2012-07-31 23:42:12 +00:00
|
|
|
/*
|
|
|
|
*
|
|
|
|
* Copyright IBM Corporation, 2012
|
|
|
|
* Author Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
|
|
|
|
*
|
2019-12-16 19:38:31 +00:00
|
|
|
* Cgroup v2
|
|
|
|
* Copyright (C) 2019 Red Hat, Inc.
|
|
|
|
* Author: Giuseppe Scrivano <gscrivan@redhat.com>
|
|
|
|
*
|
2012-07-31 23:42:12 +00:00
|
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of version 2.1 of the GNU Lesser General Public License
|
|
|
|
* as published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it would be useful, but
|
|
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/cgroup.h>
|
2014-12-10 23:42:34 +00:00
|
|
|
#include <linux/page_counter.h>
|
2012-07-31 23:42:12 +00:00
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/hugetlb.h>
|
|
|
|
#include <linux/hugetlb_cgroup.h>
|
|
|
|
|
2012-07-31 23:42:24 +00:00
|
|
|
#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
|
|
|
|
#define MEMFILE_IDX(val) (((val) >> 16) & 0xffff)
|
|
|
|
#define MEMFILE_ATTR(val) ((val) & 0xffff)
|
|
|
|
|
mm/hugetlb_cgroup: prepare cftypes based on template
Unlike other cgroup subsystems, the hugetlb cgroup does not provide a
static array of cftype that explicitly displays the properties, handling
functions, etc., of each file. Instead, it dynamically creates the
attribute of cftypes based on the hstate during the startup procedure.
This reduces the readability of the code.
To fix this issue, introduce two templates of cftypes, and rebuild the
attributes according to the hstate to make it ready to be added to cgroup
framework.
Link: https://lkml.kernel.org/r/20240612092409.2027592-3-xiujianfeng@huawei.com
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: kernel test robot <oliver.sang@intel.com>
From: Xiu Jianfeng <xiujianfeng@huawei.com>
Subject: mm/hugetlb_cgroup: register lockdep key for cftype
Date: Tue, 18 Jun 2024 07:19:22 +0000
When CONFIG_DEBUG_LOCK_ALLOC is enabled, the following commands can
trigger a bug,
mount -t cgroup2 none /sys/fs/cgroup
cd /sys/fs/cgroup
echo "+hugetlb" > cgroup.subtree_control
The log is as below:
BUG: key ffff8880046d88d8 has not been registered!
------------[ cut here ]------------
DEBUG_LOCKS_WARN_ON(1)
WARNING: CPU: 3 PID: 226 at kernel/locking/lockdep.c:4945 lockdep_init_map_type+0x185/0x220
Modules linked in:
CPU: 3 PID: 226 Comm: bash Not tainted 6.10.0-rc4-next-20240617-g76db4c64526c #544
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:lockdep_init_map_type+0x185/0x220
Code: 00 85 c0 0f 84 6c ff ff ff 8b 3d 6a d1 85 01 85 ff 0f 85 5e ff ff ff 48 c7 c6 21 99 4a 82 48 c7 c7 60 29 49 82 e8 3b 2e f5
RSP: 0018:ffffc9000083fc30 EFLAGS: 00000282
RAX: 0000000000000000 RBX: ffffffff828dd820 RCX: 0000000000000027
RDX: ffff88803cd9cac8 RSI: 0000000000000001 RDI: ffff88803cd9cac0
RBP: ffff88800674fbb0 R08: ffffffff828ce248 R09: 00000000ffffefff
R10: ffffffff8285e260 R11: ffffffff828b8eb8 R12: ffff8880046d88d8
R13: 0000000000000000 R14: 0000000000000000 R15: ffff8880067281c0
FS: 00007f68601ea740(0000) GS:ffff88803cd80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005614f3ebc740 CR3: 000000000773a000 CR4: 00000000000006f0
Call Trace:
<TASK>
? __warn+0x77/0xd0
? lockdep_init_map_type+0x185/0x220
? report_bug+0x189/0x1a0
? handle_bug+0x3c/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? lockdep_init_map_type+0x185/0x220
__kernfs_create_file+0x79/0x100
cgroup_addrm_files+0x163/0x380
? find_held_lock+0x2b/0x80
? find_held_lock+0x2b/0x80
? find_held_lock+0x2b/0x80
css_populate_dir+0x73/0x180
cgroup_apply_control_enable+0x12f/0x3a0
cgroup_subtree_control_write+0x30b/0x440
kernfs_fop_write_iter+0x13a/0x1f0
vfs_write+0x341/0x450
ksys_write+0x64/0xe0
do_syscall_64+0x4b/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f68602d9833
Code: 8b 15 61 26 0e 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 64 8b 04 25 18 00 00 00 85 c0 75 14 b8 01 00 00 00 08
RSP: 002b:00007fff9bbdf8e8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000009 RCX: 00007f68602d9833
RDX: 0000000000000009 RSI: 00005614f3ebc740 RDI: 0000000000000001
RBP: 00005614f3ebc740 R08: 000000000000000a R09: 0000000000000008
R10: 00005614f3db6ba0 R11: 0000000000000246 R12: 0000000000000009
R13: 00007f68603bd6a0 R14: 0000000000000009 R15: 00007f68603b8880
For lockdep, there is a sanity check in lockdep_init_map_type(), the
lock-class key must either have been allocated statically or must
have been registered as a dynamic key. However the commit e18df2889ff9
("mm/hugetlb_cgroup: prepare cftypes based on template") has changed
the cftypes from static allocated objects to dynamic allocated objects,
so the cft->lockdep_key must be registered proactively.
[xiujianfeng@huawei.com: fix BUG()]
Link: https://lkml.kernel.org/r/20240619015527.2212698-1-xiujianfeng@huawei.com
Link: https://lkml.kernel.org/r/20240618071922.2127289-1-xiujianfeng@huawei.com
Link: https://lore.kernel.org/all/602186b3-5ce3-41b3-90a3-134792cc2a48@samsung.com/
Fixes: e18df2889ff9 ("mm/hugetlb_cgroup: prepare cftypes based on template")
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202406181046.8d8b2492-oliver.sang@intel.com
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: SeongJae Park <sj@kernel.org>
Closes: https://lore.kernel.org/20240618233608.400367-1-sj@kernel.org
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-12 09:24:08 +00:00
|
|
|
/* Use t->m[0] to encode the offset */
|
|
|
|
#define MEMFILE_OFFSET(t, m0) (((offsetof(t, m0) << 16) | sizeof_field(t, m0)))
|
|
|
|
#define MEMFILE_OFFSET0(val) (((val) >> 16) & 0xffff)
|
|
|
|
#define MEMFILE_FIELD_SIZE(val) ((val) & 0xffff)
|
|
|
|
|
|
|
|
#define DFL_TMPL_SIZE ARRAY_SIZE(hugetlb_dfl_tmpl)
|
|
|
|
#define LEGACY_TMPL_SIZE ARRAY_SIZE(hugetlb_legacy_tmpl)
|
|
|
|
|
2012-07-31 23:42:12 +00:00
|
|
|
static struct hugetlb_cgroup *root_h_cgroup __read_mostly;
|
mm/hugetlb_cgroup: prepare cftypes based on template
Unlike other cgroup subsystems, the hugetlb cgroup does not provide a
static array of cftype that explicitly displays the properties, handling
functions, etc., of each file. Instead, it dynamically creates the
attribute of cftypes based on the hstate during the startup procedure.
This reduces the readability of the code.
To fix this issue, introduce two templates of cftypes, and rebuild the
attributes according to the hstate to make it ready to be added to cgroup
framework.
Link: https://lkml.kernel.org/r/20240612092409.2027592-3-xiujianfeng@huawei.com
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: kernel test robot <oliver.sang@intel.com>
From: Xiu Jianfeng <xiujianfeng@huawei.com>
Subject: mm/hugetlb_cgroup: register lockdep key for cftype
Date: Tue, 18 Jun 2024 07:19:22 +0000
When CONFIG_DEBUG_LOCK_ALLOC is enabled, the following commands can
trigger a bug,
mount -t cgroup2 none /sys/fs/cgroup
cd /sys/fs/cgroup
echo "+hugetlb" > cgroup.subtree_control
The log is as below:
BUG: key ffff8880046d88d8 has not been registered!
------------[ cut here ]------------
DEBUG_LOCKS_WARN_ON(1)
WARNING: CPU: 3 PID: 226 at kernel/locking/lockdep.c:4945 lockdep_init_map_type+0x185/0x220
Modules linked in:
CPU: 3 PID: 226 Comm: bash Not tainted 6.10.0-rc4-next-20240617-g76db4c64526c #544
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:lockdep_init_map_type+0x185/0x220
Code: 00 85 c0 0f 84 6c ff ff ff 8b 3d 6a d1 85 01 85 ff 0f 85 5e ff ff ff 48 c7 c6 21 99 4a 82 48 c7 c7 60 29 49 82 e8 3b 2e f5
RSP: 0018:ffffc9000083fc30 EFLAGS: 00000282
RAX: 0000000000000000 RBX: ffffffff828dd820 RCX: 0000000000000027
RDX: ffff88803cd9cac8 RSI: 0000000000000001 RDI: ffff88803cd9cac0
RBP: ffff88800674fbb0 R08: ffffffff828ce248 R09: 00000000ffffefff
R10: ffffffff8285e260 R11: ffffffff828b8eb8 R12: ffff8880046d88d8
R13: 0000000000000000 R14: 0000000000000000 R15: ffff8880067281c0
FS: 00007f68601ea740(0000) GS:ffff88803cd80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005614f3ebc740 CR3: 000000000773a000 CR4: 00000000000006f0
Call Trace:
<TASK>
? __warn+0x77/0xd0
? lockdep_init_map_type+0x185/0x220
? report_bug+0x189/0x1a0
? handle_bug+0x3c/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? lockdep_init_map_type+0x185/0x220
__kernfs_create_file+0x79/0x100
cgroup_addrm_files+0x163/0x380
? find_held_lock+0x2b/0x80
? find_held_lock+0x2b/0x80
? find_held_lock+0x2b/0x80
css_populate_dir+0x73/0x180
cgroup_apply_control_enable+0x12f/0x3a0
cgroup_subtree_control_write+0x30b/0x440
kernfs_fop_write_iter+0x13a/0x1f0
vfs_write+0x341/0x450
ksys_write+0x64/0xe0
do_syscall_64+0x4b/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f68602d9833
Code: 8b 15 61 26 0e 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 64 8b 04 25 18 00 00 00 85 c0 75 14 b8 01 00 00 00 08
RSP: 002b:00007fff9bbdf8e8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000009 RCX: 00007f68602d9833
RDX: 0000000000000009 RSI: 00005614f3ebc740 RDI: 0000000000000001
RBP: 00005614f3ebc740 R08: 000000000000000a R09: 0000000000000008
R10: 00005614f3db6ba0 R11: 0000000000000246 R12: 0000000000000009
R13: 00007f68603bd6a0 R14: 0000000000000009 R15: 00007f68603b8880
For lockdep, there is a sanity check in lockdep_init_map_type(), the
lock-class key must either have been allocated statically or must
have been registered as a dynamic key. However the commit e18df2889ff9
("mm/hugetlb_cgroup: prepare cftypes based on template") has changed
the cftypes from static allocated objects to dynamic allocated objects,
so the cft->lockdep_key must be registered proactively.
[xiujianfeng@huawei.com: fix BUG()]
Link: https://lkml.kernel.org/r/20240619015527.2212698-1-xiujianfeng@huawei.com
Link: https://lkml.kernel.org/r/20240618071922.2127289-1-xiujianfeng@huawei.com
Link: https://lore.kernel.org/all/602186b3-5ce3-41b3-90a3-134792cc2a48@samsung.com/
Fixes: e18df2889ff9 ("mm/hugetlb_cgroup: prepare cftypes based on template")
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202406181046.8d8b2492-oliver.sang@intel.com
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: SeongJae Park <sj@kernel.org>
Closes: https://lore.kernel.org/20240618233608.400367-1-sj@kernel.org
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-12 09:24:08 +00:00
|
|
|
static struct cftype *dfl_files;
|
|
|
|
static struct cftype *legacy_files;
|
2012-07-31 23:42:12 +00:00
|
|
|
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
static inline struct page_counter *
|
2020-04-02 04:11:15 +00:00
|
|
|
__hugetlb_cgroup_counter_from_cgroup(struct hugetlb_cgroup *h_cg, int idx,
|
|
|
|
bool rsvd)
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
{
|
|
|
|
if (rsvd)
|
|
|
|
return &h_cg->rsvd_hugepage[idx];
|
|
|
|
return &h_cg->hugepage[idx];
|
|
|
|
}
|
|
|
|
|
2020-04-02 04:11:15 +00:00
|
|
|
static inline struct page_counter *
|
|
|
|
hugetlb_cgroup_counter_from_cgroup(struct hugetlb_cgroup *h_cg, int idx)
|
|
|
|
{
|
|
|
|
return __hugetlb_cgroup_counter_from_cgroup(h_cg, idx, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline struct page_counter *
|
|
|
|
hugetlb_cgroup_counter_from_cgroup_rsvd(struct hugetlb_cgroup *h_cg, int idx)
|
|
|
|
{
|
|
|
|
return __hugetlb_cgroup_counter_from_cgroup(h_cg, idx, true);
|
|
|
|
}
|
|
|
|
|
2012-07-31 23:42:12 +00:00
|
|
|
static inline
|
|
|
|
struct hugetlb_cgroup *hugetlb_cgroup_from_css(struct cgroup_subsys_state *s)
|
|
|
|
{
|
2013-08-09 00:11:23 +00:00
|
|
|
return s ? container_of(s, struct hugetlb_cgroup, css) : NULL;
|
2012-07-31 23:42:12 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline
|
|
|
|
struct hugetlb_cgroup *hugetlb_cgroup_from_task(struct task_struct *task)
|
|
|
|
{
|
2014-02-08 15:36:58 +00:00
|
|
|
return hugetlb_cgroup_from_css(task_css(task, hugetlb_cgrp_id));
|
2012-07-31 23:42:12 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool hugetlb_cgroup_is_root(struct hugetlb_cgroup *h_cg)
|
|
|
|
{
|
|
|
|
return (h_cg == root_h_cgroup);
|
|
|
|
}
|
|
|
|
|
2013-08-09 00:11:22 +00:00
|
|
|
static inline struct hugetlb_cgroup *
|
|
|
|
parent_hugetlb_cgroup(struct hugetlb_cgroup *h_cg)
|
2012-07-31 23:42:12 +00:00
|
|
|
{
|
2014-05-16 17:22:48 +00:00
|
|
|
return hugetlb_cgroup_from_css(h_cg->css.parent);
|
2012-07-31 23:42:12 +00:00
|
|
|
}
|
|
|
|
|
2013-08-09 00:11:22 +00:00
|
|
|
static inline bool hugetlb_cgroup_have_usage(struct hugetlb_cgroup *h_cg)
|
2012-07-31 23:42:12 +00:00
|
|
|
{
|
2022-07-29 08:01:06 +00:00
|
|
|
struct hstate *h;
|
2012-07-31 23:42:12 +00:00
|
|
|
|
2022-07-29 08:01:06 +00:00
|
|
|
for_each_hstate(h) {
|
2020-04-02 04:11:15 +00:00
|
|
|
if (page_counter_read(
|
2022-07-29 08:01:06 +00:00
|
|
|
hugetlb_cgroup_counter_from_cgroup(h_cg, hstate_index(h))))
|
2012-07-31 23:42:12 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2016-05-20 23:57:50 +00:00
|
|
|
static void hugetlb_cgroup_init(struct hugetlb_cgroup *h_cgroup,
|
|
|
|
struct hugetlb_cgroup *parent_h_cgroup)
|
|
|
|
{
|
|
|
|
int idx;
|
|
|
|
|
|
|
|
for (idx = 0; idx < HUGE_MAX_HSTATE; idx++) {
|
2020-04-02 04:11:15 +00:00
|
|
|
struct page_counter *fault_parent = NULL;
|
|
|
|
struct page_counter *rsvd_parent = NULL;
|
2016-05-20 23:57:50 +00:00
|
|
|
unsigned long limit;
|
|
|
|
int ret;
|
|
|
|
|
2020-04-02 04:11:15 +00:00
|
|
|
if (parent_h_cgroup) {
|
|
|
|
fault_parent = hugetlb_cgroup_counter_from_cgroup(
|
|
|
|
parent_h_cgroup, idx);
|
|
|
|
rsvd_parent = hugetlb_cgroup_counter_from_cgroup_rsvd(
|
|
|
|
parent_h_cgroup, idx);
|
|
|
|
}
|
|
|
|
page_counter_init(hugetlb_cgroup_counter_from_cgroup(h_cgroup,
|
|
|
|
idx),
|
|
|
|
fault_parent);
|
|
|
|
page_counter_init(
|
|
|
|
hugetlb_cgroup_counter_from_cgroup_rsvd(h_cgroup, idx),
|
|
|
|
rsvd_parent);
|
2016-05-20 23:57:50 +00:00
|
|
|
|
|
|
|
limit = round_down(PAGE_COUNTER_MAX,
|
2021-02-24 20:07:36 +00:00
|
|
|
pages_per_huge_page(&hstates[idx]));
|
2020-04-02 04:11:15 +00:00
|
|
|
|
|
|
|
ret = page_counter_set_max(
|
|
|
|
hugetlb_cgroup_counter_from_cgroup(h_cgroup, idx),
|
|
|
|
limit);
|
|
|
|
VM_BUG_ON(ret);
|
|
|
|
ret = page_counter_set_max(
|
|
|
|
hugetlb_cgroup_counter_from_cgroup_rsvd(h_cgroup, idx),
|
|
|
|
limit);
|
2016-05-20 23:57:50 +00:00
|
|
|
VM_BUG_ON(ret);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-01-14 22:07:48 +00:00
|
|
|
static void hugetlb_cgroup_free(struct hugetlb_cgroup *h_cgroup)
|
|
|
|
{
|
|
|
|
int node;
|
|
|
|
|
|
|
|
for_each_node(node)
|
|
|
|
kfree(h_cgroup->nodeinfo[node]);
|
|
|
|
kfree(h_cgroup);
|
|
|
|
}
|
|
|
|
|
2013-08-09 00:11:23 +00:00
|
|
|
static struct cgroup_subsys_state *
|
|
|
|
hugetlb_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
|
2012-07-31 23:42:12 +00:00
|
|
|
{
|
2013-08-09 00:11:23 +00:00
|
|
|
struct hugetlb_cgroup *parent_h_cgroup = hugetlb_cgroup_from_css(parent_css);
|
|
|
|
struct hugetlb_cgroup *h_cgroup;
|
2022-01-14 22:07:48 +00:00
|
|
|
int node;
|
|
|
|
|
|
|
|
h_cgroup = kzalloc(struct_size(h_cgroup, nodeinfo, nr_node_ids),
|
|
|
|
GFP_KERNEL);
|
2012-07-31 23:42:12 +00:00
|
|
|
|
|
|
|
if (!h_cgroup)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
2016-05-20 23:57:50 +00:00
|
|
|
if (!parent_h_cgroup)
|
2012-07-31 23:42:12 +00:00
|
|
|
root_h_cgroup = h_cgroup;
|
2016-05-20 23:57:50 +00:00
|
|
|
|
2022-01-14 22:07:48 +00:00
|
|
|
/*
|
|
|
|
* TODO: this routine can waste much memory for nodes which will
|
|
|
|
* never be onlined. It's better to use memory hotplug callback
|
|
|
|
* function.
|
|
|
|
*/
|
|
|
|
for_each_node(node) {
|
2022-07-29 08:01:05 +00:00
|
|
|
/* Set node_to_alloc to NUMA_NO_NODE for offline nodes. */
|
2022-01-14 22:07:48 +00:00
|
|
|
int node_to_alloc =
|
2022-07-29 08:01:05 +00:00
|
|
|
node_state(node, N_NORMAL_MEMORY) ? node : NUMA_NO_NODE;
|
2022-01-14 22:07:48 +00:00
|
|
|
h_cgroup->nodeinfo[node] =
|
|
|
|
kzalloc_node(sizeof(struct hugetlb_cgroup_per_node),
|
|
|
|
GFP_KERNEL, node_to_alloc);
|
|
|
|
if (!h_cgroup->nodeinfo[node])
|
|
|
|
goto fail_alloc_nodeinfo;
|
|
|
|
}
|
|
|
|
|
2016-05-20 23:57:50 +00:00
|
|
|
hugetlb_cgroup_init(h_cgroup, parent_h_cgroup);
|
2012-07-31 23:42:12 +00:00
|
|
|
return &h_cgroup->css;
|
2022-01-14 22:07:48 +00:00
|
|
|
|
|
|
|
fail_alloc_nodeinfo:
|
|
|
|
hugetlb_cgroup_free(h_cgroup);
|
|
|
|
return ERR_PTR(-ENOMEM);
|
2012-07-31 23:42:12 +00:00
|
|
|
}
|
|
|
|
|
2013-08-09 00:11:23 +00:00
|
|
|
static void hugetlb_cgroup_css_free(struct cgroup_subsys_state *css)
|
2012-07-31 23:42:12 +00:00
|
|
|
{
|
2022-01-14 22:07:48 +00:00
|
|
|
hugetlb_cgroup_free(hugetlb_cgroup_from_css(css));
|
2012-07-31 23:42:12 +00:00
|
|
|
}
|
|
|
|
|
2012-07-31 23:42:21 +00:00
|
|
|
/*
|
|
|
|
* Should be called with hugetlb_lock held.
|
|
|
|
* Since we are holding hugetlb_lock, pages cannot get moved from
|
|
|
|
* active list or uncharged from the cgroup, So no need to get
|
|
|
|
* page reference and test for page active here. This function
|
|
|
|
* cannot fail.
|
|
|
|
*/
|
2013-08-09 00:11:22 +00:00
|
|
|
static void hugetlb_cgroup_move_parent(int idx, struct hugetlb_cgroup *h_cg,
|
2012-07-31 23:42:21 +00:00
|
|
|
struct page *page)
|
|
|
|
{
|
2014-12-10 23:42:34 +00:00
|
|
|
unsigned int nr_pages;
|
|
|
|
struct page_counter *counter;
|
2012-07-31 23:42:21 +00:00
|
|
|
struct hugetlb_cgroup *page_hcg;
|
2013-08-09 00:11:22 +00:00
|
|
|
struct hugetlb_cgroup *parent = parent_hugetlb_cgroup(h_cg);
|
2022-11-01 22:30:52 +00:00
|
|
|
struct folio *folio = page_folio(page);
|
2012-07-31 23:42:21 +00:00
|
|
|
|
2022-11-01 22:30:52 +00:00
|
|
|
page_hcg = hugetlb_cgroup_from_folio(folio);
|
2012-07-31 23:42:21 +00:00
|
|
|
/*
|
|
|
|
* We can have pages in active list without any cgroup
|
|
|
|
* ie, hugepage with less than 3 pages. We can safely
|
|
|
|
* ignore those pages.
|
|
|
|
*/
|
|
|
|
if (!page_hcg || page_hcg != h_cg)
|
|
|
|
goto out;
|
|
|
|
|
2019-09-23 22:34:30 +00:00
|
|
|
nr_pages = compound_nr(page);
|
2012-07-31 23:42:21 +00:00
|
|
|
if (!parent) {
|
|
|
|
parent = root_h_cgroup;
|
|
|
|
/* root has no limit */
|
2014-12-10 23:42:34 +00:00
|
|
|
page_counter_charge(&parent->hugepage[idx], nr_pages);
|
2012-07-31 23:42:21 +00:00
|
|
|
}
|
|
|
|
counter = &h_cg->hugepage[idx];
|
2014-12-10 23:42:34 +00:00
|
|
|
/* Take the pages off the local counter */
|
|
|
|
page_counter_cancel(counter, nr_pages);
|
2012-07-31 23:42:21 +00:00
|
|
|
|
2022-11-01 22:30:53 +00:00
|
|
|
set_hugetlb_cgroup(folio, parent);
|
2012-07-31 23:42:21 +00:00
|
|
|
out:
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Force the hugetlb cgroup to empty the hugetlb resources by moving them to
|
|
|
|
* the parent cgroup.
|
|
|
|
*/
|
2013-08-09 00:11:23 +00:00
|
|
|
static void hugetlb_cgroup_css_offline(struct cgroup_subsys_state *css)
|
2012-07-31 23:42:12 +00:00
|
|
|
{
|
2013-08-09 00:11:23 +00:00
|
|
|
struct hugetlb_cgroup *h_cg = hugetlb_cgroup_from_css(css);
|
2012-07-31 23:42:21 +00:00
|
|
|
struct hstate *h;
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
do {
|
|
|
|
for_each_hstate(h) {
|
2021-05-05 01:35:07 +00:00
|
|
|
spin_lock_irq(&hugetlb_lock);
|
2012-07-31 23:42:21 +00:00
|
|
|
list_for_each_entry(page, &h->hugepage_activelist, lru)
|
2022-07-29 08:01:06 +00:00
|
|
|
hugetlb_cgroup_move_parent(hstate_index(h), h_cg, page);
|
2012-07-31 23:42:21 +00:00
|
|
|
|
2021-05-05 01:35:07 +00:00
|
|
|
spin_unlock_irq(&hugetlb_lock);
|
2012-07-31 23:42:21 +00:00
|
|
|
}
|
|
|
|
cond_resched();
|
2013-08-09 00:11:22 +00:00
|
|
|
} while (hugetlb_cgroup_have_usage(h_cg));
|
2012-07-31 23:42:12 +00:00
|
|
|
}
|
|
|
|
|
2019-12-16 19:38:31 +00:00
|
|
|
static inline void hugetlb_event(struct hugetlb_cgroup *hugetlb, int idx,
|
|
|
|
enum hugetlb_memory_event event)
|
|
|
|
{
|
|
|
|
atomic_long_inc(&hugetlb->events_local[idx][event]);
|
|
|
|
cgroup_file_notify(&hugetlb->events_local_file[idx]);
|
|
|
|
|
|
|
|
do {
|
|
|
|
atomic_long_inc(&hugetlb->events[idx][event]);
|
|
|
|
cgroup_file_notify(&hugetlb->events_file[idx]);
|
|
|
|
} while ((hugetlb = parent_hugetlb_cgroup(hugetlb)) &&
|
|
|
|
!hugetlb_cgroup_is_root(hugetlb));
|
|
|
|
}
|
|
|
|
|
2020-04-02 04:11:15 +00:00
|
|
|
static int __hugetlb_cgroup_charge_cgroup(int idx, unsigned long nr_pages,
|
|
|
|
struct hugetlb_cgroup **ptr,
|
|
|
|
bool rsvd)
|
2012-07-31 23:42:18 +00:00
|
|
|
{
|
|
|
|
int ret = 0;
|
2014-12-10 23:42:34 +00:00
|
|
|
struct page_counter *counter;
|
2012-07-31 23:42:18 +00:00
|
|
|
struct hugetlb_cgroup *h_cg = NULL;
|
|
|
|
|
|
|
|
if (hugetlb_cgroup_disabled())
|
|
|
|
goto done;
|
|
|
|
again:
|
|
|
|
rcu_read_lock();
|
|
|
|
h_cg = hugetlb_cgroup_from_task(current);
|
2019-11-16 01:34:46 +00:00
|
|
|
if (!css_tryget(&h_cg->css)) {
|
2012-07-31 23:42:18 +00:00
|
|
|
rcu_read_unlock();
|
|
|
|
goto again;
|
|
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
|
2020-04-02 04:11:15 +00:00
|
|
|
if (!page_counter_try_charge(
|
|
|
|
__hugetlb_cgroup_counter_from_cgroup(h_cg, idx, rsvd),
|
|
|
|
nr_pages, &counter)) {
|
2015-11-06 02:50:26 +00:00
|
|
|
ret = -ENOMEM;
|
2020-03-29 02:17:22 +00:00
|
|
|
hugetlb_event(h_cg, idx, HUGETLB_MAX);
|
2020-04-02 04:11:15 +00:00
|
|
|
css_put(&h_cg->css);
|
|
|
|
goto done;
|
2019-12-16 19:38:31 +00:00
|
|
|
}
|
2020-04-02 04:11:15 +00:00
|
|
|
/* Reservations take a reference to the css because they do not get
|
|
|
|
* reparented.
|
|
|
|
*/
|
|
|
|
if (!rsvd)
|
|
|
|
css_put(&h_cg->css);
|
2012-07-31 23:42:18 +00:00
|
|
|
done:
|
|
|
|
*ptr = h_cg;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2020-04-02 04:11:15 +00:00
|
|
|
int hugetlb_cgroup_charge_cgroup(int idx, unsigned long nr_pages,
|
|
|
|
struct hugetlb_cgroup **ptr)
|
|
|
|
{
|
|
|
|
return __hugetlb_cgroup_charge_cgroup(idx, nr_pages, ptr, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
int hugetlb_cgroup_charge_cgroup_rsvd(int idx, unsigned long nr_pages,
|
|
|
|
struct hugetlb_cgroup **ptr)
|
|
|
|
{
|
|
|
|
return __hugetlb_cgroup_charge_cgroup(idx, nr_pages, ptr, true);
|
|
|
|
}
|
|
|
|
|
2012-07-31 23:42:35 +00:00
|
|
|
/* Should be called with hugetlb_lock held */
|
2020-04-02 04:11:15 +00:00
|
|
|
static void __hugetlb_cgroup_commit_charge(int idx, unsigned long nr_pages,
|
|
|
|
struct hugetlb_cgroup *h_cg,
|
2022-11-01 22:30:58 +00:00
|
|
|
struct folio *folio, bool rsvd)
|
2012-07-31 23:42:18 +00:00
|
|
|
{
|
|
|
|
if (hugetlb_cgroup_disabled() || !h_cg)
|
|
|
|
return;
|
2024-04-17 21:18:36 +00:00
|
|
|
lockdep_assert_held(&hugetlb_lock);
|
2022-11-01 22:30:58 +00:00
|
|
|
__set_hugetlb_cgroup(folio, h_cg, rsvd);
|
2022-01-14 22:07:48 +00:00
|
|
|
if (!rsvd) {
|
|
|
|
unsigned long usage =
|
2022-11-01 22:30:58 +00:00
|
|
|
h_cg->nodeinfo[folio_nid(folio)]->usage[idx];
|
2022-01-14 22:07:48 +00:00
|
|
|
/*
|
|
|
|
* This write is not atomic due to fetching usage and writing
|
|
|
|
* to it, but that's fine because we call this with
|
|
|
|
* hugetlb_lock held anyway.
|
|
|
|
*/
|
2022-11-01 22:30:58 +00:00
|
|
|
WRITE_ONCE(h_cg->nodeinfo[folio_nid(folio)]->usage[idx],
|
2022-01-14 22:07:48 +00:00
|
|
|
usage + nr_pages);
|
|
|
|
}
|
2012-07-31 23:42:18 +00:00
|
|
|
}
|
|
|
|
|
2020-04-02 04:11:15 +00:00
|
|
|
void hugetlb_cgroup_commit_charge(int idx, unsigned long nr_pages,
|
|
|
|
struct hugetlb_cgroup *h_cg,
|
2023-01-13 22:30:54 +00:00
|
|
|
struct folio *folio)
|
2020-04-02 04:11:15 +00:00
|
|
|
{
|
2022-11-01 22:30:58 +00:00
|
|
|
__hugetlb_cgroup_commit_charge(idx, nr_pages, h_cg, folio, false);
|
2020-04-02 04:11:15 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void hugetlb_cgroup_commit_charge_rsvd(int idx, unsigned long nr_pages,
|
|
|
|
struct hugetlb_cgroup *h_cg,
|
2023-01-13 22:30:54 +00:00
|
|
|
struct folio *folio)
|
2020-04-02 04:11:15 +00:00
|
|
|
{
|
2022-11-01 22:30:58 +00:00
|
|
|
__hugetlb_cgroup_commit_charge(idx, nr_pages, h_cg, folio, true);
|
2020-04-02 04:11:15 +00:00
|
|
|
}
|
|
|
|
|
2012-07-31 23:42:18 +00:00
|
|
|
/*
|
|
|
|
* Should be called with hugetlb_lock held
|
|
|
|
*/
|
2022-11-01 22:30:57 +00:00
|
|
|
static void __hugetlb_cgroup_uncharge_folio(int idx, unsigned long nr_pages,
|
|
|
|
struct folio *folio, bool rsvd)
|
2012-07-31 23:42:18 +00:00
|
|
|
{
|
|
|
|
struct hugetlb_cgroup *h_cg;
|
|
|
|
|
|
|
|
if (hugetlb_cgroup_disabled())
|
|
|
|
return;
|
2014-08-29 22:18:42 +00:00
|
|
|
lockdep_assert_held(&hugetlb_lock);
|
2022-11-01 22:30:52 +00:00
|
|
|
h_cg = __hugetlb_cgroup_from_folio(folio, rsvd);
|
2012-07-31 23:42:18 +00:00
|
|
|
if (unlikely(!h_cg))
|
|
|
|
return;
|
2022-11-01 22:30:52 +00:00
|
|
|
__set_hugetlb_cgroup(folio, NULL, rsvd);
|
2020-04-02 04:11:15 +00:00
|
|
|
|
|
|
|
page_counter_uncharge(__hugetlb_cgroup_counter_from_cgroup(h_cg, idx,
|
|
|
|
rsvd),
|
|
|
|
nr_pages);
|
|
|
|
|
|
|
|
if (rsvd)
|
|
|
|
css_put(&h_cg->css);
|
2022-01-14 22:07:48 +00:00
|
|
|
else {
|
|
|
|
unsigned long usage =
|
2022-11-01 22:30:57 +00:00
|
|
|
h_cg->nodeinfo[folio_nid(folio)]->usage[idx];
|
2022-01-14 22:07:48 +00:00
|
|
|
/*
|
|
|
|
* This write is not atomic due to fetching usage and writing
|
|
|
|
* to it, but that's fine because we call this with
|
|
|
|
* hugetlb_lock held anyway.
|
|
|
|
*/
|
2022-11-01 22:30:57 +00:00
|
|
|
WRITE_ONCE(h_cg->nodeinfo[folio_nid(folio)]->usage[idx],
|
2022-01-14 22:07:48 +00:00
|
|
|
usage - nr_pages);
|
|
|
|
}
|
2012-07-31 23:42:18 +00:00
|
|
|
}
|
|
|
|
|
2022-11-01 22:30:57 +00:00
|
|
|
void hugetlb_cgroup_uncharge_folio(int idx, unsigned long nr_pages,
|
|
|
|
struct folio *folio)
|
2020-04-02 04:11:15 +00:00
|
|
|
{
|
2022-11-01 22:30:57 +00:00
|
|
|
__hugetlb_cgroup_uncharge_folio(idx, nr_pages, folio, false);
|
2020-04-02 04:11:15 +00:00
|
|
|
}
|
|
|
|
|
2022-11-01 22:30:57 +00:00
|
|
|
void hugetlb_cgroup_uncharge_folio_rsvd(int idx, unsigned long nr_pages,
|
|
|
|
struct folio *folio)
|
2020-04-02 04:11:15 +00:00
|
|
|
{
|
2022-11-01 22:30:57 +00:00
|
|
|
__hugetlb_cgroup_uncharge_folio(idx, nr_pages, folio, true);
|
2020-04-02 04:11:15 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void __hugetlb_cgroup_uncharge_cgroup(int idx, unsigned long nr_pages,
|
|
|
|
struct hugetlb_cgroup *h_cg,
|
|
|
|
bool rsvd)
|
2012-07-31 23:42:18 +00:00
|
|
|
{
|
|
|
|
if (hugetlb_cgroup_disabled() || !h_cg)
|
|
|
|
return;
|
|
|
|
|
2020-04-02 04:11:15 +00:00
|
|
|
page_counter_uncharge(__hugetlb_cgroup_counter_from_cgroup(h_cg, idx,
|
|
|
|
rsvd),
|
|
|
|
nr_pages);
|
|
|
|
|
|
|
|
if (rsvd)
|
|
|
|
css_put(&h_cg->css);
|
|
|
|
}
|
|
|
|
|
|
|
|
void hugetlb_cgroup_uncharge_cgroup(int idx, unsigned long nr_pages,
|
|
|
|
struct hugetlb_cgroup *h_cg)
|
|
|
|
{
|
|
|
|
__hugetlb_cgroup_uncharge_cgroup(idx, nr_pages, h_cg, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
void hugetlb_cgroup_uncharge_cgroup_rsvd(int idx, unsigned long nr_pages,
|
|
|
|
struct hugetlb_cgroup *h_cg)
|
|
|
|
{
|
|
|
|
__hugetlb_cgroup_uncharge_cgroup(idx, nr_pages, h_cg, true);
|
|
|
|
}
|
|
|
|
|
2020-04-02 04:11:21 +00:00
|
|
|
void hugetlb_cgroup_uncharge_counter(struct resv_map *resv, unsigned long start,
|
|
|
|
unsigned long end)
|
2020-04-02 04:11:15 +00:00
|
|
|
{
|
2020-04-02 04:11:21 +00:00
|
|
|
if (hugetlb_cgroup_disabled() || !resv || !resv->reservation_counter ||
|
|
|
|
!resv->css)
|
2020-04-02 04:11:15 +00:00
|
|
|
return;
|
|
|
|
|
2020-04-02 04:11:21 +00:00
|
|
|
page_counter_uncharge(resv->reservation_counter,
|
|
|
|
(end - start) * resv->pages_per_hpage);
|
|
|
|
css_put(resv->css);
|
2012-07-31 23:42:18 +00:00
|
|
|
}
|
|
|
|
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:28 +00:00
|
|
|
void hugetlb_cgroup_uncharge_file_region(struct resv_map *resv,
|
|
|
|
struct file_region *rg,
|
hugetlb_cgroup: fix imbalanced css_get and css_put pair for shared mappings
The current implementation of hugetlb_cgroup for shared mappings could
have different behavior. Consider the following two scenarios:
1.Assume initial css reference count of hugetlb_cgroup is 1:
1.1 Call hugetlb_reserve_pages with from = 1, to = 2. So css reference
count is 2 associated with 1 file_region.
1.2 Call hugetlb_reserve_pages with from = 2, to = 3. So css reference
count is 3 associated with 2 file_region.
1.3 coalesce_file_region will coalesce these two file_regions into
one. So css reference count is 3 associated with 1 file_region
now.
2.Assume initial css reference count of hugetlb_cgroup is 1 again:
2.1 Call hugetlb_reserve_pages with from = 1, to = 3. So css reference
count is 2 associated with 1 file_region.
Therefore, we might have one file_region while holding one or more css
reference counts. This inconsistency could lead to imbalanced css_get()
and css_put() pair. If we do css_put one by one (i.g. hole punch case),
scenario 2 would put one more css reference. If we do css_put all
together (i.g. truncate case), scenario 1 will leak one css reference.
The imbalanced css_get() and css_put() pair would result in a non-zero
reference when we try to destroy the hugetlb cgroup. The hugetlb cgroup
directory is removed __but__ associated resource is not freed. This
might result in OOM or can not create a new hugetlb cgroup in a busy
workload ultimately.
In order to fix this, we have to make sure that one file_region must
hold exactly one css reference. So in coalesce_file_region case, we
should release one css reference before coalescence. Also only put css
reference when the entire file_region is removed.
The last thing to note is that the caller of region_add() will only hold
one reference to h_cg->css for the whole contiguous reservation region.
But this area might be scattered when there are already some
file_regions reside in it. As a result, many file_regions may share only
one h_cg->css reference. In order to ensure that one file_region must
hold exactly one css reference, we should do css_get() for each
file_region and release the reference held by caller when they are done.
[linmiaohe@huawei.com: fix imbalanced css_get and css_put pair for shared mappings]
Link: https://lkml.kernel.org/r/20210316023002.53921-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20210301120540.37076-1-linmiaohe@huawei.com
Fixes: 075a61d07a8e ("hugetlb_cgroup: add accounting for shared mappings")
Reported-by: kernel test robot <lkp@intel.com> (auto build test ERROR)
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-03-25 04:37:17 +00:00
|
|
|
unsigned long nr_pages,
|
|
|
|
bool region_del)
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:28 +00:00
|
|
|
{
|
|
|
|
if (hugetlb_cgroup_disabled() || !resv || !rg || !nr_pages)
|
|
|
|
return;
|
|
|
|
|
2022-07-29 08:01:02 +00:00
|
|
|
if (rg->reservation_counter && resv->pages_per_hpage &&
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:28 +00:00
|
|
|
!resv->reservation_counter) {
|
|
|
|
page_counter_uncharge(rg->reservation_counter,
|
|
|
|
nr_pages * resv->pages_per_hpage);
|
hugetlb_cgroup: fix imbalanced css_get and css_put pair for shared mappings
The current implementation of hugetlb_cgroup for shared mappings could
have different behavior. Consider the following two scenarios:
1.Assume initial css reference count of hugetlb_cgroup is 1:
1.1 Call hugetlb_reserve_pages with from = 1, to = 2. So css reference
count is 2 associated with 1 file_region.
1.2 Call hugetlb_reserve_pages with from = 2, to = 3. So css reference
count is 3 associated with 2 file_region.
1.3 coalesce_file_region will coalesce these two file_regions into
one. So css reference count is 3 associated with 1 file_region
now.
2.Assume initial css reference count of hugetlb_cgroup is 1 again:
2.1 Call hugetlb_reserve_pages with from = 1, to = 3. So css reference
count is 2 associated with 1 file_region.
Therefore, we might have one file_region while holding one or more css
reference counts. This inconsistency could lead to imbalanced css_get()
and css_put() pair. If we do css_put one by one (i.g. hole punch case),
scenario 2 would put one more css reference. If we do css_put all
together (i.g. truncate case), scenario 1 will leak one css reference.
The imbalanced css_get() and css_put() pair would result in a non-zero
reference when we try to destroy the hugetlb cgroup. The hugetlb cgroup
directory is removed __but__ associated resource is not freed. This
might result in OOM or can not create a new hugetlb cgroup in a busy
workload ultimately.
In order to fix this, we have to make sure that one file_region must
hold exactly one css reference. So in coalesce_file_region case, we
should release one css reference before coalescence. Also only put css
reference when the entire file_region is removed.
The last thing to note is that the caller of region_add() will only hold
one reference to h_cg->css for the whole contiguous reservation region.
But this area might be scattered when there are already some
file_regions reside in it. As a result, many file_regions may share only
one h_cg->css reference. In order to ensure that one file_region must
hold exactly one css reference, we should do css_get() for each
file_region and release the reference held by caller when they are done.
[linmiaohe@huawei.com: fix imbalanced css_get and css_put pair for shared mappings]
Link: https://lkml.kernel.org/r/20210316023002.53921-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20210301120540.37076-1-linmiaohe@huawei.com
Fixes: 075a61d07a8e ("hugetlb_cgroup: add accounting for shared mappings")
Reported-by: kernel test robot <lkp@intel.com> (auto build test ERROR)
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-03-25 04:37:17 +00:00
|
|
|
/*
|
|
|
|
* Only do css_put(rg->css) when we delete the entire region
|
|
|
|
* because one file_region must hold exactly one css reference.
|
|
|
|
*/
|
|
|
|
if (region_del)
|
|
|
|
css_put(rg->css);
|
hugetlb_cgroup: add accounting for shared mappings
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:28 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-12-10 23:42:34 +00:00
|
|
|
enum {
|
|
|
|
RES_USAGE,
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
RES_RSVD_USAGE,
|
2014-12-10 23:42:34 +00:00
|
|
|
RES_LIMIT,
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
RES_RSVD_LIMIT,
|
2014-12-10 23:42:34 +00:00
|
|
|
RES_MAX_USAGE,
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
RES_RSVD_MAX_USAGE,
|
2014-12-10 23:42:34 +00:00
|
|
|
RES_FAILCNT,
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
RES_RSVD_FAILCNT,
|
2014-12-10 23:42:34 +00:00
|
|
|
};
|
|
|
|
|
2022-01-14 22:07:48 +00:00
|
|
|
static int hugetlb_cgroup_read_numa_stat(struct seq_file *seq, void *dummy)
|
|
|
|
{
|
|
|
|
int nid;
|
|
|
|
struct cftype *cft = seq_cft(seq);
|
|
|
|
int idx = MEMFILE_IDX(cft->private);
|
2024-06-12 09:24:07 +00:00
|
|
|
bool legacy = !cgroup_subsys_on_dfl(hugetlb_cgrp_subsys);
|
2022-01-14 22:07:48 +00:00
|
|
|
struct hugetlb_cgroup *h_cg = hugetlb_cgroup_from_css(seq_css(seq));
|
|
|
|
struct cgroup_subsys_state *css;
|
|
|
|
unsigned long usage;
|
|
|
|
|
|
|
|
if (legacy) {
|
|
|
|
/* Add up usage across all nodes for the non-hierarchical total. */
|
|
|
|
usage = 0;
|
|
|
|
for_each_node_state(nid, N_MEMORY)
|
|
|
|
usage += READ_ONCE(h_cg->nodeinfo[nid]->usage[idx]);
|
|
|
|
seq_printf(seq, "total=%lu", usage * PAGE_SIZE);
|
|
|
|
|
|
|
|
/* Simply print the per-node usage for the non-hierarchical total. */
|
|
|
|
for_each_node_state(nid, N_MEMORY)
|
|
|
|
seq_printf(seq, " N%d=%lu", nid,
|
|
|
|
READ_ONCE(h_cg->nodeinfo[nid]->usage[idx]) *
|
|
|
|
PAGE_SIZE);
|
|
|
|
seq_putc(seq, '\n');
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The hierarchical total is pretty much the value recorded by the
|
|
|
|
* counter, so use that.
|
|
|
|
*/
|
|
|
|
seq_printf(seq, "%stotal=%lu", legacy ? "hierarchical_" : "",
|
|
|
|
page_counter_read(&h_cg->hugepage[idx]) * PAGE_SIZE);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For each node, transverse the css tree to obtain the hierarchical
|
|
|
|
* node usage.
|
|
|
|
*/
|
|
|
|
for_each_node_state(nid, N_MEMORY) {
|
|
|
|
usage = 0;
|
|
|
|
rcu_read_lock();
|
|
|
|
css_for_each_descendant_pre(css, &h_cg->css) {
|
|
|
|
usage += READ_ONCE(hugetlb_cgroup_from_css(css)
|
|
|
|
->nodeinfo[nid]
|
|
|
|
->usage[idx]);
|
|
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
|
|
seq_printf(seq, " N%d=%lu", nid, usage * PAGE_SIZE);
|
|
|
|
}
|
|
|
|
|
|
|
|
seq_putc(seq, '\n');
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-12-05 17:28:03 +00:00
|
|
|
static u64 hugetlb_cgroup_read_u64(struct cgroup_subsys_state *css,
|
|
|
|
struct cftype *cft)
|
2012-07-31 23:42:24 +00:00
|
|
|
{
|
2014-12-10 23:42:34 +00:00
|
|
|
struct page_counter *counter;
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
struct page_counter *rsvd_counter;
|
2013-08-09 00:11:24 +00:00
|
|
|
struct hugetlb_cgroup *h_cg = hugetlb_cgroup_from_css(css);
|
2012-07-31 23:42:24 +00:00
|
|
|
|
2014-12-10 23:42:34 +00:00
|
|
|
counter = &h_cg->hugepage[MEMFILE_IDX(cft->private)];
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
rsvd_counter = &h_cg->rsvd_hugepage[MEMFILE_IDX(cft->private)];
|
2012-07-31 23:42:24 +00:00
|
|
|
|
2014-12-10 23:42:34 +00:00
|
|
|
switch (MEMFILE_ATTR(cft->private)) {
|
|
|
|
case RES_USAGE:
|
|
|
|
return (u64)page_counter_read(counter) * PAGE_SIZE;
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
case RES_RSVD_USAGE:
|
|
|
|
return (u64)page_counter_read(rsvd_counter) * PAGE_SIZE;
|
2014-12-10 23:42:34 +00:00
|
|
|
case RES_LIMIT:
|
2018-06-08 00:06:18 +00:00
|
|
|
return (u64)counter->max * PAGE_SIZE;
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
case RES_RSVD_LIMIT:
|
|
|
|
return (u64)rsvd_counter->max * PAGE_SIZE;
|
2014-12-10 23:42:34 +00:00
|
|
|
case RES_MAX_USAGE:
|
|
|
|
return (u64)counter->watermark * PAGE_SIZE;
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
case RES_RSVD_MAX_USAGE:
|
|
|
|
return (u64)rsvd_counter->watermark * PAGE_SIZE;
|
2014-12-10 23:42:34 +00:00
|
|
|
case RES_FAILCNT:
|
|
|
|
return counter->failcnt;
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
case RES_RSVD_FAILCNT:
|
|
|
|
return rsvd_counter->failcnt;
|
2014-12-10 23:42:34 +00:00
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
2012-07-31 23:42:24 +00:00
|
|
|
}
|
|
|
|
|
2019-12-16 19:38:31 +00:00
|
|
|
static int hugetlb_cgroup_read_u64_max(struct seq_file *seq, void *v)
|
|
|
|
{
|
|
|
|
int idx;
|
|
|
|
u64 val;
|
|
|
|
struct cftype *cft = seq_cft(seq);
|
|
|
|
unsigned long limit;
|
|
|
|
struct page_counter *counter;
|
|
|
|
struct hugetlb_cgroup *h_cg = hugetlb_cgroup_from_css(seq_css(seq));
|
|
|
|
|
|
|
|
idx = MEMFILE_IDX(cft->private);
|
|
|
|
counter = &h_cg->hugepage[idx];
|
|
|
|
|
|
|
|
limit = round_down(PAGE_COUNTER_MAX,
|
2021-02-24 20:07:36 +00:00
|
|
|
pages_per_huge_page(&hstates[idx]));
|
2019-12-16 19:38:31 +00:00
|
|
|
|
|
|
|
switch (MEMFILE_ATTR(cft->private)) {
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
case RES_RSVD_USAGE:
|
|
|
|
counter = &h_cg->rsvd_hugepage[idx];
|
2020-04-07 03:08:39 +00:00
|
|
|
fallthrough;
|
2019-12-16 19:38:31 +00:00
|
|
|
case RES_USAGE:
|
|
|
|
val = (u64)page_counter_read(counter);
|
|
|
|
seq_printf(seq, "%llu\n", val * PAGE_SIZE);
|
|
|
|
break;
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
case RES_RSVD_LIMIT:
|
|
|
|
counter = &h_cg->rsvd_hugepage[idx];
|
2020-04-07 03:08:39 +00:00
|
|
|
fallthrough;
|
2019-12-16 19:38:31 +00:00
|
|
|
case RES_LIMIT:
|
|
|
|
val = (u64)counter->max;
|
|
|
|
if (val == limit)
|
|
|
|
seq_puts(seq, "max\n");
|
|
|
|
else
|
|
|
|
seq_printf(seq, "%llu\n", val * PAGE_SIZE);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2014-12-10 23:42:34 +00:00
|
|
|
static DEFINE_MUTEX(hugetlb_limit_mutex);
|
|
|
|
|
2014-05-13 16:16:21 +00:00
|
|
|
static ssize_t hugetlb_cgroup_write(struct kernfs_open_file *of,
|
2019-12-16 19:38:31 +00:00
|
|
|
char *buf, size_t nbytes, loff_t off,
|
|
|
|
const char *max)
|
2012-07-31 23:42:24 +00:00
|
|
|
{
|
2014-12-10 23:42:34 +00:00
|
|
|
int ret, idx;
|
|
|
|
unsigned long nr_pages;
|
2014-05-13 16:16:21 +00:00
|
|
|
struct hugetlb_cgroup *h_cg = hugetlb_cgroup_from_css(of_css(of));
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
bool rsvd = false;
|
2012-07-31 23:42:24 +00:00
|
|
|
|
2014-12-10 23:42:34 +00:00
|
|
|
if (hugetlb_cgroup_is_root(h_cg)) /* Can't set limit on root */
|
|
|
|
return -EINVAL;
|
|
|
|
|
2014-05-13 16:16:21 +00:00
|
|
|
buf = strstrip(buf);
|
2019-12-16 19:38:31 +00:00
|
|
|
ret = page_counter_memparse(buf, max, &nr_pages);
|
2014-12-10 23:42:34 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2014-05-13 16:16:21 +00:00
|
|
|
idx = MEMFILE_IDX(of_cft(of)->private);
|
2021-02-24 20:07:36 +00:00
|
|
|
nr_pages = round_down(nr_pages, pages_per_huge_page(&hstates[idx]));
|
2012-07-31 23:42:24 +00:00
|
|
|
|
2014-12-10 23:42:34 +00:00
|
|
|
switch (MEMFILE_ATTR(of_cft(of)->private)) {
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
case RES_RSVD_LIMIT:
|
|
|
|
rsvd = true;
|
2020-04-07 03:08:39 +00:00
|
|
|
fallthrough;
|
2012-07-31 23:42:24 +00:00
|
|
|
case RES_LIMIT:
|
2014-12-10 23:42:34 +00:00
|
|
|
mutex_lock(&hugetlb_limit_mutex);
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
ret = page_counter_set_max(
|
2020-04-02 04:11:15 +00:00
|
|
|
__hugetlb_cgroup_counter_from_cgroup(h_cg, idx, rsvd),
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
nr_pages);
|
2014-12-10 23:42:34 +00:00
|
|
|
mutex_unlock(&hugetlb_limit_mutex);
|
2012-07-31 23:42:24 +00:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
ret = -EINVAL;
|
|
|
|
break;
|
|
|
|
}
|
2014-05-13 16:16:21 +00:00
|
|
|
return ret ?: nbytes;
|
2012-07-31 23:42:24 +00:00
|
|
|
}
|
|
|
|
|
2019-12-16 19:38:31 +00:00
|
|
|
static ssize_t hugetlb_cgroup_write_legacy(struct kernfs_open_file *of,
|
|
|
|
char *buf, size_t nbytes, loff_t off)
|
|
|
|
{
|
|
|
|
return hugetlb_cgroup_write(of, buf, nbytes, off, "-1");
|
|
|
|
}
|
|
|
|
|
|
|
|
static ssize_t hugetlb_cgroup_write_dfl(struct kernfs_open_file *of,
|
|
|
|
char *buf, size_t nbytes, loff_t off)
|
|
|
|
{
|
|
|
|
return hugetlb_cgroup_write(of, buf, nbytes, off, "max");
|
|
|
|
}
|
|
|
|
|
2014-05-13 16:16:21 +00:00
|
|
|
static ssize_t hugetlb_cgroup_reset(struct kernfs_open_file *of,
|
|
|
|
char *buf, size_t nbytes, loff_t off)
|
2012-07-31 23:42:24 +00:00
|
|
|
{
|
2014-12-10 23:42:34 +00:00
|
|
|
int ret = 0;
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
struct page_counter *counter, *rsvd_counter;
|
2014-05-13 16:16:21 +00:00
|
|
|
struct hugetlb_cgroup *h_cg = hugetlb_cgroup_from_css(of_css(of));
|
2012-07-31 23:42:24 +00:00
|
|
|
|
2014-12-10 23:42:34 +00:00
|
|
|
counter = &h_cg->hugepage[MEMFILE_IDX(of_cft(of)->private)];
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
rsvd_counter = &h_cg->rsvd_hugepage[MEMFILE_IDX(of_cft(of)->private)];
|
2012-07-31 23:42:24 +00:00
|
|
|
|
2014-12-10 23:42:34 +00:00
|
|
|
switch (MEMFILE_ATTR(of_cft(of)->private)) {
|
2012-07-31 23:42:24 +00:00
|
|
|
case RES_MAX_USAGE:
|
2014-12-10 23:42:34 +00:00
|
|
|
page_counter_reset_watermark(counter);
|
2012-07-31 23:42:24 +00:00
|
|
|
break;
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
case RES_RSVD_MAX_USAGE:
|
|
|
|
page_counter_reset_watermark(rsvd_counter);
|
|
|
|
break;
|
2012-07-31 23:42:24 +00:00
|
|
|
case RES_FAILCNT:
|
2014-12-10 23:42:34 +00:00
|
|
|
counter->failcnt = 0;
|
2012-07-31 23:42:24 +00:00
|
|
|
break;
|
hugetlb_cgroup: add hugetlb_cgroup reservation counter
These counters will track hugetlb reservations rather than hugetlb memory
faulted in. This patch only adds the counter, following patches add the
charging and uncharging of the counter.
This is patch 1 of an 9 patch series.
Problem:
Currently tasks attempting to reserve more hugetlb memory than is
available get a failure at mmap/shmget time. This is thanks to Hugetlbfs
Reservations [1]. However, if a task attempts to reserve more hugetlb
memory than its hugetlb_cgroup limit allows, the kernel will allow the
mmap/shmget call, but will SIGBUS the task when it attempts to fault in
the excess memory.
We have users hitting their hugetlb_cgroup limits and thus we've been
looking at this failure mode. We'd like to improve this behavior such
that users violating the hugetlb_cgroup limits get an error on mmap/shmget
time, rather than getting SIGBUS'd when they try to fault the excess
memory in. This gives the user an opportunity to fallback more gracefully
to non-hugetlbfs memory for example.
The underlying problem is that today's hugetlb_cgroup accounting happens
at hugetlb memory *fault* time, rather than at *reservation* time. Thus,
enforcing the hugetlb_cgroup limit only happens at fault time, and the
offending task gets SIGBUS'd.
Proposed Solution:
A new page counter named
'hugetlb.xMB.rsvd.[limit|usage|max_usage]_in_bytes'. This counter has
slightly different semantics than
'hugetlb.xMB.[limit|usage|max_usage]_in_bytes':
- While usage_in_bytes tracks all *faulted* hugetlb memory,
rsvd.usage_in_bytes tracks all *reserved* hugetlb memory and hugetlb
memory faulted in without a prior reservation.
- If a task attempts to reserve more memory than limit_in_bytes allows,
the kernel will allow it to do so. But if a task attempts to reserve
more memory than rsvd.limit_in_bytes, the kernel will fail this
reservation.
This proposal is implemented in this patch series, with tests to verify
functionality and show the usage.
Alternatives considered:
1. A new cgroup, instead of only a new page_counter attached to the
existing hugetlb_cgroup. Adding a new cgroup seemed like a lot of code
duplication with hugetlb_cgroup. Keeping hugetlb related page counters
under hugetlb_cgroup seemed cleaner as well.
2. Instead of adding a new counter, we considered adding a sysctl that
modifies the behavior of hugetlb.xMB.[limit|usage]_in_bytes, to do
accounting at reservation time rather than fault time. Adding a new
page_counter seems better as userspace could, if it wants, choose to
enforce different cgroups differently: one via limit_in_bytes, and
another via rsvd.limit_in_bytes. This could be very useful if you're
transitioning how hugetlb memory is partitioned on your system one
cgroup at a time, for example. Also, someone may find usage for both
limit_in_bytes and rsvd.limit_in_bytes concurrently, and this approach
gives them the option to do so.
Testing:
- Added tests passing.
- Used libhugetlbfs for regression testing.
[1]: https://www.kernel.org/doc/html/latest/vm/hugetlbfs_reserv.html
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Link: http://lkml.kernel.org/r/20200211213128.73302-1-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 04:11:11 +00:00
|
|
|
case RES_RSVD_FAILCNT:
|
|
|
|
rsvd_counter->failcnt = 0;
|
|
|
|
break;
|
2012-07-31 23:42:24 +00:00
|
|
|
default:
|
|
|
|
ret = -EINVAL;
|
|
|
|
break;
|
|
|
|
}
|
2014-05-13 16:16:21 +00:00
|
|
|
return ret ?: nbytes;
|
2012-07-31 23:42:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static char *mem_fmt(char *buf, int size, unsigned long hsize)
|
|
|
|
{
|
2022-07-29 08:01:03 +00:00
|
|
|
if (hsize >= SZ_1G)
|
|
|
|
snprintf(buf, size, "%luGB", hsize / SZ_1G);
|
|
|
|
else if (hsize >= SZ_1M)
|
|
|
|
snprintf(buf, size, "%luMB", hsize / SZ_1M);
|
2012-07-31 23:42:24 +00:00
|
|
|
else
|
2022-07-29 08:01:03 +00:00
|
|
|
snprintf(buf, size, "%luKB", hsize / SZ_1K);
|
2012-07-31 23:42:24 +00:00
|
|
|
return buf;
|
|
|
|
}
|
|
|
|
|
2019-12-16 19:38:31 +00:00
|
|
|
static int __hugetlb_events_show(struct seq_file *seq, bool local)
|
|
|
|
{
|
|
|
|
int idx;
|
|
|
|
long max;
|
|
|
|
struct cftype *cft = seq_cft(seq);
|
|
|
|
struct hugetlb_cgroup *h_cg = hugetlb_cgroup_from_css(seq_css(seq));
|
|
|
|
|
|
|
|
idx = MEMFILE_IDX(cft->private);
|
|
|
|
|
|
|
|
if (local)
|
|
|
|
max = atomic_long_read(&h_cg->events_local[idx][HUGETLB_MAX]);
|
|
|
|
else
|
|
|
|
max = atomic_long_read(&h_cg->events[idx][HUGETLB_MAX]);
|
|
|
|
|
|
|
|
seq_printf(seq, "max %lu\n", max);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hugetlb_events_show(struct seq_file *seq, void *v)
|
|
|
|
{
|
|
|
|
return __hugetlb_events_show(seq, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hugetlb_events_local_show(struct seq_file *seq, void *v)
|
|
|
|
{
|
|
|
|
return __hugetlb_events_show(seq, true);
|
|
|
|
}
|
|
|
|
|
mm/hugetlb_cgroup: prepare cftypes based on template
Unlike other cgroup subsystems, the hugetlb cgroup does not provide a
static array of cftype that explicitly displays the properties, handling
functions, etc., of each file. Instead, it dynamically creates the
attribute of cftypes based on the hstate during the startup procedure.
This reduces the readability of the code.
To fix this issue, introduce two templates of cftypes, and rebuild the
attributes according to the hstate to make it ready to be added to cgroup
framework.
Link: https://lkml.kernel.org/r/20240612092409.2027592-3-xiujianfeng@huawei.com
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: kernel test robot <oliver.sang@intel.com>
From: Xiu Jianfeng <xiujianfeng@huawei.com>
Subject: mm/hugetlb_cgroup: register lockdep key for cftype
Date: Tue, 18 Jun 2024 07:19:22 +0000
When CONFIG_DEBUG_LOCK_ALLOC is enabled, the following commands can
trigger a bug,
mount -t cgroup2 none /sys/fs/cgroup
cd /sys/fs/cgroup
echo "+hugetlb" > cgroup.subtree_control
The log is as below:
BUG: key ffff8880046d88d8 has not been registered!
------------[ cut here ]------------
DEBUG_LOCKS_WARN_ON(1)
WARNING: CPU: 3 PID: 226 at kernel/locking/lockdep.c:4945 lockdep_init_map_type+0x185/0x220
Modules linked in:
CPU: 3 PID: 226 Comm: bash Not tainted 6.10.0-rc4-next-20240617-g76db4c64526c #544
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:lockdep_init_map_type+0x185/0x220
Code: 00 85 c0 0f 84 6c ff ff ff 8b 3d 6a d1 85 01 85 ff 0f 85 5e ff ff ff 48 c7 c6 21 99 4a 82 48 c7 c7 60 29 49 82 e8 3b 2e f5
RSP: 0018:ffffc9000083fc30 EFLAGS: 00000282
RAX: 0000000000000000 RBX: ffffffff828dd820 RCX: 0000000000000027
RDX: ffff88803cd9cac8 RSI: 0000000000000001 RDI: ffff88803cd9cac0
RBP: ffff88800674fbb0 R08: ffffffff828ce248 R09: 00000000ffffefff
R10: ffffffff8285e260 R11: ffffffff828b8eb8 R12: ffff8880046d88d8
R13: 0000000000000000 R14: 0000000000000000 R15: ffff8880067281c0
FS: 00007f68601ea740(0000) GS:ffff88803cd80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005614f3ebc740 CR3: 000000000773a000 CR4: 00000000000006f0
Call Trace:
<TASK>
? __warn+0x77/0xd0
? lockdep_init_map_type+0x185/0x220
? report_bug+0x189/0x1a0
? handle_bug+0x3c/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? lockdep_init_map_type+0x185/0x220
__kernfs_create_file+0x79/0x100
cgroup_addrm_files+0x163/0x380
? find_held_lock+0x2b/0x80
? find_held_lock+0x2b/0x80
? find_held_lock+0x2b/0x80
css_populate_dir+0x73/0x180
cgroup_apply_control_enable+0x12f/0x3a0
cgroup_subtree_control_write+0x30b/0x440
kernfs_fop_write_iter+0x13a/0x1f0
vfs_write+0x341/0x450
ksys_write+0x64/0xe0
do_syscall_64+0x4b/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f68602d9833
Code: 8b 15 61 26 0e 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 64 8b 04 25 18 00 00 00 85 c0 75 14 b8 01 00 00 00 08
RSP: 002b:00007fff9bbdf8e8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000009 RCX: 00007f68602d9833
RDX: 0000000000000009 RSI: 00005614f3ebc740 RDI: 0000000000000001
RBP: 00005614f3ebc740 R08: 000000000000000a R09: 0000000000000008
R10: 00005614f3db6ba0 R11: 0000000000000246 R12: 0000000000000009
R13: 00007f68603bd6a0 R14: 0000000000000009 R15: 00007f68603b8880
For lockdep, there is a sanity check in lockdep_init_map_type(), the
lock-class key must either have been allocated statically or must
have been registered as a dynamic key. However the commit e18df2889ff9
("mm/hugetlb_cgroup: prepare cftypes based on template") has changed
the cftypes from static allocated objects to dynamic allocated objects,
so the cft->lockdep_key must be registered proactively.
[xiujianfeng@huawei.com: fix BUG()]
Link: https://lkml.kernel.org/r/20240619015527.2212698-1-xiujianfeng@huawei.com
Link: https://lkml.kernel.org/r/20240618071922.2127289-1-xiujianfeng@huawei.com
Link: https://lore.kernel.org/all/602186b3-5ce3-41b3-90a3-134792cc2a48@samsung.com/
Fixes: e18df2889ff9 ("mm/hugetlb_cgroup: prepare cftypes based on template")
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202406181046.8d8b2492-oliver.sang@intel.com
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: SeongJae Park <sj@kernel.org>
Closes: https://lore.kernel.org/20240618233608.400367-1-sj@kernel.org
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-12 09:24:08 +00:00
|
|
|
static struct cftype hugetlb_dfl_tmpl[] = {
|
|
|
|
{
|
|
|
|
.name = "max",
|
|
|
|
.private = RES_LIMIT,
|
|
|
|
.seq_show = hugetlb_cgroup_read_u64_max,
|
|
|
|
.write = hugetlb_cgroup_write_dfl,
|
|
|
|
.flags = CFTYPE_NOT_ON_ROOT,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "rsvd.max",
|
|
|
|
.private = RES_RSVD_LIMIT,
|
|
|
|
.seq_show = hugetlb_cgroup_read_u64_max,
|
|
|
|
.write = hugetlb_cgroup_write_dfl,
|
|
|
|
.flags = CFTYPE_NOT_ON_ROOT,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "current",
|
|
|
|
.private = RES_USAGE,
|
|
|
|
.seq_show = hugetlb_cgroup_read_u64_max,
|
|
|
|
.flags = CFTYPE_NOT_ON_ROOT,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "rsvd.current",
|
|
|
|
.private = RES_RSVD_USAGE,
|
|
|
|
.seq_show = hugetlb_cgroup_read_u64_max,
|
|
|
|
.flags = CFTYPE_NOT_ON_ROOT,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "events",
|
|
|
|
.seq_show = hugetlb_events_show,
|
|
|
|
.file_offset = MEMFILE_OFFSET(struct hugetlb_cgroup, events_file[0]),
|
|
|
|
.flags = CFTYPE_NOT_ON_ROOT,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "events.local",
|
|
|
|
.seq_show = hugetlb_events_local_show,
|
|
|
|
.file_offset = MEMFILE_OFFSET(struct hugetlb_cgroup, events_local_file[0]),
|
|
|
|
.flags = CFTYPE_NOT_ON_ROOT,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "numa_stat",
|
|
|
|
.seq_show = hugetlb_cgroup_read_numa_stat,
|
|
|
|
.flags = CFTYPE_NOT_ON_ROOT,
|
|
|
|
},
|
|
|
|
/* don't need terminator here */
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct cftype hugetlb_legacy_tmpl[] = {
|
|
|
|
{
|
|
|
|
.name = "limit_in_bytes",
|
|
|
|
.private = RES_LIMIT,
|
|
|
|
.read_u64 = hugetlb_cgroup_read_u64,
|
|
|
|
.write = hugetlb_cgroup_write_legacy,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "rsvd.limit_in_bytes",
|
|
|
|
.private = RES_RSVD_LIMIT,
|
|
|
|
.read_u64 = hugetlb_cgroup_read_u64,
|
|
|
|
.write = hugetlb_cgroup_write_legacy,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "usage_in_bytes",
|
|
|
|
.private = RES_USAGE,
|
|
|
|
.read_u64 = hugetlb_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "rsvd.usage_in_bytes",
|
|
|
|
.private = RES_RSVD_USAGE,
|
|
|
|
.read_u64 = hugetlb_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "max_usage_in_bytes",
|
|
|
|
.private = RES_MAX_USAGE,
|
|
|
|
.write = hugetlb_cgroup_reset,
|
|
|
|
.read_u64 = hugetlb_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "rsvd.max_usage_in_bytes",
|
|
|
|
.private = RES_RSVD_MAX_USAGE,
|
|
|
|
.write = hugetlb_cgroup_reset,
|
|
|
|
.read_u64 = hugetlb_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "failcnt",
|
|
|
|
.private = RES_FAILCNT,
|
|
|
|
.write = hugetlb_cgroup_reset,
|
|
|
|
.read_u64 = hugetlb_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "rsvd.failcnt",
|
|
|
|
.private = RES_RSVD_FAILCNT,
|
|
|
|
.write = hugetlb_cgroup_reset,
|
|
|
|
.read_u64 = hugetlb_cgroup_read_u64,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = "numa_stat",
|
|
|
|
.seq_show = hugetlb_cgroup_read_numa_stat,
|
|
|
|
},
|
|
|
|
/* don't need terminator here */
|
|
|
|
};
|
|
|
|
|
|
|
|
static void __init
|
|
|
|
hugetlb_cgroup_cfttypes_init(struct hstate *h, struct cftype *cft,
|
|
|
|
struct cftype *tmpl, int tmpl_size)
|
|
|
|
{
|
|
|
|
char buf[32];
|
|
|
|
int i, idx = hstate_index(h);
|
|
|
|
|
|
|
|
/* format the size */
|
|
|
|
mem_fmt(buf, sizeof(buf), huge_page_size(h));
|
|
|
|
|
|
|
|
for (i = 0; i < tmpl_size; cft++, tmpl++, i++) {
|
|
|
|
*cft = *tmpl;
|
|
|
|
/* rebuild the name */
|
|
|
|
snprintf(cft->name, MAX_CFTYPE_NAME, "%s.%s", buf, tmpl->name);
|
|
|
|
/* rebuild the private */
|
|
|
|
cft->private = MEMFILE_PRIVATE(idx, tmpl->private);
|
|
|
|
/* rebuild the file_offset */
|
|
|
|
if (tmpl->file_offset) {
|
|
|
|
unsigned int offset = tmpl->file_offset;
|
|
|
|
|
|
|
|
cft->file_offset = MEMFILE_OFFSET0(offset) +
|
|
|
|
MEMFILE_FIELD_SIZE(offset) * idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
lockdep_register_key(&cft->lockdep_key);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-06-12 09:24:09 +00:00
|
|
|
static void __init __hugetlb_cgroup_file_dfl_init(struct hstate *h)
|
2012-07-31 23:42:24 +00:00
|
|
|
{
|
2024-06-12 09:24:09 +00:00
|
|
|
int idx = hstate_index(h);
|
2012-07-31 23:42:24 +00:00
|
|
|
|
mm/hugetlb_cgroup: prepare cftypes based on template
Unlike other cgroup subsystems, the hugetlb cgroup does not provide a
static array of cftype that explicitly displays the properties, handling
functions, etc., of each file. Instead, it dynamically creates the
attribute of cftypes based on the hstate during the startup procedure.
This reduces the readability of the code.
To fix this issue, introduce two templates of cftypes, and rebuild the
attributes according to the hstate to make it ready to be added to cgroup
framework.
Link: https://lkml.kernel.org/r/20240612092409.2027592-3-xiujianfeng@huawei.com
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: kernel test robot <oliver.sang@intel.com>
From: Xiu Jianfeng <xiujianfeng@huawei.com>
Subject: mm/hugetlb_cgroup: register lockdep key for cftype
Date: Tue, 18 Jun 2024 07:19:22 +0000
When CONFIG_DEBUG_LOCK_ALLOC is enabled, the following commands can
trigger a bug,
mount -t cgroup2 none /sys/fs/cgroup
cd /sys/fs/cgroup
echo "+hugetlb" > cgroup.subtree_control
The log is as below:
BUG: key ffff8880046d88d8 has not been registered!
------------[ cut here ]------------
DEBUG_LOCKS_WARN_ON(1)
WARNING: CPU: 3 PID: 226 at kernel/locking/lockdep.c:4945 lockdep_init_map_type+0x185/0x220
Modules linked in:
CPU: 3 PID: 226 Comm: bash Not tainted 6.10.0-rc4-next-20240617-g76db4c64526c #544
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:lockdep_init_map_type+0x185/0x220
Code: 00 85 c0 0f 84 6c ff ff ff 8b 3d 6a d1 85 01 85 ff 0f 85 5e ff ff ff 48 c7 c6 21 99 4a 82 48 c7 c7 60 29 49 82 e8 3b 2e f5
RSP: 0018:ffffc9000083fc30 EFLAGS: 00000282
RAX: 0000000000000000 RBX: ffffffff828dd820 RCX: 0000000000000027
RDX: ffff88803cd9cac8 RSI: 0000000000000001 RDI: ffff88803cd9cac0
RBP: ffff88800674fbb0 R08: ffffffff828ce248 R09: 00000000ffffefff
R10: ffffffff8285e260 R11: ffffffff828b8eb8 R12: ffff8880046d88d8
R13: 0000000000000000 R14: 0000000000000000 R15: ffff8880067281c0
FS: 00007f68601ea740(0000) GS:ffff88803cd80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005614f3ebc740 CR3: 000000000773a000 CR4: 00000000000006f0
Call Trace:
<TASK>
? __warn+0x77/0xd0
? lockdep_init_map_type+0x185/0x220
? report_bug+0x189/0x1a0
? handle_bug+0x3c/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? lockdep_init_map_type+0x185/0x220
__kernfs_create_file+0x79/0x100
cgroup_addrm_files+0x163/0x380
? find_held_lock+0x2b/0x80
? find_held_lock+0x2b/0x80
? find_held_lock+0x2b/0x80
css_populate_dir+0x73/0x180
cgroup_apply_control_enable+0x12f/0x3a0
cgroup_subtree_control_write+0x30b/0x440
kernfs_fop_write_iter+0x13a/0x1f0
vfs_write+0x341/0x450
ksys_write+0x64/0xe0
do_syscall_64+0x4b/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f68602d9833
Code: 8b 15 61 26 0e 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 64 8b 04 25 18 00 00 00 85 c0 75 14 b8 01 00 00 00 08
RSP: 002b:00007fff9bbdf8e8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000009 RCX: 00007f68602d9833
RDX: 0000000000000009 RSI: 00005614f3ebc740 RDI: 0000000000000001
RBP: 00005614f3ebc740 R08: 000000000000000a R09: 0000000000000008
R10: 00005614f3db6ba0 R11: 0000000000000246 R12: 0000000000000009
R13: 00007f68603bd6a0 R14: 0000000000000009 R15: 00007f68603b8880
For lockdep, there is a sanity check in lockdep_init_map_type(), the
lock-class key must either have been allocated statically or must
have been registered as a dynamic key. However the commit e18df2889ff9
("mm/hugetlb_cgroup: prepare cftypes based on template") has changed
the cftypes from static allocated objects to dynamic allocated objects,
so the cft->lockdep_key must be registered proactively.
[xiujianfeng@huawei.com: fix BUG()]
Link: https://lkml.kernel.org/r/20240619015527.2212698-1-xiujianfeng@huawei.com
Link: https://lkml.kernel.org/r/20240618071922.2127289-1-xiujianfeng@huawei.com
Link: https://lore.kernel.org/all/602186b3-5ce3-41b3-90a3-134792cc2a48@samsung.com/
Fixes: e18df2889ff9 ("mm/hugetlb_cgroup: prepare cftypes based on template")
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202406181046.8d8b2492-oliver.sang@intel.com
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: SeongJae Park <sj@kernel.org>
Closes: https://lore.kernel.org/20240618233608.400367-1-sj@kernel.org
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-12 09:24:08 +00:00
|
|
|
hugetlb_cgroup_cfttypes_init(h, dfl_files + idx * DFL_TMPL_SIZE,
|
|
|
|
hugetlb_dfl_tmpl, DFL_TMPL_SIZE);
|
2019-12-16 19:38:31 +00:00
|
|
|
}
|
|
|
|
|
2024-06-12 09:24:09 +00:00
|
|
|
static void __init __hugetlb_cgroup_file_legacy_init(struct hstate *h)
|
2019-12-16 19:38:31 +00:00
|
|
|
{
|
2024-06-12 09:24:09 +00:00
|
|
|
int idx = hstate_index(h);
|
2019-12-16 19:38:31 +00:00
|
|
|
|
mm/hugetlb_cgroup: prepare cftypes based on template
Unlike other cgroup subsystems, the hugetlb cgroup does not provide a
static array of cftype that explicitly displays the properties, handling
functions, etc., of each file. Instead, it dynamically creates the
attribute of cftypes based on the hstate during the startup procedure.
This reduces the readability of the code.
To fix this issue, introduce two templates of cftypes, and rebuild the
attributes according to the hstate to make it ready to be added to cgroup
framework.
Link: https://lkml.kernel.org/r/20240612092409.2027592-3-xiujianfeng@huawei.com
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: kernel test robot <oliver.sang@intel.com>
From: Xiu Jianfeng <xiujianfeng@huawei.com>
Subject: mm/hugetlb_cgroup: register lockdep key for cftype
Date: Tue, 18 Jun 2024 07:19:22 +0000
When CONFIG_DEBUG_LOCK_ALLOC is enabled, the following commands can
trigger a bug,
mount -t cgroup2 none /sys/fs/cgroup
cd /sys/fs/cgroup
echo "+hugetlb" > cgroup.subtree_control
The log is as below:
BUG: key ffff8880046d88d8 has not been registered!
------------[ cut here ]------------
DEBUG_LOCKS_WARN_ON(1)
WARNING: CPU: 3 PID: 226 at kernel/locking/lockdep.c:4945 lockdep_init_map_type+0x185/0x220
Modules linked in:
CPU: 3 PID: 226 Comm: bash Not tainted 6.10.0-rc4-next-20240617-g76db4c64526c #544
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:lockdep_init_map_type+0x185/0x220
Code: 00 85 c0 0f 84 6c ff ff ff 8b 3d 6a d1 85 01 85 ff 0f 85 5e ff ff ff 48 c7 c6 21 99 4a 82 48 c7 c7 60 29 49 82 e8 3b 2e f5
RSP: 0018:ffffc9000083fc30 EFLAGS: 00000282
RAX: 0000000000000000 RBX: ffffffff828dd820 RCX: 0000000000000027
RDX: ffff88803cd9cac8 RSI: 0000000000000001 RDI: ffff88803cd9cac0
RBP: ffff88800674fbb0 R08: ffffffff828ce248 R09: 00000000ffffefff
R10: ffffffff8285e260 R11: ffffffff828b8eb8 R12: ffff8880046d88d8
R13: 0000000000000000 R14: 0000000000000000 R15: ffff8880067281c0
FS: 00007f68601ea740(0000) GS:ffff88803cd80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005614f3ebc740 CR3: 000000000773a000 CR4: 00000000000006f0
Call Trace:
<TASK>
? __warn+0x77/0xd0
? lockdep_init_map_type+0x185/0x220
? report_bug+0x189/0x1a0
? handle_bug+0x3c/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? lockdep_init_map_type+0x185/0x220
__kernfs_create_file+0x79/0x100
cgroup_addrm_files+0x163/0x380
? find_held_lock+0x2b/0x80
? find_held_lock+0x2b/0x80
? find_held_lock+0x2b/0x80
css_populate_dir+0x73/0x180
cgroup_apply_control_enable+0x12f/0x3a0
cgroup_subtree_control_write+0x30b/0x440
kernfs_fop_write_iter+0x13a/0x1f0
vfs_write+0x341/0x450
ksys_write+0x64/0xe0
do_syscall_64+0x4b/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f68602d9833
Code: 8b 15 61 26 0e 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 64 8b 04 25 18 00 00 00 85 c0 75 14 b8 01 00 00 00 08
RSP: 002b:00007fff9bbdf8e8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000009 RCX: 00007f68602d9833
RDX: 0000000000000009 RSI: 00005614f3ebc740 RDI: 0000000000000001
RBP: 00005614f3ebc740 R08: 000000000000000a R09: 0000000000000008
R10: 00005614f3db6ba0 R11: 0000000000000246 R12: 0000000000000009
R13: 00007f68603bd6a0 R14: 0000000000000009 R15: 00007f68603b8880
For lockdep, there is a sanity check in lockdep_init_map_type(), the
lock-class key must either have been allocated statically or must
have been registered as a dynamic key. However the commit e18df2889ff9
("mm/hugetlb_cgroup: prepare cftypes based on template") has changed
the cftypes from static allocated objects to dynamic allocated objects,
so the cft->lockdep_key must be registered proactively.
[xiujianfeng@huawei.com: fix BUG()]
Link: https://lkml.kernel.org/r/20240619015527.2212698-1-xiujianfeng@huawei.com
Link: https://lkml.kernel.org/r/20240618071922.2127289-1-xiujianfeng@huawei.com
Link: https://lore.kernel.org/all/602186b3-5ce3-41b3-90a3-134792cc2a48@samsung.com/
Fixes: e18df2889ff9 ("mm/hugetlb_cgroup: prepare cftypes based on template")
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202406181046.8d8b2492-oliver.sang@intel.com
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: SeongJae Park <sj@kernel.org>
Closes: https://lore.kernel.org/20240618233608.400367-1-sj@kernel.org
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-12 09:24:08 +00:00
|
|
|
hugetlb_cgroup_cfttypes_init(h, legacy_files + idx * LEGACY_TMPL_SIZE,
|
|
|
|
hugetlb_legacy_tmpl, LEGACY_TMPL_SIZE);
|
2019-12-16 19:38:31 +00:00
|
|
|
}
|
|
|
|
|
2024-06-12 09:24:09 +00:00
|
|
|
static void __init __hugetlb_cgroup_file_init(struct hstate *h)
|
2019-12-16 19:38:31 +00:00
|
|
|
{
|
2024-06-12 09:24:09 +00:00
|
|
|
__hugetlb_cgroup_file_dfl_init(h);
|
|
|
|
__hugetlb_cgroup_file_legacy_init(h);
|
2012-12-18 22:23:19 +00:00
|
|
|
}
|
|
|
|
|
mm/hugetlb_cgroup: prepare cftypes based on template
Unlike other cgroup subsystems, the hugetlb cgroup does not provide a
static array of cftype that explicitly displays the properties, handling
functions, etc., of each file. Instead, it dynamically creates the
attribute of cftypes based on the hstate during the startup procedure.
This reduces the readability of the code.
To fix this issue, introduce two templates of cftypes, and rebuild the
attributes according to the hstate to make it ready to be added to cgroup
framework.
Link: https://lkml.kernel.org/r/20240612092409.2027592-3-xiujianfeng@huawei.com
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: kernel test robot <oliver.sang@intel.com>
From: Xiu Jianfeng <xiujianfeng@huawei.com>
Subject: mm/hugetlb_cgroup: register lockdep key for cftype
Date: Tue, 18 Jun 2024 07:19:22 +0000
When CONFIG_DEBUG_LOCK_ALLOC is enabled, the following commands can
trigger a bug,
mount -t cgroup2 none /sys/fs/cgroup
cd /sys/fs/cgroup
echo "+hugetlb" > cgroup.subtree_control
The log is as below:
BUG: key ffff8880046d88d8 has not been registered!
------------[ cut here ]------------
DEBUG_LOCKS_WARN_ON(1)
WARNING: CPU: 3 PID: 226 at kernel/locking/lockdep.c:4945 lockdep_init_map_type+0x185/0x220
Modules linked in:
CPU: 3 PID: 226 Comm: bash Not tainted 6.10.0-rc4-next-20240617-g76db4c64526c #544
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:lockdep_init_map_type+0x185/0x220
Code: 00 85 c0 0f 84 6c ff ff ff 8b 3d 6a d1 85 01 85 ff 0f 85 5e ff ff ff 48 c7 c6 21 99 4a 82 48 c7 c7 60 29 49 82 e8 3b 2e f5
RSP: 0018:ffffc9000083fc30 EFLAGS: 00000282
RAX: 0000000000000000 RBX: ffffffff828dd820 RCX: 0000000000000027
RDX: ffff88803cd9cac8 RSI: 0000000000000001 RDI: ffff88803cd9cac0
RBP: ffff88800674fbb0 R08: ffffffff828ce248 R09: 00000000ffffefff
R10: ffffffff8285e260 R11: ffffffff828b8eb8 R12: ffff8880046d88d8
R13: 0000000000000000 R14: 0000000000000000 R15: ffff8880067281c0
FS: 00007f68601ea740(0000) GS:ffff88803cd80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005614f3ebc740 CR3: 000000000773a000 CR4: 00000000000006f0
Call Trace:
<TASK>
? __warn+0x77/0xd0
? lockdep_init_map_type+0x185/0x220
? report_bug+0x189/0x1a0
? handle_bug+0x3c/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? lockdep_init_map_type+0x185/0x220
__kernfs_create_file+0x79/0x100
cgroup_addrm_files+0x163/0x380
? find_held_lock+0x2b/0x80
? find_held_lock+0x2b/0x80
? find_held_lock+0x2b/0x80
css_populate_dir+0x73/0x180
cgroup_apply_control_enable+0x12f/0x3a0
cgroup_subtree_control_write+0x30b/0x440
kernfs_fop_write_iter+0x13a/0x1f0
vfs_write+0x341/0x450
ksys_write+0x64/0xe0
do_syscall_64+0x4b/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f68602d9833
Code: 8b 15 61 26 0e 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 64 8b 04 25 18 00 00 00 85 c0 75 14 b8 01 00 00 00 08
RSP: 002b:00007fff9bbdf8e8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000009 RCX: 00007f68602d9833
RDX: 0000000000000009 RSI: 00005614f3ebc740 RDI: 0000000000000001
RBP: 00005614f3ebc740 R08: 000000000000000a R09: 0000000000000008
R10: 00005614f3db6ba0 R11: 0000000000000246 R12: 0000000000000009
R13: 00007f68603bd6a0 R14: 0000000000000009 R15: 00007f68603b8880
For lockdep, there is a sanity check in lockdep_init_map_type(), the
lock-class key must either have been allocated statically or must
have been registered as a dynamic key. However the commit e18df2889ff9
("mm/hugetlb_cgroup: prepare cftypes based on template") has changed
the cftypes from static allocated objects to dynamic allocated objects,
so the cft->lockdep_key must be registered proactively.
[xiujianfeng@huawei.com: fix BUG()]
Link: https://lkml.kernel.org/r/20240619015527.2212698-1-xiujianfeng@huawei.com
Link: https://lkml.kernel.org/r/20240618071922.2127289-1-xiujianfeng@huawei.com
Link: https://lore.kernel.org/all/602186b3-5ce3-41b3-90a3-134792cc2a48@samsung.com/
Fixes: e18df2889ff9 ("mm/hugetlb_cgroup: prepare cftypes based on template")
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202406181046.8d8b2492-oliver.sang@intel.com
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: SeongJae Park <sj@kernel.org>
Closes: https://lore.kernel.org/20240618233608.400367-1-sj@kernel.org
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-12 09:24:08 +00:00
|
|
|
static void __init __hugetlb_cgroup_file_pre_init(void)
|
|
|
|
{
|
|
|
|
int cft_count;
|
|
|
|
|
|
|
|
cft_count = hugetlb_max_hstate * DFL_TMPL_SIZE + 1; /* add terminator */
|
|
|
|
dfl_files = kcalloc(cft_count, sizeof(struct cftype), GFP_KERNEL);
|
|
|
|
BUG_ON(!dfl_files);
|
|
|
|
cft_count = hugetlb_max_hstate * LEGACY_TMPL_SIZE + 1; /* add terminator */
|
|
|
|
legacy_files = kcalloc(cft_count, sizeof(struct cftype), GFP_KERNEL);
|
|
|
|
BUG_ON(!legacy_files);
|
|
|
|
}
|
|
|
|
|
2024-06-12 09:24:09 +00:00
|
|
|
static void __init __hugetlb_cgroup_file_post_init(void)
|
|
|
|
{
|
|
|
|
WARN_ON(cgroup_add_dfl_cftypes(&hugetlb_cgrp_subsys,
|
|
|
|
dfl_files));
|
|
|
|
WARN_ON(cgroup_add_legacy_cftypes(&hugetlb_cgrp_subsys,
|
|
|
|
legacy_files));
|
|
|
|
}
|
|
|
|
|
2012-12-18 22:23:19 +00:00
|
|
|
void __init hugetlb_cgroup_file_init(void)
|
|
|
|
{
|
|
|
|
struct hstate *h;
|
|
|
|
|
mm/hugetlb_cgroup: prepare cftypes based on template
Unlike other cgroup subsystems, the hugetlb cgroup does not provide a
static array of cftype that explicitly displays the properties, handling
functions, etc., of each file. Instead, it dynamically creates the
attribute of cftypes based on the hstate during the startup procedure.
This reduces the readability of the code.
To fix this issue, introduce two templates of cftypes, and rebuild the
attributes according to the hstate to make it ready to be added to cgroup
framework.
Link: https://lkml.kernel.org/r/20240612092409.2027592-3-xiujianfeng@huawei.com
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: kernel test robot <oliver.sang@intel.com>
From: Xiu Jianfeng <xiujianfeng@huawei.com>
Subject: mm/hugetlb_cgroup: register lockdep key for cftype
Date: Tue, 18 Jun 2024 07:19:22 +0000
When CONFIG_DEBUG_LOCK_ALLOC is enabled, the following commands can
trigger a bug,
mount -t cgroup2 none /sys/fs/cgroup
cd /sys/fs/cgroup
echo "+hugetlb" > cgroup.subtree_control
The log is as below:
BUG: key ffff8880046d88d8 has not been registered!
------------[ cut here ]------------
DEBUG_LOCKS_WARN_ON(1)
WARNING: CPU: 3 PID: 226 at kernel/locking/lockdep.c:4945 lockdep_init_map_type+0x185/0x220
Modules linked in:
CPU: 3 PID: 226 Comm: bash Not tainted 6.10.0-rc4-next-20240617-g76db4c64526c #544
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:lockdep_init_map_type+0x185/0x220
Code: 00 85 c0 0f 84 6c ff ff ff 8b 3d 6a d1 85 01 85 ff 0f 85 5e ff ff ff 48 c7 c6 21 99 4a 82 48 c7 c7 60 29 49 82 e8 3b 2e f5
RSP: 0018:ffffc9000083fc30 EFLAGS: 00000282
RAX: 0000000000000000 RBX: ffffffff828dd820 RCX: 0000000000000027
RDX: ffff88803cd9cac8 RSI: 0000000000000001 RDI: ffff88803cd9cac0
RBP: ffff88800674fbb0 R08: ffffffff828ce248 R09: 00000000ffffefff
R10: ffffffff8285e260 R11: ffffffff828b8eb8 R12: ffff8880046d88d8
R13: 0000000000000000 R14: 0000000000000000 R15: ffff8880067281c0
FS: 00007f68601ea740(0000) GS:ffff88803cd80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005614f3ebc740 CR3: 000000000773a000 CR4: 00000000000006f0
Call Trace:
<TASK>
? __warn+0x77/0xd0
? lockdep_init_map_type+0x185/0x220
? report_bug+0x189/0x1a0
? handle_bug+0x3c/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? lockdep_init_map_type+0x185/0x220
__kernfs_create_file+0x79/0x100
cgroup_addrm_files+0x163/0x380
? find_held_lock+0x2b/0x80
? find_held_lock+0x2b/0x80
? find_held_lock+0x2b/0x80
css_populate_dir+0x73/0x180
cgroup_apply_control_enable+0x12f/0x3a0
cgroup_subtree_control_write+0x30b/0x440
kernfs_fop_write_iter+0x13a/0x1f0
vfs_write+0x341/0x450
ksys_write+0x64/0xe0
do_syscall_64+0x4b/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f68602d9833
Code: 8b 15 61 26 0e 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 64 8b 04 25 18 00 00 00 85 c0 75 14 b8 01 00 00 00 08
RSP: 002b:00007fff9bbdf8e8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000009 RCX: 00007f68602d9833
RDX: 0000000000000009 RSI: 00005614f3ebc740 RDI: 0000000000000001
RBP: 00005614f3ebc740 R08: 000000000000000a R09: 0000000000000008
R10: 00005614f3db6ba0 R11: 0000000000000246 R12: 0000000000000009
R13: 00007f68603bd6a0 R14: 0000000000000009 R15: 00007f68603b8880
For lockdep, there is a sanity check in lockdep_init_map_type(), the
lock-class key must either have been allocated statically or must
have been registered as a dynamic key. However the commit e18df2889ff9
("mm/hugetlb_cgroup: prepare cftypes based on template") has changed
the cftypes from static allocated objects to dynamic allocated objects,
so the cft->lockdep_key must be registered proactively.
[xiujianfeng@huawei.com: fix BUG()]
Link: https://lkml.kernel.org/r/20240619015527.2212698-1-xiujianfeng@huawei.com
Link: https://lkml.kernel.org/r/20240618071922.2127289-1-xiujianfeng@huawei.com
Link: https://lore.kernel.org/all/602186b3-5ce3-41b3-90a3-134792cc2a48@samsung.com/
Fixes: e18df2889ff9 ("mm/hugetlb_cgroup: prepare cftypes based on template")
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202406181046.8d8b2492-oliver.sang@intel.com
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: SeongJae Park <sj@kernel.org>
Closes: https://lore.kernel.org/20240618233608.400367-1-sj@kernel.org
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-06-12 09:24:08 +00:00
|
|
|
__hugetlb_cgroup_file_pre_init();
|
2023-10-04 15:32:48 +00:00
|
|
|
for_each_hstate(h)
|
2024-06-12 09:24:09 +00:00
|
|
|
__hugetlb_cgroup_file_init(h);
|
|
|
|
__hugetlb_cgroup_file_post_init();
|
2012-07-31 23:42:24 +00:00
|
|
|
}
|
|
|
|
|
2012-07-31 23:42:36 +00:00
|
|
|
/*
|
|
|
|
* hugetlb_lock will make sure a parallel cgroup rmdir won't happen
|
|
|
|
* when we migrate hugepages
|
|
|
|
*/
|
2022-11-01 22:30:54 +00:00
|
|
|
void hugetlb_cgroup_migrate(struct folio *old_folio, struct folio *new_folio)
|
2012-07-31 23:42:27 +00:00
|
|
|
{
|
|
|
|
struct hugetlb_cgroup *h_cg;
|
2020-04-02 04:11:15 +00:00
|
|
|
struct hugetlb_cgroup *h_cg_rsvd;
|
2022-11-01 22:30:54 +00:00
|
|
|
struct hstate *h = folio_hstate(old_folio);
|
2012-07-31 23:42:27 +00:00
|
|
|
|
|
|
|
if (hugetlb_cgroup_disabled())
|
|
|
|
return;
|
|
|
|
|
2021-05-05 01:35:07 +00:00
|
|
|
spin_lock_irq(&hugetlb_lock);
|
2022-11-01 22:30:52 +00:00
|
|
|
h_cg = hugetlb_cgroup_from_folio(old_folio);
|
|
|
|
h_cg_rsvd = hugetlb_cgroup_from_folio_rsvd(old_folio);
|
2022-11-01 22:30:53 +00:00
|
|
|
set_hugetlb_cgroup(old_folio, NULL);
|
|
|
|
set_hugetlb_cgroup_rsvd(old_folio, NULL);
|
2012-07-31 23:42:27 +00:00
|
|
|
|
|
|
|
/* move the h_cg details to new cgroup */
|
2022-11-01 22:30:53 +00:00
|
|
|
set_hugetlb_cgroup(new_folio, h_cg);
|
|
|
|
set_hugetlb_cgroup_rsvd(new_folio, h_cg_rsvd);
|
2022-11-01 22:30:54 +00:00
|
|
|
list_move(&new_folio->lru, &h->hugepage_activelist);
|
2021-05-05 01:35:07 +00:00
|
|
|
spin_unlock_irq(&hugetlb_lock);
|
2012-07-31 23:42:27 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2019-12-16 19:38:31 +00:00
|
|
|
static struct cftype hugetlb_files[] = {
|
|
|
|
{} /* terminate */
|
|
|
|
};
|
|
|
|
|
2014-02-08 15:36:58 +00:00
|
|
|
struct cgroup_subsys hugetlb_cgrp_subsys = {
|
2012-11-19 16:13:38 +00:00
|
|
|
.css_alloc = hugetlb_cgroup_css_alloc,
|
|
|
|
.css_offline = hugetlb_cgroup_css_offline,
|
|
|
|
.css_free = hugetlb_cgroup_css_free,
|
2019-12-16 19:38:31 +00:00
|
|
|
.dfl_cftypes = hugetlb_files,
|
|
|
|
.legacy_cftypes = hugetlb_files,
|
2012-07-31 23:42:12 +00:00
|
|
|
};
|