
|
|
|
|
/* CMD_ASSOC_FAILED calls CMD_DELETE_TCB. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
|
|
|
|
SCTP_PERR(SCTP_ERROR_NO_ERROR));
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_ABORTEDS);
|
|
|
|
SCTP_DEC_STATS(net, SCTP_MIB_CURRESTAB);
|
2011-07-07 00:28:35 +00:00
|
|
|
return SCTP_DISPOSITION_DELETE_TCB;
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* E1) For the destination address for which the timer
|
|
|
|
* expires, adjust its ssthresh with rules defined in Section
|
|
|
|
* 7.2.3 and set the cwnd <- MTU.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* E2) For the destination address for which the timer
|
|
|
|
* expires, set RTO <- RTO * 2 ("back off the timer"). The
|
|
|
|
* maximum value discussed in rule C7 above (RTO.max) may be
|
|
|
|
* used to provide an upper bound to this doubling operation.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* E3) Determine how many of the earliest (i.e., lowest TSN)
|
|
|
|
* outstanding DATA chunks for the address for which the
|
|
|
|
* T3-rtx has expired will fit into a single packet, subject
|
|
|
|
* to the MTU constraint for the path corresponding to the
|
|
|
|
* destination transport address to which the retransmission
|
|
|
|
* is being sent (this may be different from the address for
|
|
|
|
* which the timer expires [see Section 6.4]). Call this
|
|
|
|
* value K. Bundle and retransmit those K DATA chunks in a
|
|
|
|
* single packet to the destination endpoint.
|
|
|
|
*
|
|
|
|
* Note: Any DATA chunks that were sent to the address for
|
|
|
|
* which the T3-rtx timer expired but did not fit in one MTU
|
|
|
|
* (rule E3 above), should be marked for retransmission and
|
|
|
|
* sent as soon as cwnd allows (normally when a SACK arrives).
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Do some failure management (Section 8.2). */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_STRIKE, SCTP_TRANSPORT(transport));
|
|
|
|
|
2007-02-21 10:06:19 +00:00
|
|
|
/* NB: Rules E4 and F1 are implicit in R1. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_RETRAN, SCTP_TRANSPORT(transport));
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Generate delayed SACK on timeout
|
|
|
|
*
|
|
|
|
* Section: 6.2 Acknowledgement on Reception of DATA Chunks
|
|
|
|
*
|
|
|
|
* The guidelines on delayed acknowledgement algorithm specified in
|
|
|
|
* Section 4.2 of [RFC2581] SHOULD be followed. Specifically, an
|
|
|
|
* acknowledgement SHOULD be generated for at least every second packet
|
|
|
|
* (not every second DATA chunk) received, and SHOULD be generated
|
|
|
|
* within 200 ms of the arrival of any unacknowledged DATA chunk. In
|
|
|
|
* some situations it may be beneficial for an SCTP transmitter to be
|
|
|
|
* more conservative than the algorithms detailed in this document
|
|
|
|
* allow. However, an SCTP transmitter MUST NOT be more aggressive than
|
|
|
|
* the following algorithms allow.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_do_6_2_sack(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_DELAY_SACK_EXPIREDS);
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SACK, SCTP_FORCE());
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2005-06-20 20:14:57 +00:00
|
|
|
* sctp_sf_t1_init_timer_expire
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
|
|
|
* Section: 4 Note: 2
|
|
|
|
* Verification Tag:
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc)
|
|
|
|
*
|
|
|
|
* RFC 2960 Section 4 Notes
|
|
|
|
* 2) If the T1-init timer expires, the endpoint MUST retransmit INIT
|
|
|
|
* and re-start the T1-init timer without changing state. This MUST
|
|
|
|
* be repeated up to 'Max.Init.Retransmits' times. After that, the
|
|
|
|
* endpoint MUST abort the initialization process and report the
|
|
|
|
* error to SCTP user.
|
|
|
|
*
|
2005-06-20 20:14:57 +00:00
|
|
|
* Outputs
|
|
|
|
* (timers, events)
|
|
|
|
*
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_t1_init_timer_expire(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-06-20 20:14:57 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *repl = NULL;
|
|
|
|
struct sctp_bind_addr *bp;
|
|
|
|
int attempts = asoc->init_err_counter + 1;
|
|
|
|
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
pr_debug("%s: timer T1 expired (INIT)\n", __func__);
|
|
|
|
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_T1_INIT_EXPIREDS);
|
2005-06-20 20:14:57 +00:00
|
|
|
|
2006-01-30 23:59:54 +00:00
|
|
|
if (attempts <= asoc->max_init_attempts) {
|
2005-06-20 20:14:57 +00:00
|
|
|
bp = (struct sctp_bind_addr *) &asoc->base.bind_addr;
|
|
|
|
repl = sctp_make_init(asoc, bp, GFP_ATOMIC, 0);
|
|
|
|
if (!repl)
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
|
|
|
|
/* Choose transport for INIT. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_CHOOSE_TRANSPORT,
|
|
|
|
SCTP_CHUNK(repl));
|
|
|
|
|
|
|
|
/* Issue a sideeffect to do the needed accounting. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_RESTART,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl));
|
|
|
|
} else {
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
pr_debug("%s: giving up on INIT, attempts:%d "
|
|
|
|
"max_init_attempts:%d\n", __func__, attempts,
|
|
|
|
asoc->max_init_attempts);
|
|
|
|
|
2006-05-19 17:58:12 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
|
|
|
|
SCTP_ERROR(ETIMEDOUT));
|
2005-06-20 20:14:57 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED,
|
2006-11-21 01:00:44 +00:00
|
|
|
SCTP_PERR(SCTP_ERROR_NO_ERROR));
|
2005-06-20 20:14:57 +00:00
|
|
|
return SCTP_DISPOSITION_DELETE_TCB;
|
|
|
|
}
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sctp_sf_t1_cookie_timer_expire
|
|
|
|
*
|
|
|
|
* Section: 4 Note: 2
|
|
|
|
* Verification Tag:
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc)
|
|
|
|
*
|
|
|
|
* RFC 2960 Section 4 Notes
|
|
|
|
* 3) If the T1-cookie timer expires, the endpoint MUST retransmit
|
2005-04-16 22:20:36 +00:00
|
|
|
* COOKIE ECHO and re-start the T1-cookie timer without changing
|
|
|
|
* state. This MUST be repeated up to 'Max.Init.Retransmits' times.
|
|
|
|
* After that, the endpoint MUST abort the initialization process and
|
|
|
|
* report the error to SCTP user.
|
|
|
|
*
|
|
|
|
* Outputs
|
|
|
|
* (timers, events)
|
|
|
|
*
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_t1_cookie_timer_expire(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
2005-06-20 20:14:57 +00:00
|
|
|
struct sctp_chunk *repl = NULL;
|
|
|
|
int attempts = asoc->init_err_counter + 1;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
pr_debug("%s: timer T1 expired (COOKIE-ECHO)\n", __func__);
|
|
|
|
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_T1_COOKIE_EXPIREDS);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2006-01-30 23:59:54 +00:00
|
|
|
if (attempts <= asoc->max_init_attempts) {
|
2005-06-20 20:14:57 +00:00
|
|
|
repl = sctp_make_cookie_echo(asoc, NULL);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (!repl)
|
2005-06-20 20:14:57 +00:00
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-09-08 18:00:26 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_CHOOSE_TRANSPORT,
|
|
|
|
SCTP_CHUNK(repl));
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Issue a sideeffect to do the needed accounting. */
|
2005-06-20 20:14:57 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_COOKIEECHO_RESTART,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE));
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl));
|
|
|
|
} else {
|
2006-05-19 17:58:12 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
|
|
|
|
SCTP_ERROR(ETIMEDOUT));
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED,
|
2006-11-21 01:00:44 +00:00
|
|
|
SCTP_PERR(SCTP_ERROR_NO_ERROR));
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_DELETE_TCB;
|
|
|
|
}
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* RFC2960 9.2 If the timer expires, the endpoint must re-send the SHUTDOWN
|
|
|
|
* with the updated last sequential TSN received from its peer.
|
|
|
|
*
|
|
|
|
* An endpoint should limit the number of retransmissions of the
|
|
|
|
* SHUTDOWN chunk to the protocol parameter 'Association.Max.Retrans'.
|
|
|
|
* If this threshold is exceeded the endpoint should destroy the TCB and
|
|
|
|
* MUST report the peer endpoint unreachable to the upper layer (and
|
|
|
|
* thus the association enters the CLOSED state). The reception of any
|
|
|
|
* packet from its peer (i.e. as the peer sends all of its queued DATA
|
|
|
|
* chunks) should clear the endpoint's retransmission count and restart
|
|
|
|
* the T2-Shutdown timer, giving its peer ample opportunity to transmit
|
|
|
|
* all of its queued DATA chunks that have not yet been sent.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_t2_timer_expire(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *reply = NULL;
|
|
|
|
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
pr_debug("%s: timer T2 expired\n", __func__);
|
|
|
|
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_T2_SHUTDOWN_EXPIREDS);
|
2006-08-22 07:15:33 +00:00
|
|
|
|
2008-02-29 19:40:56 +00:00
|
|
|
((struct sctp_association *)asoc)->shutdown_retries++;
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
if (asoc->overall_error_count >= asoc->max_retrans) {
|
2006-05-19 17:58:12 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
|
|
|
|
SCTP_ERROR(ETIMEDOUT));
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Note: CMD_ASSOC_FAILED calls CMD_DELETE_TCB. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
|
2006-11-21 01:01:06 +00:00
|
|
|
SCTP_PERR(SCTP_ERROR_NO_ERROR));
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_ABORTEDS);
|
|
|
|
SCTP_DEC_STATS(net, SCTP_MIB_CURRESTAB);
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_DELETE_TCB;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (asoc->state) {
|
|
|
|
case SCTP_STATE_SHUTDOWN_SENT:
|
|
|
|
reply = sctp_make_shutdown(asoc, NULL);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case SCTP_STATE_SHUTDOWN_ACK_SENT:
|
|
|
|
reply = sctp_make_shutdown_ack(asoc, NULL);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
break;
|
2007-04-21 00:09:22 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (!reply)
|
|
|
|
goto nomem;
|
|
|
|
|
2009-04-26 15:13:35 +00:00
|
|
|
/* Do some failure management (Section 8.2).
|
|
|
|
* If we remove the transport an SHUTDOWN was last sent to, don't
|
|
|
|
* do failure management.
|
|
|
|
*/
|
|
|
|
if (asoc->shutdown_last_sent_to)
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_STRIKE,
|
|
|
|
SCTP_TRANSPORT(asoc->shutdown_last_sent_to));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Set the transport for the SHUTDOWN/ACK chunk and the timeout for
|
|
|
|
* the T2-shutdown timer.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SETUP_T2, SCTP_CHUNK(reply));
|
|
|
|
|
|
|
|
/* Restart the T2-shutdown timer. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN));
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply));
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
|
|
|
|
nomem:
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ADDIP Section 4.1 ASCONF CHunk Procedures
|
|
|
|
* If the T4 RTO timer expires the endpoint should do B1 to B5
|
|
|
|
*/
|
|
|
|
sctp_disposition_t sctp_sf_t4_timer_expire(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *chunk = asoc->addip_last_asconf;
|
|
|
|
struct sctp_transport *transport = chunk->transport;
|
|
|
|
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_T4_RTO_EXPIREDS);
|
2006-08-22 07:15:33 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* ADDIP 4.1 B1) Increment the error counters and perform path failure
|
|
|
|
* detection on the appropriate destination address as defined in
|
|
|
|
* RFC2960 [5] section 8.1 and 8.2.
|
|
|
|
*/
|
2009-04-26 15:14:42 +00:00
|
|
|
if (transport)
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_STRIKE,
|
|
|
|
SCTP_TRANSPORT(transport));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Reconfig T4 timer and transport. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SETUP_T4, SCTP_CHUNK(chunk));
|
|
|
|
|
|
|
|
/* ADDIP 4.1 B2) Increment the association error counters and perform
|
|
|
|
* endpoint failure detection on the association as defined in
|
|
|
|
* RFC2960 [5] section 8.1 and 8.2.
|
|
|
|
* association error counter is incremented in SCTP_CMD_STRIKE.
|
|
|
|
*/
|
|
|
|
if (asoc->overall_error_count >= asoc->max_retrans) {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO));
|
2006-05-19 17:58:12 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
|
|
|
|
SCTP_ERROR(ETIMEDOUT));
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
|
2006-11-21 01:01:06 +00:00
|
|
|
SCTP_PERR(SCTP_ERROR_NO_ERROR));
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_ABORTEDS);
|
|
|
|
SCTP_DEC_STATS(net, SCTP_MIB_CURRESTAB);
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_ABORT;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ADDIP 4.1 B3) Back-off the destination address RTO value to which
|
|
|
|
* the ASCONF chunk was sent by doubling the RTO timer value.
|
|
|
|
* This is done in SCTP_CMD_STRIKE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* ADDIP 4.1 B4) Re-transmit the ASCONF Chunk last sent and if possible
|
|
|
|
* choose an alternate destination address (please refer to RFC2960
|
|
|
|
* [5] section 6.4.1). An endpoint MUST NOT add new parameters to this
|
2007-02-09 14:25:18 +00:00
|
|
|
* chunk, it MUST be the same (including its serial number) as the last
|
2005-04-16 22:20:36 +00:00
|
|
|
* ASCONF sent.
|
|
|
|
*/
|
|
|
|
sctp_chunk_hold(asoc->addip_last_asconf);
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
|
|
|
|
SCTP_CHUNK(asoc->addip_last_asconf));
|
|
|
|
|
|
|
|
/* ADDIP 4.1 B5) Restart the T-4 RTO timer. Note that if a different
|
|
|
|
* destination is selected, then the RTO used will be that of the new
|
|
|
|
* destination address.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
|
|
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO));
|
|
|
|
|
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* sctpimpguide-05 Section 2.12.2
|
|
|
|
* The sender of the SHUTDOWN MAY also start an overall guard timer
|
|
|
|
* 'T5-shutdown-guard' to bound the overall time for shutdown sequence.
|
|
|
|
* At the expiration of this timer the sender SHOULD abort the association
|
|
|
|
* by sending an ABORT chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_t5_timer_expire(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
struct sctp_chunk *reply = NULL;
|
|
|
|
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
pr_debug("%s: timer T5 expired\n", __func__);
|
|
|
|
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_T5_SHUTDOWN_GUARD_EXPIREDS);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
reply = sctp_make_abort(asoc, NULL, 0);
|
|
|
|
if (!reply)
|
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply));
|
2006-05-19 17:58:12 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
|
|
|
|
SCTP_ERROR(ETIMEDOUT));
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
|
2006-11-21 01:01:06 +00:00
|
|
|
SCTP_PERR(SCTP_ERROR_NO_ERROR));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_ABORTEDS);
|
|
|
|
SCTP_DEC_STATS(net, SCTP_MIB_CURRESTAB);
|
2008-10-09 21:33:26 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_DELETE_TCB;
|
|
|
|
nomem:
|
|
|
|
return SCTP_DISPOSITION_NOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Handle expiration of AUTOCLOSE timer. When the autoclose timer expires,
|
|
|
|
* the association is automatically closed by starting the shutdown process.
|
|
|
|
* The work that needs to be done is same as when SHUTDOWN is initiated by
|
|
|
|
* the user. So this routine looks same as sctp_sf_do_9_2_prm_shutdown().
|
|
|
|
*/
|
|
|
|
sctp_disposition_t sctp_sf_autoclose_timer_expire(
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_endpoint *ep,
|
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
int disposition;
|
|
|
|
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_AUTOCLOSE_EXPIREDS);
|
2006-08-22 07:15:33 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* From 9.2 Shutdown of an Association
|
|
|
|
* Upon receipt of the SHUTDOWN primitive from its upper
|
|
|
|
* layer, the endpoint enters SHUTDOWN-PENDING state and
|
|
|
|
* remains there until all outstanding data has been
|
|
|
|
* acknowledged by its peer. The endpoint accepts no new data
|
|
|
|
* from its upper layer, but retransmits data to the far end
|
|
|
|
* if necessary to fill gaps.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
|
|
|
|
SCTP_STATE(SCTP_STATE_SHUTDOWN_PENDING));
|
|
|
|
|
|
|
|
disposition = SCTP_DISPOSITION_CONSUME;
|
|
|
|
if (sctp_outq_is_empty(&asoc->outqueue)) {
|
2012-08-07 07:28:09 +00:00
|
|
|
disposition = sctp_sf_do_9_2_start_shutdown(net, ep, asoc, type,
|
2005-04-16 22:20:36 +00:00
|
|
|
arg, commands);
|
|
|
|
}
|
|
|
|
return disposition;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
* These are sa state functions which could apply to all types of events.
|
|
|
|
****************************************************************************/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This table entry is not implemented.
|
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_not_impl(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
return SCTP_DISPOSITION_NOT_IMPL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This table entry represents a bug.
|
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_bug(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
|
|
|
return SCTP_DISPOSITION_BUG;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This table entry represents the firing of a timer in the wrong state.
|
|
|
|
* Since timer deletion cannot be guaranteed a timer 'may' end up firing
|
|
|
|
* when the association is in the wrong state. This event should
|
|
|
|
* be ignored, so as to prevent any rearming of the timer.
|
|
|
|
*
|
|
|
|
* Inputs
|
|
|
|
* (endpoint, asoc, chunk)
|
|
|
|
*
|
|
|
|
* The return value is the disposition of the chunk.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
sctp_disposition_t sctp_sf_timer_ignore(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const sctp_subtype_t type,
|
|
|
|
void *arg,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
pr_debug("%s: timer %d ignored\n", __func__, type.chunk);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_DISPOSITION_CONSUME;
|
|
|
|
}
|
|
|
|
|
|
|
|
/********************************************************************
|
|
|
|
* 2nd Level Abstractions
|
|
|
|
********************************************************************/
|
|
|
|
|
|
|
|
/* Pull the SACK chunk based on the SACK header. */
|
|
|
|
static struct sctp_sackhdr *sctp_sm_pull_sack(struct sctp_chunk *chunk)
|
|
|
|
{
|
|
|
|
struct sctp_sackhdr *sack;
|
|
|
|
unsigned int len;
|
|
|
|
__u16 num_blocks;
|
|
|
|
__u16 num_dup_tsns;
|
|
|
|
|
|
|
|
/* Protect ourselves from reading too far into
|
|
|
|
* the skb from a bogus sender.
|
|
|
|
*/
|
|
|
|
sack = (struct sctp_sackhdr *) chunk->skb->data;
|
|
|
|
|
|
|
|
num_blocks = ntohs(sack->num_gap_ack_blocks);
|
|
|
|
num_dup_tsns = ntohs(sack->num_dup_tsns);
|
|
|
|
len = sizeof(struct sctp_sackhdr);
|
|
|
|
len += (num_blocks + num_dup_tsns) * sizeof(__u32);
|
|
|
|
if (len > chunk->skb->len)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
skb_pull(chunk->skb, len);
|
|
|
|
|
|
|
|
return sack;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Create an ABORT packet to be sent as a response, with the specified
|
|
|
|
* error causes.
|
|
|
|
*/
|
2012-08-07 07:28:09 +00:00
|
|
|
static struct sctp_packet *sctp_abort_pkt_new(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
struct sctp_chunk *chunk,
|
|
|
|
const void *payload,
|
|
|
|
size_t paylen)
|
|
|
|
{
|
|
|
|
struct sctp_packet *packet;
|
|
|
|
struct sctp_chunk *abort;
|
|
|
|
|
2012-08-06 08:43:06 +00:00
|
|
|
packet = sctp_ootb_pkt_new(net, asoc, chunk);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (packet) {
|
|
|
|
/* Make an ABORT.
|
|
|
|
* The T bit will be set if the asoc is NULL.
|
|
|
|
*/
|
|
|
|
abort = sctp_make_abort(asoc, chunk, paylen);
|
|
|
|
if (!abort) {
|
|
|
|
sctp_ootb_pkt_free(packet);
|
|
|
|
return NULL;
|
|
|
|
}
|
2005-04-28 18:58:43 +00:00
|
|
|
|
|
|
|
/* Reflect vtag if T-Bit is set */
|
|
|
|
if (sctp_test_T_bit(abort))
|
|
|
|
packet->vtag = ntohl(chunk->sctp_hdr->vtag);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Add specified error causes, i.e., payload, to the
|
|
|
|
* end of the chunk.
|
|
|
|
*/
|
|
|
|
sctp_addto_chunk(abort, paylen, payload);
|
|
|
|
|
|
|
|
/* Set the skb to the belonging sock for accounting. */
|
|
|
|
abort->skb->sk = ep->base.sk;
|
|
|
|
|
|
|
|
sctp_packet_append_chunk(packet, abort);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return packet;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Allocate a packet for responding in the OOTB conditions. */
|
2012-08-06 08:43:06 +00:00
|
|
|
static struct sctp_packet *sctp_ootb_pkt_new(struct net *net,
|
|
|
|
const struct sctp_association *asoc,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_chunk *chunk)
|
|
|
|
{
|
|
|
|
struct sctp_packet *packet;
|
|
|
|
struct sctp_transport *transport;
|
|
|
|
__u16 sport;
|
|
|
|
__u16 dport;
|
|
|
|
__u32 vtag;
|
|
|
|
|
|
|
|
/* Get the source and destination port from the inbound packet. */
|
|
|
|
sport = ntohs(chunk->sctp_hdr->dest);
|
|
|
|
dport = ntohs(chunk->sctp_hdr->source);
|
|
|
|
|
|
|
|
/* The V-tag is going to be the same as the inbound packet if no
|
|
|
|
* association exists, otherwise, use the peer's vtag.
|
|
|
|
*/
|
|
|
|
if (asoc) {
|
2007-08-31 02:03:58 +00:00
|
|
|
/* Special case the INIT-ACK as there is no peer's vtag
|
|
|
|
* yet.
|
|
|
|
*/
|
2013-12-23 04:16:50 +00:00
|
|
|
switch (chunk->chunk_hdr->type) {
|
2007-08-31 02:03:58 +00:00
|
|
|
case SCTP_CID_INIT_ACK:
|
|
|
|
{
|
2017-07-23 01:34:26 +00:00
|
|
|
struct sctp_initack_chunk *initack;
|
2007-08-31 02:03:58 +00:00
|
|
|
|
2017-07-23 01:34:26 +00:00
|
|
|
initack = (struct sctp_initack_chunk *)chunk->chunk_hdr;
|
2007-08-31 02:03:58 +00:00
|
|
|
vtag = ntohl(initack->init_hdr.init_tag);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
vtag = asoc->peer.i.init_tag;
|
|
|
|
break;
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
} else {
|
|
|
|
/* Special case the INIT and stale COOKIE_ECHO as there is no
|
|
|
|
* vtag yet.
|
|
|
|
*/
|
2013-12-23 04:16:50 +00:00
|
|
|
switch (chunk->chunk_hdr->type) {
|
2005-04-16 22:20:36 +00:00
|
|
|
case SCTP_CID_INIT:
|
|
|
|
{
|
2017-06-30 03:52:22 +00:00
|
|
|
struct sctp_init_chunk *init;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2017-06-30 03:52:22 +00:00
|
|
|
init = (struct sctp_init_chunk *)chunk->chunk_hdr;
|
2005-04-16 22:20:36 +00:00
|
|
|
vtag = ntohl(init->init_hdr.init_tag);
|
|
|
|
break;
|
|
|
|
}
|
2007-02-09 14:25:18 +00:00
|
|
|
default:
|
2005-04-16 22:20:36 +00:00
|
|
|
vtag = ntohl(chunk->sctp_hdr->vtag);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Make a transport for the bucket, Eliza... */
|
2012-08-07 07:26:14 +00:00
|
|
|
transport = sctp_transport_new(net, sctp_source(chunk), GFP_ATOMIC);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (!transport)
|
|
|
|
goto nomem;
|
|
|
|
|
|
|
|
/* Cache a route for the transport with the chunk's destination as
|
|
|
|
* the source address.
|
|
|
|
*/
|
2006-11-21 01:13:38 +00:00
|
|
|
sctp_transport_route(transport, (union sctp_addr *)&chunk->dest,
|
2012-08-06 08:43:06 +00:00
|
|
|
sctp_sk(net->sctp.ctl_sock));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-12-28 11:26:34 +00:00
|
|
|
packet = &transport->packet;
|
|
|
|
sctp_packet_init(packet, transport, sport, dport);
|
|
|
|
sctp_packet_config(packet, vtag, 0);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
return packet;
|
|
|
|
|
|
|
|
nomem:
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Free the packet allocated earlier for responding in the OOTB condition. */
|
|
|
|
void sctp_ootb_pkt_free(struct sctp_packet *packet)
|
|
|
|
{
|
|
|
|
sctp_transport_free(packet->transport);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Send a stale cookie error when a invalid COOKIE ECHO chunk is found */
|
2012-08-07 07:28:09 +00:00
|
|
|
static void sctp_send_stale_cookie_err(struct net *net,
|
|
|
|
const struct sctp_endpoint *ep,
|
2005-04-16 22:20:36 +00:00
|
|
|
const struct sctp_association *asoc,
|
|
|
|
const struct sctp_chunk *chunk,
|
|
|
|
sctp_cmd_seq_t *commands,
|
|
|
|
struct sctp_chunk *err_chunk)
|
|
|
|
{
|
|
|
|
struct sctp_packet *packet;
|
|
|
|
|
|
|
|
if (err_chunk) {
|
2012-08-06 08:43:06 +00:00
|
|
|
packet = sctp_ootb_pkt_new(net, asoc, chunk);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (packet) {
|
|
|
|
struct sctp_signed_cookie *cookie;
|
|
|
|
|
|
|
|
/* Override the OOTB vtag from the cookie. */
|
|
|
|
cookie = chunk->subh.cookie_hdr;
|
|
|
|
packet->vtag = cookie->c.peer_vtag;
|
2007-02-09 14:25:18 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Set the skb to the belonging sock for accounting. */
|
|
|
|
err_chunk->skb->sk = ep->base.sk;
|
|
|
|
sctp_packet_append_chunk(packet, err_chunk);
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT,
|
|
|
|
SCTP_PACKET(packet));
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
|
2005-04-16 22:20:36 +00:00
|
|
|
} else
|
|
|
|
sctp_chunk_free (err_chunk);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Process a data chunk */
|
|
|
|
static int sctp_eat_data(const struct sctp_association *asoc,
|
|
|
|
struct sctp_chunk *chunk,
|
|
|
|
sctp_cmd_seq_t *commands)
|
|
|
|
{
|
2017-06-30 03:52:19 +00:00
|
|
|
struct sctp_datahdr *data_hdr;
|
2005-04-16 22:20:36 +00:00
|
|
|
struct sctp_chunk *err;
|
|
|
|
size_t datalen;
|
|
|
|
sctp_verb_t deliver;
|
|
|
|
int tmp;
|
|
|
|
__u32 tsn;
|
2006-05-06 00:02:09 +00:00
|
|
|
struct sctp_tsnmap *map = (struct sctp_tsnmap *)&asoc->peer.tsn_map;
|
2005-11-12 00:08:24 +00:00
|
|
|
struct sock *sk = asoc->base.sk;
|
2012-08-07 07:28:09 +00:00
|
|
|
struct net *net = sock_net(sk);
|
2009-09-04 22:21:03 +00:00
|
|
|
u16 ssn;
|
|
|
|
u16 sid;
|
|
|
|
u8 ordered = 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2017-06-30 03:52:19 +00:00
|
|
|
data_hdr = (struct sctp_datahdr *)chunk->skb->data;
|
|
|
|
chunk->subh.data_hdr = data_hdr;
|
|
|
|
skb_pull(chunk->skb, sizeof(*data_hdr));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
tsn = ntohl(data_hdr->tsn);
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
pr_debug("%s: TSN 0x%x\n", __func__, tsn);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* ASSERT: Now skb->data is really the user data. */
|
|
|
|
|
|
|
|
/* Process ECN based congestion.
|
|
|
|
*
|
|
|
|
* Since the chunk structure is reused for all chunks within
|
|
|
|
* a packet, we use ecn_ce_done to track if we've already
|
|
|
|
* done CE processing for this packet.
|
|
|
|
*
|
|
|
|
* We need to do ECN processing even if we plan to discard the
|
|
|
|
* chunk later.
|
|
|
|
*/
|
|
|
|
|
2016-07-13 18:09:00 +00:00
|
|
|
if (asoc->peer.ecn_capable && !chunk->ecn_ce_done) {
|
2016-07-13 18:08:58 +00:00
|
|
|
struct sctp_af *af = SCTP_INPUT_CB(chunk->skb)->af;
|
2005-04-16 22:20:36 +00:00
|
|
|
chunk->ecn_ce_done = 1;
|
|
|
|
|
2016-07-13 18:09:00 +00:00
|
|
|
if (af->is_ce(sctp_gso_headskb(chunk->skb))) {
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Do real work as sideffect. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_ECN_CE,
|
|
|
|
SCTP_U32(tsn));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
tmp = sctp_tsnmap_check(&asoc->peer.tsn_map, tsn);
|
|
|
|
if (tmp < 0) {
|
|
|
|
/* The TSN is too high--silently discard the chunk and
|
|
|
|
* count on it getting retransmitted later.
|
|
|
|
*/
|
2012-12-01 04:49:42 +00:00
|
|
|
if (chunk->asoc)
|
|
|
|
chunk->asoc->stats.outofseqtsns++;
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_IERROR_HIGH_TSN;
|
|
|
|
} else if (tmp > 0) {
|
|
|
|
/* This is a duplicate. Record it. */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_DUP, SCTP_U32(tsn));
|
|
|
|
return SCTP_IERROR_DUP_TSN;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This is a new TSN. */
|
|
|
|
|
|
|
|
/* Discard if there is no room in the receive window.
|
|
|
|
* Actually, allow a little bit of overflow (up to a MTU).
|
|
|
|
*/
|
|
|
|
datalen = ntohs(chunk->chunk_hdr->length);
|
2017-06-30 03:52:20 +00:00
|
|
|
datalen -= sizeof(struct sctp_data_chunk);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
deliver = SCTP_CMD_CHUNK_ULP;
|
|
|
|
|
|
|
|
/* Think about partial delivery. */
|
|
|
|
if ((datalen >= asoc->rwnd) && (!asoc->ulpq.pd_mode)) {
|
|
|
|
|
|
|
|
/* Even if we don't accept this chunk there is
|
|
|
|
* memory pressure.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_PART_DELIVER, SCTP_NULL());
|
|
|
|
}
|
|
|
|
|
2007-02-09 14:25:18 +00:00
|
|
|
/* Spill over rwnd a little bit. Note: While allowed, this spill over
|
2005-04-16 22:20:36 +00:00
|
|
|
* seems a bit troublesome in that frag_point varies based on
|
|
|
|
* PMTU. In cases, such as loopback, this might be a rather
|
|
|
|
* large spill over.
|
2007-08-15 23:07:44 +00:00
|
|
|
*/
|
Revert "net: sctp: Fix a_rwnd/rwnd management to reflect real state of the receiver's buffer"
This reverts commit ef2820a735f7 ("net: sctp: Fix a_rwnd/rwnd management
to reflect real state of the receiver's buffer") as it introduced a
serious performance regression on SCTP over IPv4 and IPv6, though a not
as dramatic on the latter. Measurements are on 10Gbit/s with ixgbe NICs.
Current state:
[root@Lab200slot2 ~]# iperf3 --sctp -4 -c 192.168.241.3 -V -l 1452 -t 60
iperf version 3.0.1 (10 January 2014)
Linux Lab200slot2 3.14.0 #1 SMP Thu Apr 3 23:18:29 EDT 2014 x86_64
Time: Fri, 11 Apr 2014 17:56:21 GMT
Connecting to host 192.168.241.3, port 5201
Cookie: Lab200slot2.1397238981.812898.548918
[ 4] local 192.168.241.2 port 38616 connected to 192.168.241.3 port 5201
Starting Test: protocol: SCTP, 1 streams, 1452 byte blocks, omitting 0 seconds, 60 second test
[ ID] Interval Transfer Bandwidth
[ 4] 0.00-1.09 sec 20.8 MBytes 161 Mbits/sec
[ 4] 1.09-2.13 sec 10.8 MBytes 86.8 Mbits/sec
[ 4] 2.13-3.15 sec 3.57 MBytes 29.5 Mbits/sec
[ 4] 3.15-4.16 sec 4.33 MBytes 35.7 Mbits/sec
[ 4] 4.16-6.21 sec 10.4 MBytes 42.7 Mbits/sec
[ 4] 6.21-6.21 sec 0.00 Bytes 0.00 bits/sec
[ 4] 6.21-7.35 sec 34.6 MBytes 253 Mbits/sec
[ 4] 7.35-11.45 sec 22.0 MBytes 45.0 Mbits/sec
[ 4] 11.45-11.45 sec 0.00 Bytes 0.00 bits/sec
[ 4] 11.45-11.45 sec 0.00 Bytes 0.00 bits/sec
[ 4] 11.45-11.45 sec 0.00 Bytes 0.00 bits/sec
[ 4] 11.45-12.51 sec 16.0 MBytes 126 Mbits/sec
[ 4] 12.51-13.59 sec 20.3 MBytes 158 Mbits/sec
[ 4] 13.59-14.65 sec 13.4 MBytes 107 Mbits/sec
[ 4] 14.65-16.79 sec 33.3 MBytes 130 Mbits/sec
[ 4] 16.79-16.79 sec 0.00 Bytes 0.00 bits/sec
[ 4] 16.79-17.82 sec 5.94 MBytes 48.7 Mbits/sec
(etc)
[root@Lab200slot2 ~]# iperf3 --sctp -6 -c 2001:db8:0:f101::1 -V -l 1400 -t 60
iperf version 3.0.1 (10 January 2014)
Linux Lab200slot2 3.14.0 #1 SMP Thu Apr 3 23:18:29 EDT 2014 x86_64
Time: Fri, 11 Apr 2014 19:08:41 GMT
Connecting to host 2001:db8:0:f101::1, port 5201
Cookie: Lab200slot2.1397243321.714295.2b3f7c
[ 4] local 2001:db8:0:f101::2 port 55804 connected to 2001:db8:0:f101::1 port 5201
Starting Test: protocol: SCTP, 1 streams, 1400 byte blocks, omitting 0 seconds, 60 second test
[ ID] Interval Transfer Bandwidth
[ 4] 0.00-1.00 sec 169 MBytes 1.42 Gbits/sec
[ 4] 1.00-2.00 sec 201 MBytes 1.69 Gbits/sec
[ 4] 2.00-3.00 sec 188 MBytes 1.58 Gbits/sec
[ 4] 3.00-4.00 sec 174 MBytes 1.46 Gbits/sec
[ 4] 4.00-5.00 sec 165 MBytes 1.39 Gbits/sec
[ 4] 5.00-6.00 sec 199 MBytes 1.67 Gbits/sec
[ 4] 6.00-7.00 sec 163 MBytes 1.36 Gbits/sec
[ 4] 7.00-8.00 sec 174 MBytes 1.46 Gbits/sec
[ 4] 8.00-9.00 sec 193 MBytes 1.62 Gbits/sec
[ 4] 9.00-10.00 sec 196 MBytes 1.65 Gbits/sec
[ 4] 10.00-11.00 sec 157 MBytes 1.31 Gbits/sec
[ 4] 11.00-12.00 sec 175 MBytes 1.47 Gbits/sec
[ 4] 12.00-13.00 sec 192 MBytes 1.61 Gbits/sec
[ 4] 13.00-14.00 sec 199 MBytes 1.67 Gbits/sec
(etc)
After patch:
[root@Lab200slot2 ~]# iperf3 --sctp -4 -c 192.168.240.3 -V -l 1452 -t 60
iperf version 3.0.1 (10 January 2014)
Linux Lab200slot2 3.14.0+ #1 SMP Mon Apr 14 12:06:40 EDT 2014 x86_64
Time: Mon, 14 Apr 2014 16:40:48 GMT
Connecting to host 192.168.240.3, port 5201
Cookie: Lab200slot2.1397493648.413274.65e131
[ 4] local 192.168.240.2 port 50548 connected to 192.168.240.3 port 5201
Starting Test: protocol: SCTP, 1 streams, 1452 byte blocks, omitting 0 seconds, 60 second test
[ ID] Interval Transfer Bandwidth
[ 4] 0.00-1.00 sec 240 MBytes 2.02 Gbits/sec
[ 4] 1.00-2.00 sec 239 MBytes 2.01 Gbits/sec
[ 4] 2.00-3.00 sec 240 MBytes 2.01 Gbits/sec
[ 4] 3.00-4.00 sec 239 MBytes 2.00 Gbits/sec
[ 4] 4.00-5.00 sec 245 MBytes 2.05 Gbits/sec
[ 4] 5.00-6.00 sec 240 MBytes 2.01 Gbits/sec
[ 4] 6.00-7.00 sec 240 MBytes 2.02 Gbits/sec
[ 4] 7.00-8.00 sec 239 MBytes 2.01 Gbits/sec
With the reverted patch applied, the SCTP/IPv4 performance is back
to normal on latest upstream for IPv4 and IPv6 and has same throughput
as 3.4.2 test kernel, steady and interval reports are smooth again.
Fixes: ef2820a735f7 ("net: sctp: Fix a_rwnd/rwnd management to reflect real state of the receiver's buffer")
Reported-by: Peter Butler <pbutler@sonusnet.com>
Reported-by: Dongsheng Song <dongsheng.song@gmail.com>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Tested-by: Peter Butler <pbutler@sonusnet.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Cc: Matija Glavinic Pecotic <matija.glavinic-pecotic.ext@nsn.com>
Cc: Alexander Sverdlin <alexander.sverdlin@nsn.com>
Cc: Vlad Yasevich <vyasevich@gmail.com>
Acked-by: Vlad Yasevich <vyasevich@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-14 19:45:17 +00:00
|
|
|
if ((!chunk->data_accepted) && (!asoc->rwnd || asoc->rwnd_over ||
|
2007-08-15 23:07:44 +00:00
|
|
|
(datalen > asoc->rwnd + asoc->frag_point))) {
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* If this is the next TSN, consider reneging to make
|
|
|
|
* room. Note: Playing nice with a confused sender. A
|
|
|
|
* malicious sender can still eat up all our buffer
|
|
|
|
* space and in the future we may want to detect and
|
|
|
|
* do more drastic reneging.
|
|
|
|
*/
|
2006-05-06 00:02:09 +00:00
|
|
|
if (sctp_tsnmap_has_gap(map) &&
|
|
|
|
(sctp_tsnmap_get_ctsn(map) + 1) == tsn) {
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
pr_debug("%s: reneging for tsn:%u\n", __func__, tsn);
|
2005-04-16 22:20:36 +00:00
|
|
|
deliver = SCTP_CMD_RENEGE;
|
|
|
|
} else {
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
pr_debug("%s: discard tsn:%u len:%zu, rwnd:%d\n",
|
|
|
|
__func__, tsn, datalen, asoc->rwnd);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_IERROR_IGNORE_TSN;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2007-08-15 23:07:44 +00:00
|
|
|
/*
|
|
|
|
* Also try to renege to limit our memory usage in the event that
|
|
|
|
* we are under memory pressure
|
2007-12-31 08:11:19 +00:00
|
|
|
* If we can't renege, don't worry about it, the sk_rmem_schedule
|
2007-08-15 23:07:44 +00:00
|
|
|
* in sctp_ulpevent_make_rcvmsg will drop the frame if we grow our
|
|
|
|
* memory usage too much
|
|
|
|
*/
|
|
|
|
if (*sk->sk_prot_creator->memory_pressure) {
|
|
|
|
if (sctp_tsnmap_has_gap(map) &&
|
2013-12-23 04:16:52 +00:00
|
|
|
(sctp_tsnmap_get_ctsn(map) + 1) == tsn) {
|
net: sctp: rework debugging framework to use pr_debug and friends
We should get rid of all own SCTP debug printk macros and use the ones
that the kernel offers anyway instead. This makes the code more readable
and conform to the kernel code, and offers all the features of dynamic
debbuging that pr_debug() et al has, such as only turning on/off portions
of debug messages at runtime through debugfs. The runtime cost of having
CONFIG_DYNAMIC_DEBUG enabled, but none of the debug statements printing,
is negligible [1]. If kernel debugging is completly turned off, then these
statements will also compile into "empty" functions.
While we're at it, we also need to change the Kconfig option as it /now/
only refers to the ifdef'ed code portions in outqueue.c that enable further
debugging/tracing of SCTP transaction fields. Also, since SCTP_ASSERT code
was enabled with this Kconfig option and has now been removed, we
transform those code parts into WARNs resp. where appropriate BUG_ONs so
that those bugs can be more easily detected as probably not many people
have SCTP debugging permanently turned on.
To turn on all SCTP debugging, the following steps are needed:
# mount -t debugfs none /sys/kernel/debug
# echo -n 'module sctp +p' > /sys/kernel/debug/dynamic_debug/control
This can be done more fine-grained on a per file, per line basis and others
as described in [2].
[1] https://www.kernel.org/doc/ols/2009/ols2009-pages-39-46.pdf
[2] Documentation/dynamic-debug-howto.txt
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-28 17:49:40 +00:00
|
|
|
pr_debug("%s: under pressure, reneging for tsn:%u\n",
|
|
|
|
__func__, tsn);
|
2007-08-15 23:07:44 +00:00
|
|
|
deliver = SCTP_CMD_RENEGE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* Section 3.3.10.9 No User Data (9)
|
|
|
|
*
|
|
|
|
* Cause of error
|
|
|
|
* ---------------
|
|
|
|
* No User Data: This error cause is returned to the originator of a
|
|
|
|
* DATA chunk if a received DATA chunk has no user data.
|
|
|
|
*/
|
|
|
|
if (unlikely(0 == datalen)) {
|
|
|
|
err = sctp_make_abort_no_data(asoc, chunk, tsn);
|
|
|
|
if (err) {
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
|
|
|
|
SCTP_CHUNK(err));
|
|
|
|
}
|
|
|
|
/* We are going to ABORT, so we might as well stop
|
|
|
|
* processing the rest of the chunks in the packet.
|
|
|
|
*/
|
2013-12-23 04:16:50 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_DISCARD_PACKET, SCTP_NULL());
|
2006-05-19 17:58:12 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR,
|
|
|
|
SCTP_ERROR(ECONNABORTED));
|
2005-04-16 22:20:36 +00:00
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
|
2006-11-21 01:01:06 +00:00
|
|
|
SCTP_PERR(SCTP_ERROR_NO_DATA));
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_ABORTEDS);
|
|
|
|
SCTP_DEC_STATS(net, SCTP_MIB_CURRESTAB);
|
2005-04-16 22:20:36 +00:00
|
|
|
return SCTP_IERROR_NO_DATA;
|
|
|
|
}
|
|
|
|
|
2006-07-21 21:49:07 +00:00
|
|
|
chunk->data_accepted = 1;
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Note: Some chunks may get overcounted (if we drop) or overcounted
|
|
|
|
* if we renege and the chunk arrives again.
|
|
|
|
*/
|
2012-12-01 04:49:42 +00:00
|
|
|
if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED) {
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_INUNORDERCHUNKS);
|
2012-12-01 04:49:42 +00:00
|
|
|
if (chunk->asoc)
|
|
|
|
chunk->asoc->stats.iuodchunks++;
|
|
|
|
} else {
|
2012-08-06 08:47:55 +00:00
|
|
|
SCTP_INC_STATS(net, SCTP_MIB_INORDERCHUNKS);
|
2012-12-01 04:49:42 +00:00
|
|
|
if (chunk->asoc)
|
|
|
|
chunk->asoc->stats.iodchunks++;
|
2009-09-04 22:21:03 +00:00
|
|
|
ordered = 1;
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* RFC 2960 6.5 Stream Identifier and Stream Sequence Number
|
|
|
|
*
|
|
|
|
* If an endpoint receive a DATA chunk with an invalid stream
|
|
|
|
* identifier, it shall acknowledge the reception of the DATA chunk
|
|
|
|
* following the normal procedure, immediately send an ERROR chunk
|
|
|
|
* with cause set to "Invalid Stream Identifier" (See Section 3.3.10)
|
|
|
|
* and discard the DATA chunk.
|
|
|
|
*/
|
2009-09-04 22:21:03 +00:00
|
|
|
sid = ntohs(data_hdr->stream);
|
2017-05-31 08:36:31 +00:00
|
|
|
if (sid >= asoc->stream.incnt) {
|
2008-07-08 09:28:39 +00:00
|
|
|
/* Mark tsn as received even though we drop it */
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_TSN, SCTP_U32(tsn));
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
err = sctp_make_op_error(asoc, chunk, SCTP_ERROR_INV_STRM,
|
|
|
|
&data_hdr->stream,
|
2009-11-23 20:53:56 +00:00
|
|
|
sizeof(data_hdr->stream),
|
|
|
|
sizeof(u16));
|
2005-04-16 22:20:36 +00:00
|
|
|
if (err)
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
|
|
|
|
SCTP_CHUNK(err));
|
|
|
|
return SCTP_IERROR_BAD_STREAM;
|
|
|
|
}
|
|
|
|
|
2009-09-04 22:21:03 +00:00
|
|
|
/* Check to see if the SSN is possible for this TSN.
|
|
|
|
* The biggest gap we can record is 4K wide. Since SSNs wrap
|
|
|
|
* at an unsigned short, there is no way that an SSN can
|
|
|
|
* wrap and for a valid TSN. We can simply check if the current
|
|
|
|
* SSN is smaller then the next expected one. If it is, it wrapped
|
|
|
|
* and is invalid.
|
|
|
|
*/
|
|
|
|
ssn = ntohs(data_hdr->ssn);
|
2017-05-31 08:36:31 +00:00
|
|
|
if (ordered && SSN_lt(ssn, sctp_ssn_peek(&asoc->stream, in, sid)))
|
2009-09-04 22:21:03 +00:00
|
|
|
return SCTP_IERROR_PROTO_VIOLATION;
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* Send the data up to the user. Note: Schedule the
|
|
|
|
* SCTP_CMD_CHUNK_ULP cmd before the SCTP_CMD_GEN_SACK, as the SACK
|
|
|
|
* chunk needs the updated rwnd.
|
|
|
|
*/
|
|
|
|
sctp_add_cmd_sf(commands, deliver, SCTP_CHUNK(chunk));
|
|
|
|
|
|
|
|
return SCTP_IERROR_NO_ERROR;
|
|
|
|
}
|