linux/drivers/net/e1000/e1000_hw.c

6775 lines
230 KiB
C
Raw Normal View History

/*******************************************************************************
Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place - Suite 330, Boston, MA 02111-1307, USA.
The full GNU General Public License is included in this distribution in the
file called LICENSE.
Contact Information:
Linux NICS <linux.nics@intel.com>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
/* e1000_hw.c
* Shared functions for accessing and configuring the MAC
*/
#include "e1000_hw.h"
static int32_t e1000_set_phy_type(struct e1000_hw *hw);
static void e1000_phy_init_script(struct e1000_hw *hw);
static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw);
static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw);
static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
uint16_t count);
static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw);
static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw);
static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
uint16_t words, uint16_t *data);
static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw,
uint16_t offset, uint16_t words,
uint16_t *data);
static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data,
uint16_t count);
static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
uint16_t phy_data);
static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr,
uint16_t *phy_data);
static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count);
static int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
static void e1000_release_eeprom(struct e1000_hw *hw);
static void e1000_standby_eeprom(struct e1000_hw *hw);
static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer);
static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length);
/* IGP cable length table */
static const
uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
{ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
static const
uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
{ 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
104, 109, 114, 118, 121, 124};
/******************************************************************************
* Set the phy type member in the hw struct.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
int32_t
e1000_set_phy_type(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_set_phy_type");
if(hw->mac_type == e1000_undefined)
return -E1000_ERR_PHY_TYPE;
switch(hw->phy_id) {
case M88E1000_E_PHY_ID:
case M88E1000_I_PHY_ID:
case M88E1011_I_PHY_ID:
case M88E1111_I_PHY_ID:
hw->phy_type = e1000_phy_m88;
break;
case IGP01E1000_I_PHY_ID:
if(hw->mac_type == e1000_82541 ||
hw->mac_type == e1000_82541_rev_2 ||
hw->mac_type == e1000_82547 ||
hw->mac_type == e1000_82547_rev_2) {
hw->phy_type = e1000_phy_igp;
break;
}
/* Fall Through */
default:
/* Should never have loaded on this device */
hw->phy_type = e1000_phy_undefined;
return -E1000_ERR_PHY_TYPE;
}
return E1000_SUCCESS;
}
/******************************************************************************
* IGP phy init script - initializes the GbE PHY
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static void
e1000_phy_init_script(struct e1000_hw *hw)
{
uint32_t ret_val;
uint16_t phy_saved_data;
DEBUGFUNC("e1000_phy_init_script");
if(hw->phy_init_script) {
msec_delay(20);
/* Save off the current value of register 0x2F5B to be restored at
* the end of this routine. */
ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
/* Disabled the PHY transmitter */
e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
msec_delay(20);
e1000_write_phy_reg(hw,0x0000,0x0140);
msec_delay(5);
switch(hw->mac_type) {
case e1000_82541:
case e1000_82547:
e1000_write_phy_reg(hw, 0x1F95, 0x0001);
e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
e1000_write_phy_reg(hw, 0x1F79, 0x0018);
e1000_write_phy_reg(hw, 0x1F30, 0x1600);
e1000_write_phy_reg(hw, 0x1F31, 0x0014);
e1000_write_phy_reg(hw, 0x1F32, 0x161C);
e1000_write_phy_reg(hw, 0x1F94, 0x0003);
e1000_write_phy_reg(hw, 0x1F96, 0x003F);
e1000_write_phy_reg(hw, 0x2010, 0x0008);
break;
case e1000_82541_rev_2:
case e1000_82547_rev_2:
e1000_write_phy_reg(hw, 0x1F73, 0x0099);
break;
default:
break;
}
e1000_write_phy_reg(hw, 0x0000, 0x3300);
msec_delay(20);
/* Now enable the transmitter */
e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
if(hw->mac_type == e1000_82547) {
uint16_t fused, fine, coarse;
/* Move to analog registers page */
e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
} else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
(fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
(coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
}
}
}
}
/******************************************************************************
* Set the mac type member in the hw struct.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
int32_t
e1000_set_mac_type(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_set_mac_type");
switch (hw->device_id) {
case E1000_DEV_ID_82542:
switch (hw->revision_id) {
case E1000_82542_2_0_REV_ID:
hw->mac_type = e1000_82542_rev2_0;
break;
case E1000_82542_2_1_REV_ID:
hw->mac_type = e1000_82542_rev2_1;
break;
default:
/* Invalid 82542 revision ID */
return -E1000_ERR_MAC_TYPE;
}
break;
case E1000_DEV_ID_82543GC_FIBER:
case E1000_DEV_ID_82543GC_COPPER:
hw->mac_type = e1000_82543;
break;
case E1000_DEV_ID_82544EI_COPPER:
case E1000_DEV_ID_82544EI_FIBER:
case E1000_DEV_ID_82544GC_COPPER:
case E1000_DEV_ID_82544GC_LOM:
hw->mac_type = e1000_82544;
break;
case E1000_DEV_ID_82540EM:
case E1000_DEV_ID_82540EM_LOM:
case E1000_DEV_ID_82540EP:
case E1000_DEV_ID_82540EP_LOM:
case E1000_DEV_ID_82540EP_LP:
hw->mac_type = e1000_82540;
break;
case E1000_DEV_ID_82545EM_COPPER:
case E1000_DEV_ID_82545EM_FIBER:
hw->mac_type = e1000_82545;
break;
case E1000_DEV_ID_82545GM_COPPER:
case E1000_DEV_ID_82545GM_FIBER:
case E1000_DEV_ID_82545GM_SERDES:
hw->mac_type = e1000_82545_rev_3;
break;
case E1000_DEV_ID_82546EB_COPPER:
case E1000_DEV_ID_82546EB_FIBER:
case E1000_DEV_ID_82546EB_QUAD_COPPER:
hw->mac_type = e1000_82546;
break;
case E1000_DEV_ID_82546GB_COPPER:
case E1000_DEV_ID_82546GB_FIBER:
case E1000_DEV_ID_82546GB_SERDES:
case E1000_DEV_ID_82546GB_PCIE:
hw->mac_type = e1000_82546_rev_3;
break;
case E1000_DEV_ID_82541EI:
case E1000_DEV_ID_82541EI_MOBILE:
hw->mac_type = e1000_82541;
break;
case E1000_DEV_ID_82541ER:
case E1000_DEV_ID_82541GI:
case E1000_DEV_ID_82541GI_LF:
case E1000_DEV_ID_82541GI_MOBILE:
hw->mac_type = e1000_82541_rev_2;
break;
case E1000_DEV_ID_82547EI:
hw->mac_type = e1000_82547;
break;
case E1000_DEV_ID_82547GI:
hw->mac_type = e1000_82547_rev_2;
break;
case E1000_DEV_ID_82571EB_COPPER:
case E1000_DEV_ID_82571EB_FIBER:
case E1000_DEV_ID_82571EB_SERDES:
hw->mac_type = e1000_82571;
break;
case E1000_DEV_ID_82572EI_COPPER:
case E1000_DEV_ID_82572EI_FIBER:
case E1000_DEV_ID_82572EI_SERDES:
hw->mac_type = e1000_82572;
break;
case E1000_DEV_ID_82573E:
case E1000_DEV_ID_82573E_IAMT:
case E1000_DEV_ID_82573L:
hw->mac_type = e1000_82573;
break;
default:
/* Should never have loaded on this device */
return -E1000_ERR_MAC_TYPE;
}
switch(hw->mac_type) {
case e1000_82571:
case e1000_82572:
case e1000_82573:
hw->eeprom_semaphore_present = TRUE;
/* fall through */
case e1000_82541:
case e1000_82547:
case e1000_82541_rev_2:
case e1000_82547_rev_2:
hw->asf_firmware_present = TRUE;
break;
default:
break;
}
return E1000_SUCCESS;
}
/*****************************************************************************
* Set media type and TBI compatibility.
*
* hw - Struct containing variables accessed by shared code
* **************************************************************************/
void
e1000_set_media_type(struct e1000_hw *hw)
{
uint32_t status;
DEBUGFUNC("e1000_set_media_type");
if(hw->mac_type != e1000_82543) {
/* tbi_compatibility is only valid on 82543 */
hw->tbi_compatibility_en = FALSE;
}
switch (hw->device_id) {
case E1000_DEV_ID_82545GM_SERDES:
case E1000_DEV_ID_82546GB_SERDES:
case E1000_DEV_ID_82571EB_SERDES:
case E1000_DEV_ID_82572EI_SERDES:
hw->media_type = e1000_media_type_internal_serdes;
break;
default:
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
hw->media_type = e1000_media_type_fiber;
break;
case e1000_82573:
/* The STATUS_TBIMODE bit is reserved or reused for the this
* device.
*/
hw->media_type = e1000_media_type_copper;
break;
default:
status = E1000_READ_REG(hw, STATUS);
if (status & E1000_STATUS_TBIMODE) {
hw->media_type = e1000_media_type_fiber;
/* tbi_compatibility not valid on fiber */
hw->tbi_compatibility_en = FALSE;
} else {
hw->media_type = e1000_media_type_copper;
}
break;
}
}
}
/******************************************************************************
* Reset the transmit and receive units; mask and clear all interrupts.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
int32_t
e1000_reset_hw(struct e1000_hw *hw)
{
uint32_t ctrl;
uint32_t ctrl_ext;
uint32_t icr;
uint32_t manc;
uint32_t led_ctrl;
uint32_t timeout;
uint32_t extcnf_ctrl;
int32_t ret_val;
DEBUGFUNC("e1000_reset_hw");
/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
if(hw->mac_type == e1000_82542_rev2_0) {
DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
e1000_pci_clear_mwi(hw);
}
if(hw->bus_type == e1000_bus_type_pci_express) {
/* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset.
*/
if(e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
DEBUGOUT("PCI-E Master disable polling has failed.\n");
}
}
/* Clear interrupt mask to stop board from generating interrupts */
DEBUGOUT("Masking off all interrupts\n");
E1000_WRITE_REG(hw, IMC, 0xffffffff);
/* Disable the Transmit and Receive units. Then delay to allow
* any pending transactions to complete before we hit the MAC with
* the global reset.
*/
E1000_WRITE_REG(hw, RCTL, 0);
E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
E1000_WRITE_FLUSH(hw);
/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
hw->tbi_compatibility_on = FALSE;
/* Delay to allow any outstanding PCI transactions to complete before
* resetting the device
*/
msec_delay(10);
ctrl = E1000_READ_REG(hw, CTRL);
/* Must reset the PHY before resetting the MAC */
if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
msec_delay(5);
}
/* Must acquire the MDIO ownership before MAC reset.
* Ownership defaults to firmware after a reset. */
if(hw->mac_type == e1000_82573) {
timeout = 10;
extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
do {
E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
if(extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
break;
else
extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
msec_delay(2);
timeout--;
} while(timeout);
}
/* Issue a global reset to the MAC. This will reset the chip's
* transmit, receive, DMA, and link units. It will not effect
* the current PCI configuration. The global reset bit is self-
* clearing, and should clear within a microsecond.
*/
DEBUGOUT("Issuing a global reset to MAC\n");
switch(hw->mac_type) {
case e1000_82544:
case e1000_82540:
case e1000_82545:
case e1000_82546:
case e1000_82541:
case e1000_82541_rev_2:
/* These controllers can't ack the 64-bit write when issuing the
* reset, so use IO-mapping as a workaround to issue the reset */
E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
break;
case e1000_82545_rev_3:
case e1000_82546_rev_3:
/* Reset is performed on a shadow of the control register */
E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
break;
default:
E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
break;
}
/* After MAC reset, force reload of EEPROM to restore power-on settings to
* device. Later controllers reload the EEPROM automatically, so just wait
* for reload to complete.
*/
switch(hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
case e1000_82544:
/* Wait for reset to complete */
udelay(10);
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_EE_RST;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
/* Wait for EEPROM reload */
msec_delay(2);
break;
case e1000_82541:
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
/* Wait for EEPROM reload */
msec_delay(20);
break;
case e1000_82573:
udelay(10);
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_EE_RST;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
/* fall through */
case e1000_82571:
case e1000_82572:
ret_val = e1000_get_auto_rd_done(hw);
if(ret_val)
/* We don't want to continue accessing MAC registers. */
return ret_val;
break;
default:
/* Wait for EEPROM reload (it happens automatically) */
msec_delay(5);
break;
}
/* Disable HW ARPs on ASF enabled adapters */
if(hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
manc = E1000_READ_REG(hw, MANC);
manc &= ~(E1000_MANC_ARP_EN);
E1000_WRITE_REG(hw, MANC, manc);
}
if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
e1000_phy_init_script(hw);
/* Configure activity LED after PHY reset */
led_ctrl = E1000_READ_REG(hw, LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK;
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
}
/* Clear interrupt mask to stop board from generating interrupts */
DEBUGOUT("Masking off all interrupts\n");
E1000_WRITE_REG(hw, IMC, 0xffffffff);
/* Clear any pending interrupt events. */
icr = E1000_READ_REG(hw, ICR);
/* If MWI was previously enabled, reenable it. */
if(hw->mac_type == e1000_82542_rev2_0) {
if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
e1000_pci_set_mwi(hw);
}
return E1000_SUCCESS;
}
/******************************************************************************
* Performs basic configuration of the adapter.
*
* hw - Struct containing variables accessed by shared code
*
* Assumes that the controller has previously been reset and is in a
* post-reset uninitialized state. Initializes the receive address registers,
* multicast table, and VLAN filter table. Calls routines to setup link
* configuration and flow control settings. Clears all on-chip counters. Leaves
* the transmit and receive units disabled and uninitialized.
*****************************************************************************/
int32_t
e1000_init_hw(struct e1000_hw *hw)
{
uint32_t ctrl;
uint32_t i;
int32_t ret_val;
uint16_t pcix_cmd_word;
uint16_t pcix_stat_hi_word;
uint16_t cmd_mmrbc;
uint16_t stat_mmrbc;
uint32_t mta_size;
DEBUGFUNC("e1000_init_hw");
/* Initialize Identification LED */
ret_val = e1000_id_led_init(hw);
if(ret_val) {
DEBUGOUT("Error Initializing Identification LED\n");
return ret_val;
}
/* Set the media type and TBI compatibility */
e1000_set_media_type(hw);
/* Disabling VLAN filtering. */
DEBUGOUT("Initializing the IEEE VLAN\n");
if (hw->mac_type < e1000_82545_rev_3)
E1000_WRITE_REG(hw, VET, 0);
e1000_clear_vfta(hw);
/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
if(hw->mac_type == e1000_82542_rev2_0) {
DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
e1000_pci_clear_mwi(hw);
E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
E1000_WRITE_FLUSH(hw);
msec_delay(5);
}
/* Setup the receive address. This involves initializing all of the Receive
* Address Registers (RARs 0 - 15).
*/
e1000_init_rx_addrs(hw);
/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
if(hw->mac_type == e1000_82542_rev2_0) {
E1000_WRITE_REG(hw, RCTL, 0);
E1000_WRITE_FLUSH(hw);
msec_delay(1);
if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
e1000_pci_set_mwi(hw);
}
/* Zero out the Multicast HASH table */
DEBUGOUT("Zeroing the MTA\n");
mta_size = E1000_MC_TBL_SIZE;
for(i = 0; i < mta_size; i++)
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
/* Set the PCI priority bit correctly in the CTRL register. This
* determines if the adapter gives priority to receives, or if it
* gives equal priority to transmits and receives. Valid only on
* 82542 and 82543 silicon.
*/
if(hw->dma_fairness && hw->mac_type <= e1000_82543) {
ctrl = E1000_READ_REG(hw, CTRL);
E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
}
switch(hw->mac_type) {
case e1000_82545_rev_3:
case e1000_82546_rev_3:
break;
default:
/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
if(hw->bus_type == e1000_bus_type_pcix) {
e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
&pcix_stat_hi_word);
cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
PCIX_COMMAND_MMRBC_SHIFT;
stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
PCIX_STATUS_HI_MMRBC_SHIFT;
if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
if(cmd_mmrbc > stat_mmrbc) {
pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
&pcix_cmd_word);
}
}
break;
}
/* Call a subroutine to configure the link and setup flow control. */
ret_val = e1000_setup_link(hw);
/* Set the transmit descriptor write-back policy */
if(hw->mac_type > e1000_82544) {
ctrl = E1000_READ_REG(hw, TXDCTL);
ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
switch (hw->mac_type) {
default:
break;
case e1000_82571:
case e1000_82572:
ctrl |= (1 << 22);
case e1000_82573:
ctrl |= E1000_TXDCTL_COUNT_DESC;
break;
}
E1000_WRITE_REG(hw, TXDCTL, ctrl);
}
if (hw->mac_type == e1000_82573) {
e1000_enable_tx_pkt_filtering(hw);
}
switch (hw->mac_type) {
default:
break;
case e1000_82571:
ctrl = E1000_READ_REG(hw, TXDCTL1);
ctrl &= ~E1000_TXDCTL_WTHRESH;
ctrl |= E1000_TXDCTL_COUNT_DESC | E1000_TXDCTL_FULL_TX_DESC_WB;
ctrl |= (1 << 22);
E1000_WRITE_REG(hw, TXDCTL1, ctrl);
break;
}
if (hw->mac_type == e1000_82573) {
uint32_t gcr = E1000_READ_REG(hw, GCR);
gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
E1000_WRITE_REG(hw, GCR, gcr);
}
/* Clear all of the statistics registers (clear on read). It is
* important that we do this after we have tried to establish link
* because the symbol error count will increment wildly if there
* is no link.
*/
e1000_clear_hw_cntrs(hw);
return ret_val;
}
/******************************************************************************
* Adjust SERDES output amplitude based on EEPROM setting.
*
* hw - Struct containing variables accessed by shared code.
*****************************************************************************/
static int32_t
e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
{
uint16_t eeprom_data;
int32_t ret_val;
DEBUGFUNC("e1000_adjust_serdes_amplitude");
if(hw->media_type != e1000_media_type_internal_serdes)
return E1000_SUCCESS;
switch(hw->mac_type) {
case e1000_82545_rev_3:
case e1000_82546_rev_3:
break;
default:
return E1000_SUCCESS;
}
ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
if (ret_val) {
return ret_val;
}
if(eeprom_data != EEPROM_RESERVED_WORD) {
/* Adjust SERDES output amplitude only. */
eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
if(ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Configures flow control and link settings.
*
* hw - Struct containing variables accessed by shared code
*
* Determines which flow control settings to use. Calls the apropriate media-
* specific link configuration function. Configures the flow control settings.
* Assuming the adapter has a valid link partner, a valid link should be
* established. Assumes the hardware has previously been reset and the
* transmitter and receiver are not enabled.
*****************************************************************************/
int32_t
e1000_setup_link(struct e1000_hw *hw)
{
uint32_t ctrl_ext;
int32_t ret_val;
uint16_t eeprom_data;
DEBUGFUNC("e1000_setup_link");
/* Read and store word 0x0F of the EEPROM. This word contains bits
* that determine the hardware's default PAUSE (flow control) mode,
* a bit that determines whether the HW defaults to enabling or
* disabling auto-negotiation, and the direction of the
* SW defined pins. If there is no SW over-ride of the flow
* control setting, then the variable hw->fc will
* be initialized based on a value in the EEPROM.
*/
if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data)) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
if(hw->fc == e1000_fc_default) {
if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
hw->fc = e1000_fc_none;
else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
EEPROM_WORD0F_ASM_DIR)
hw->fc = e1000_fc_tx_pause;
else
hw->fc = e1000_fc_full;
}
/* We want to save off the original Flow Control configuration just
* in case we get disconnected and then reconnected into a different
* hub or switch with different Flow Control capabilities.
*/
if(hw->mac_type == e1000_82542_rev2_0)
hw->fc &= (~e1000_fc_tx_pause);
if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
hw->fc &= (~e1000_fc_rx_pause);
hw->original_fc = hw->fc;
DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
/* Take the 4 bits from EEPROM word 0x0F that determine the initial
* polarity value for the SW controlled pins, and setup the
* Extended Device Control reg with that info.
* This is needed because one of the SW controlled pins is used for
* signal detection. So this should be done before e1000_setup_pcs_link()
* or e1000_phy_setup() is called.
*/
if(hw->mac_type == e1000_82543) {
ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
SWDPIO__EXT_SHIFT);
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
}
/* Call the necessary subroutine to configure the link. */
ret_val = (hw->media_type == e1000_media_type_copper) ?
e1000_setup_copper_link(hw) :
e1000_setup_fiber_serdes_link(hw);
/* Initialize the flow control address, type, and PAUSE timer
* registers to their default values. This is done even if flow
* control is disabled, because it does not hurt anything to
* initialize these registers.
*/
DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
/* Set the flow control receive threshold registers. Normally,
* these registers will be set to a default threshold that may be
* adjusted later by the driver's runtime code. However, if the
* ability to transmit pause frames in not enabled, then these
* registers will be set to 0.
*/
if(!(hw->fc & e1000_fc_tx_pause)) {
E1000_WRITE_REG(hw, FCRTL, 0);
E1000_WRITE_REG(hw, FCRTH, 0);
} else {
/* We need to set up the Receive Threshold high and low water marks
* as well as (optionally) enabling the transmission of XON frames.
*/
if(hw->fc_send_xon) {
E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
} else {
E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
}
}
return ret_val;
}
/******************************************************************************
* Sets up link for a fiber based or serdes based adapter
*
* hw - Struct containing variables accessed by shared code
*
* Manipulates Physical Coding Sublayer functions in order to configure
* link. Assumes the hardware has been previously reset and the transmitter
* and receiver are not enabled.
*****************************************************************************/
static int32_t
e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
{
uint32_t ctrl;
uint32_t status;
uint32_t txcw = 0;
uint32_t i;
uint32_t signal = 0;
int32_t ret_val;
DEBUGFUNC("e1000_setup_fiber_serdes_link");
/* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
* until explicitly turned off or a power cycle is performed. A read to
* the register does not indicate its status. Therefore, we ensure
* loopback mode is disabled during initialization.
*/
if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
/* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
* set when the optics detect a signal. On older adapters, it will be
* cleared when there is a signal. This applies to fiber media only.
* If we're on serdes media, adjust the output amplitude to value set in
* the EEPROM.
*/
ctrl = E1000_READ_REG(hw, CTRL);
if(hw->media_type == e1000_media_type_fiber)
signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
ret_val = e1000_adjust_serdes_amplitude(hw);
if(ret_val)
return ret_val;
/* Take the link out of reset */
ctrl &= ~(E1000_CTRL_LRST);
/* Adjust VCO speed to improve BER performance */
ret_val = e1000_set_vco_speed(hw);
if(ret_val)
return ret_val;
e1000_config_collision_dist(hw);
/* Check for a software override of the flow control settings, and setup
* the device accordingly. If auto-negotiation is enabled, then software
* will have to set the "PAUSE" bits to the correct value in the Tranmsit
* Config Word Register (TXCW) and re-start auto-negotiation. However, if
* auto-negotiation is disabled, then software will have to manually
* configure the two flow control enable bits in the CTRL register.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames, but
* not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames but we do
* not support receiving pause frames).
* 3: Both Rx and TX flow control (symmetric) are enabled.
*/
switch (hw->fc) {
case e1000_fc_none:
/* Flow control is completely disabled by a software over-ride. */
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
break;
case e1000_fc_rx_pause:
/* RX Flow control is enabled and TX Flow control is disabled by a
* software over-ride. Since there really isn't a way to advertise
* that we are capable of RX Pause ONLY, we will advertise that we
* support both symmetric and asymmetric RX PAUSE. Later, we will
* disable the adapter's ability to send PAUSE frames.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break;
case e1000_fc_tx_pause:
/* TX Flow control is enabled, and RX Flow control is disabled, by a
* software over-ride.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
break;
case e1000_fc_full:
/* Flow control (both RX and TX) is enabled by a software over-ride. */
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
break;
}
/* Since auto-negotiation is enabled, take the link out of reset (the link
* will be in reset, because we previously reset the chip). This will
* restart auto-negotiation. If auto-neogtiation is successful then the
* link-up status bit will be set and the flow control enable bits (RFCE
* and TFCE) will be set according to their negotiated value.
*/
DEBUGOUT("Auto-negotiation enabled\n");
E1000_WRITE_REG(hw, TXCW, txcw);
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
hw->txcw = txcw;
msec_delay(1);
/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
* indication in the Device Status Register. Time-out if a link isn't
* seen in 500 milliseconds seconds (Auto-negotiation should complete in
* less than 500 milliseconds even if the other end is doing it in SW).
* For internal serdes, we just assume a signal is present, then poll.
*/
if(hw->media_type == e1000_media_type_internal_serdes ||
(E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
DEBUGOUT("Looking for Link\n");
for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
msec_delay(10);
status = E1000_READ_REG(hw, STATUS);
if(status & E1000_STATUS_LU) break;
}
if(i == (LINK_UP_TIMEOUT / 10)) {
DEBUGOUT("Never got a valid link from auto-neg!!!\n");
hw->autoneg_failed = 1;
/* AutoNeg failed to achieve a link, so we'll call
* e1000_check_for_link. This routine will force the link up if
* we detect a signal. This will allow us to communicate with
* non-autonegotiating link partners.
*/
ret_val = e1000_check_for_link(hw);
if(ret_val) {
DEBUGOUT("Error while checking for link\n");
return ret_val;
}
hw->autoneg_failed = 0;
} else {
hw->autoneg_failed = 0;
DEBUGOUT("Valid Link Found\n");
}
} else {
DEBUGOUT("No Signal Detected\n");
}
return E1000_SUCCESS;
}
/******************************************************************************
* Make sure we have a valid PHY and change PHY mode before link setup.
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_copper_link_preconfig(struct e1000_hw *hw)
{
uint32_t ctrl;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC("e1000_copper_link_preconfig");
ctrl = E1000_READ_REG(hw, CTRL);
/* With 82543, we need to force speed and duplex on the MAC equal to what
* the PHY speed and duplex configuration is. In addition, we need to
* perform a hardware reset on the PHY to take it out of reset.
*/
if(hw->mac_type > e1000_82543) {
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
E1000_WRITE_REG(hw, CTRL, ctrl);
} else {
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
E1000_WRITE_REG(hw, CTRL, ctrl);
ret_val = e1000_phy_hw_reset(hw);
if(ret_val)
return ret_val;
}
/* Make sure we have a valid PHY */
ret_val = e1000_detect_gig_phy(hw);
if(ret_val) {
DEBUGOUT("Error, did not detect valid phy.\n");
return ret_val;
}
DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
/* Set PHY to class A mode (if necessary) */
ret_val = e1000_set_phy_mode(hw);
if(ret_val)
return ret_val;
if((hw->mac_type == e1000_82545_rev_3) ||
(hw->mac_type == e1000_82546_rev_3)) {
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
phy_data |= 0x00000008;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
}
if(hw->mac_type <= e1000_82543 ||
hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
hw->phy_reset_disable = FALSE;
return E1000_SUCCESS;
}
/********************************************************************
* Copper link setup for e1000_phy_igp series.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t
e1000_copper_link_igp_setup(struct e1000_hw *hw)
{
uint32_t led_ctrl;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC("e1000_copper_link_igp_setup");
if (hw->phy_reset_disable)
return E1000_SUCCESS;
ret_val = e1000_phy_reset(hw);
if (ret_val) {
DEBUGOUT("Error Resetting the PHY\n");
return ret_val;
}
/* Wait 10ms for MAC to configure PHY from eeprom settings */
msec_delay(15);
/* Configure activity LED after PHY reset */
led_ctrl = E1000_READ_REG(hw, LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK;
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
/* disable lplu d3 during driver init */
ret_val = e1000_set_d3_lplu_state(hw, FALSE);
if (ret_val) {
DEBUGOUT("Error Disabling LPLU D3\n");
return ret_val;
}
/* disable lplu d0 during driver init */
ret_val = e1000_set_d0_lplu_state(hw, FALSE);
if (ret_val) {
DEBUGOUT("Error Disabling LPLU D0\n");
return ret_val;
}
/* Configure mdi-mdix settings */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
if (ret_val)
return ret_val;
if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
hw->dsp_config_state = e1000_dsp_config_disabled;
/* Force MDI for earlier revs of the IGP PHY */
phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
hw->mdix = 1;
} else {
hw->dsp_config_state = e1000_dsp_config_enabled;
phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
switch (hw->mdix) {
case 1:
phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
break;
case 2:
phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
break;
case 0:
default:
phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
break;
}
}
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
if(ret_val)
return ret_val;
/* set auto-master slave resolution settings */
if(hw->autoneg) {
e1000_ms_type phy_ms_setting = hw->master_slave;
if(hw->ffe_config_state == e1000_ffe_config_active)
hw->ffe_config_state = e1000_ffe_config_enabled;
if(hw->dsp_config_state == e1000_dsp_config_activated)
hw->dsp_config_state = e1000_dsp_config_enabled;
/* when autonegotiation advertisment is only 1000Mbps then we
* should disable SmartSpeed and enable Auto MasterSlave
* resolution as hardware default. */
if(hw->autoneg_advertised == ADVERTISE_1000_FULL) {
/* Disable SmartSpeed */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
if(ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG,
phy_data);
if(ret_val)
return ret_val;
/* Set auto Master/Slave resolution process */
ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
if(ret_val)
return ret_val;
phy_data &= ~CR_1000T_MS_ENABLE;
ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
if(ret_val)
return ret_val;
}
ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
if(ret_val)
return ret_val;
/* load defaults for future use */
hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
((phy_data & CR_1000T_MS_VALUE) ?
e1000_ms_force_master :
e1000_ms_force_slave) :
e1000_ms_auto;
switch (phy_ms_setting) {
case e1000_ms_force_master:
phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
break;
case e1000_ms_force_slave:
phy_data |= CR_1000T_MS_ENABLE;
phy_data &= ~(CR_1000T_MS_VALUE);
break;
case e1000_ms_auto:
phy_data &= ~CR_1000T_MS_ENABLE;
default:
break;
}
ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
if(ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/********************************************************************
* Copper link setup for e1000_phy_m88 series.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t
e1000_copper_link_mgp_setup(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC("e1000_copper_link_mgp_setup");
if(hw->phy_reset_disable)
return E1000_SUCCESS;
/* Enable CRS on TX. This must be set for half-duplex operation. */
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if(ret_val)
return ret_val;
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
/* Options:
* MDI/MDI-X = 0 (default)
* 0 - Auto for all speeds
* 1 - MDI mode
* 2 - MDI-X mode
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
*/
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
switch (hw->mdix) {
case 1:
phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
break;
case 2:
phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
break;
case 3:
phy_data |= M88E1000_PSCR_AUTO_X_1000T;
break;
case 0:
default:
phy_data |= M88E1000_PSCR_AUTO_X_MODE;
break;
}
/* Options:
* disable_polarity_correction = 0 (default)
* Automatic Correction for Reversed Cable Polarity
* 0 - Disabled
* 1 - Enabled
*/
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
if(hw->disable_polarity_correction == 1)
phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if(ret_val)
return ret_val;
/* Force TX_CLK in the Extended PHY Specific Control Register
* to 25MHz clock.
*/
ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
if(ret_val)
return ret_val;
phy_data |= M88E1000_EPSCR_TX_CLK_25;
if (hw->phy_revision < M88E1011_I_REV_4) {
/* Configure Master and Slave downshift values */
phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
if(ret_val)
return ret_val;
}
/* SW Reset the PHY so all changes take effect */
ret_val = e1000_phy_reset(hw);
if(ret_val) {
DEBUGOUT("Error Resetting the PHY\n");
return ret_val;
}
return E1000_SUCCESS;
}
/********************************************************************
* Setup auto-negotiation and flow control advertisements,
* and then perform auto-negotiation.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t
e1000_copper_link_autoneg(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC("e1000_copper_link_autoneg");
/* Perform some bounds checking on the hw->autoneg_advertised
* parameter. If this variable is zero, then set it to the default.
*/
hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
/* If autoneg_advertised is zero, we assume it was not defaulted
* by the calling code so we set to advertise full capability.
*/
if(hw->autoneg_advertised == 0)
hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
ret_val = e1000_phy_setup_autoneg(hw);
if(ret_val) {
DEBUGOUT("Error Setting up Auto-Negotiation\n");
return ret_val;
}
DEBUGOUT("Restarting Auto-Neg\n");
/* Restart auto-negotiation by setting the Auto Neg Enable bit and
* the Auto Neg Restart bit in the PHY control register.
*/
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
if(ret_val)
return ret_val;
phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
if(ret_val)
return ret_val;
/* Does the user want to wait for Auto-Neg to complete here, or
* check at a later time (for example, callback routine).
*/
if(hw->wait_autoneg_complete) {
ret_val = e1000_wait_autoneg(hw);
if(ret_val) {
DEBUGOUT("Error while waiting for autoneg to complete\n");
return ret_val;
}
}
hw->get_link_status = TRUE;
return E1000_SUCCESS;
}
/******************************************************************************
* Config the MAC and the PHY after link is up.
* 1) Set up the MAC to the current PHY speed/duplex
* if we are on 82543. If we
* are on newer silicon, we only need to configure
* collision distance in the Transmit Control Register.
* 2) Set up flow control on the MAC to that established with
* the link partner.
* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_copper_link_postconfig(struct e1000_hw *hw)
{
int32_t ret_val;
DEBUGFUNC("e1000_copper_link_postconfig");
if(hw->mac_type >= e1000_82544) {
e1000_config_collision_dist(hw);
} else {
ret_val = e1000_config_mac_to_phy(hw);
if(ret_val) {
DEBUGOUT("Error configuring MAC to PHY settings\n");
return ret_val;
}
}
ret_val = e1000_config_fc_after_link_up(hw);
if(ret_val) {
DEBUGOUT("Error Configuring Flow Control\n");
return ret_val;
}
/* Config DSP to improve Giga link quality */
if(hw->phy_type == e1000_phy_igp) {
ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
if(ret_val) {
DEBUGOUT("Error Configuring DSP after link up\n");
return ret_val;
}
}
return E1000_SUCCESS;
}
/******************************************************************************
* Detects which PHY is present and setup the speed and duplex
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_setup_copper_link(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t i;
uint16_t phy_data;
DEBUGFUNC("e1000_setup_copper_link");
/* Check if it is a valid PHY and set PHY mode if necessary. */
ret_val = e1000_copper_link_preconfig(hw);
if(ret_val)
return ret_val;
if (hw->phy_type == e1000_phy_igp ||
hw->phy_type == e1000_phy_igp_2) {
ret_val = e1000_copper_link_igp_setup(hw);
if(ret_val)
return ret_val;
} else if (hw->phy_type == e1000_phy_m88) {
ret_val = e1000_copper_link_mgp_setup(hw);
if(ret_val)
return ret_val;
}
if(hw->autoneg) {
/* Setup autoneg and flow control advertisement
* and perform autonegotiation */
ret_val = e1000_copper_link_autoneg(hw);
if(ret_val)
return ret_val;
} else {
/* PHY will be set to 10H, 10F, 100H,or 100F
* depending on value from forced_speed_duplex. */
DEBUGOUT("Forcing speed and duplex\n");
ret_val = e1000_phy_force_speed_duplex(hw);
if(ret_val) {
DEBUGOUT("Error Forcing Speed and Duplex\n");
return ret_val;
}
}
/* Check link status. Wait up to 100 microseconds for link to become
* valid.
*/
for(i = 0; i < 10; i++) {
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if(ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if(ret_val)
return ret_val;
if(phy_data & MII_SR_LINK_STATUS) {
/* Config the MAC and PHY after link is up */
ret_val = e1000_copper_link_postconfig(hw);
if(ret_val)
return ret_val;
DEBUGOUT("Valid link established!!!\n");
return E1000_SUCCESS;
}
udelay(10);
}
DEBUGOUT("Unable to establish link!!!\n");
return E1000_SUCCESS;
}
/******************************************************************************
* Configures PHY autoneg and flow control advertisement settings
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
int32_t
e1000_phy_setup_autoneg(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t mii_autoneg_adv_reg;
uint16_t mii_1000t_ctrl_reg;
DEBUGFUNC("e1000_phy_setup_autoneg");
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
if(ret_val)
return ret_val;
/* Read the MII 1000Base-T Control Register (Address 9). */
ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
if(ret_val)
return ret_val;
/* Need to parse both autoneg_advertised and fc and set up
* the appropriate PHY registers. First we will parse for
* autoneg_advertised software override. Since we can advertise
* a plethora of combinations, we need to check each bit
* individually.
*/
/* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T Control Register (Address 9).
*/
mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
/* Do we want to advertise 10 Mb Half Duplex? */
if(hw->autoneg_advertised & ADVERTISE_10_HALF) {
DEBUGOUT("Advertise 10mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
}
/* Do we want to advertise 10 Mb Full Duplex? */
if(hw->autoneg_advertised & ADVERTISE_10_FULL) {
DEBUGOUT("Advertise 10mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
}
/* Do we want to advertise 100 Mb Half Duplex? */
if(hw->autoneg_advertised & ADVERTISE_100_HALF) {
DEBUGOUT("Advertise 100mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
}
/* Do we want to advertise 100 Mb Full Duplex? */
if(hw->autoneg_advertised & ADVERTISE_100_FULL) {
DEBUGOUT("Advertise 100mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
}
/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
if(hw->autoneg_advertised & ADVERTISE_1000_HALF) {
DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
}
/* Do we want to advertise 1000 Mb Full Duplex? */
if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
DEBUGOUT("Advertise 1000mb Full duplex\n");
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
}
/* Check for a software override of the flow control settings, and
* setup the PHY advertisement registers accordingly. If
* auto-negotiation is enabled, then software will have to set the
* "PAUSE" bits to the correct value in the Auto-Negotiation
* Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* but we do not support receiving pause frames).
* 3: Both Rx and TX flow control (symmetric) are enabled.
* other: No software override. The flow control configuration
* in the EEPROM is used.
*/
switch (hw->fc) {
case e1000_fc_none: /* 0 */
/* Flow control (RX & TX) is completely disabled by a
* software over-ride.
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_rx_pause: /* 1 */
/* RX Flow control is enabled, and TX Flow control is
* disabled, by a software over-ride.
*/
/* Since there really isn't a way to advertise that we are
* capable of RX Pause ONLY, we will advertise that we
* support both symmetric and asymmetric RX PAUSE. Later
* (in e1000_config_fc_after_link_up) we will disable the
*hw's ability to send PAUSE frames.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_tx_pause: /* 2 */
/* TX Flow control is enabled, and RX Flow control is
* disabled, by a software over-ride.
*/
mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
break;
case e1000_fc_full: /* 3 */
/* Flow control (both RX and TX) is enabled by a software
* over-ride.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
}
ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
if(ret_val)
return ret_val;
DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
if(ret_val)
return ret_val;
return E1000_SUCCESS;
}
/******************************************************************************
* Force PHY speed and duplex settings to hw->forced_speed_duplex
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_phy_force_speed_duplex(struct e1000_hw *hw)
{
uint32_t ctrl;
int32_t ret_val;
uint16_t mii_ctrl_reg;
uint16_t mii_status_reg;
uint16_t phy_data;
uint16_t i;
DEBUGFUNC("e1000_phy_force_speed_duplex");
/* Turn off Flow control if we are forcing speed and duplex. */
hw->fc = e1000_fc_none;
DEBUGOUT1("hw->fc = %d\n", hw->fc);
/* Read the Device Control Register. */
ctrl = E1000_READ_REG(hw, CTRL);
/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ctrl &= ~(DEVICE_SPEED_MASK);
/* Clear the Auto Speed Detect Enable bit. */
ctrl &= ~E1000_CTRL_ASDE;
/* Read the MII Control Register. */
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
if(ret_val)
return ret_val;
/* We need to disable autoneg in order to force link and duplex. */
mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
/* Are we forcing Full or Half Duplex? */
if(hw->forced_speed_duplex == e1000_100_full ||
hw->forced_speed_duplex == e1000_10_full) {
/* We want to force full duplex so we SET the full duplex bits in the
* Device and MII Control Registers.
*/
ctrl |= E1000_CTRL_FD;
mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
DEBUGOUT("Full Duplex\n");
} else {
/* We want to force half duplex so we CLEAR the full duplex bits in
* the Device and MII Control Registers.
*/
ctrl &= ~E1000_CTRL_FD;
mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
DEBUGOUT("Half Duplex\n");
}
/* Are we forcing 100Mbps??? */
if(hw->forced_speed_duplex == e1000_100_full ||
hw->forced_speed_duplex == e1000_100_half) {
/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
ctrl |= E1000_CTRL_SPD_100;
mii_ctrl_reg |= MII_CR_SPEED_100;
mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
DEBUGOUT("Forcing 100mb ");
} else {
/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
mii_ctrl_reg |= MII_CR_SPEED_10;
mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
DEBUGOUT("Forcing 10mb ");
}
e1000_config_collision_dist(hw);
/* Write the configured values back to the Device Control Reg. */
E1000_WRITE_REG(hw, CTRL, ctrl);
if (hw->phy_type == e1000_phy_m88) {
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if(ret_val)
return ret_val;
/* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
* forced whenever speed are duplex are forced.
*/
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if(ret_val)
return ret_val;
DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
/* Need to reset the PHY or these changes will be ignored */
mii_ctrl_reg |= MII_CR_RESET;
} else {
/* Clear Auto-Crossover to force MDI manually. IGP requires MDI
* forced whenever speed or duplex are forced.
*/
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
if(ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
if(ret_val)
return ret_val;
}
/* Write back the modified PHY MII control register. */
ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
if(ret_val)
return ret_val;
udelay(1);
/* The wait_autoneg_complete flag may be a little misleading here.
* Since we are forcing speed and duplex, Auto-Neg is not enabled.
* But we do want to delay for a period while forcing only so we
* don't generate false No Link messages. So we will wait here
* only if the user has set wait_autoneg_complete to 1, which is
* the default.
*/
if(hw->wait_autoneg_complete) {
/* We will wait for autoneg to complete. */
DEBUGOUT("Waiting for forced speed/duplex link.\n");
mii_status_reg = 0;
/* We will wait for autoneg to complete or 4.5 seconds to expire. */
for(i = PHY_FORCE_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Auto-Neg Complete bit
* to be set.
*/
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if(ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if(ret_val)
return ret_val;
if(mii_status_reg & MII_SR_LINK_STATUS) break;
msec_delay(100);
}
if((i == 0) &&
(hw->phy_type == e1000_phy_m88)) {
/* We didn't get link. Reset the DSP and wait again for link. */
ret_val = e1000_phy_reset_dsp(hw);
if(ret_val) {
DEBUGOUT("Error Resetting PHY DSP\n");
return ret_val;
}
}
/* This loop will early-out if the link condition has been met. */
for(i = PHY_FORCE_TIME; i > 0; i--) {
if(mii_status_reg & MII_SR_LINK_STATUS) break;
msec_delay(100);
/* Read the MII Status Register and wait for Auto-Neg Complete bit
* to be set.
*/
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if(ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if(ret_val)
return ret_val;
}
}
if (hw->phy_type == e1000_phy_m88) {
/* Because we reset the PHY above, we need to re-force TX_CLK in the
* Extended PHY Specific Control Register to 25MHz clock. This value
* defaults back to a 2.5MHz clock when the PHY is reset.
*/
ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
if(ret_val)
return ret_val;
phy_data |= M88E1000_EPSCR_TX_CLK_25;
ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
if(ret_val)
return ret_val;
/* In addition, because of the s/w reset above, we need to enable CRS on
* TX. This must be set for both full and half duplex operation.
*/
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if(ret_val)
return ret_val;
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if(ret_val)
return ret_val;
if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
(!hw->autoneg) &&
(hw->forced_speed_duplex == e1000_10_full ||
hw->forced_speed_duplex == e1000_10_half)) {
ret_val = e1000_polarity_reversal_workaround(hw);
if(ret_val)
return ret_val;
}
}
return E1000_SUCCESS;
}
/******************************************************************************
* Sets the collision distance in the Transmit Control register
*
* hw - Struct containing variables accessed by shared code
*
* Link should have been established previously. Reads the speed and duplex
* information from the Device Status register.
******************************************************************************/
void
e1000_config_collision_dist(struct e1000_hw *hw)
{
uint32_t tctl;
DEBUGFUNC("e1000_config_collision_dist");
tctl = E1000_READ_REG(hw, TCTL);
tctl &= ~E1000_TCTL_COLD;
tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
E1000_WRITE_REG(hw, TCTL, tctl);
E1000_WRITE_FLUSH(hw);
}
/******************************************************************************
* Sets MAC speed and duplex settings to reflect the those in the PHY
*
* hw - Struct containing variables accessed by shared code
* mii_reg - data to write to the MII control register
*
* The contents of the PHY register containing the needed information need to
* be passed in.
******************************************************************************/
static int32_t
e1000_config_mac_to_phy(struct e1000_hw *hw)
{
uint32_t ctrl;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC("e1000_config_mac_to_phy");
/* 82544 or newer MAC, Auto Speed Detection takes care of
* MAC speed/duplex configuration.*/
if (hw->mac_type >= e1000_82544)
return E1000_SUCCESS;
/* Read the Device Control Register and set the bits to Force Speed
* and Duplex.
*/
ctrl = E1000_READ_REG(hw, CTRL);
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
/* Set up duplex in the Device Control and Transmit Control
* registers depending on negotiated values.
*/
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
if(ret_val)
return ret_val;
if(phy_data & M88E1000_PSSR_DPLX)
ctrl |= E1000_CTRL_FD;
else
ctrl &= ~E1000_CTRL_FD;
e1000_config_collision_dist(hw);
/* Set up speed in the Device Control register depending on
* negotiated values.
*/
if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
ctrl |= E1000_CTRL_SPD_1000;
else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
ctrl |= E1000_CTRL_SPD_100;
/* Write the configured values back to the Device Control Reg. */
E1000_WRITE_REG(hw, CTRL, ctrl);
return E1000_SUCCESS;
}
/******************************************************************************
* Forces the MAC's flow control settings.
*
* hw - Struct containing variables accessed by shared code
*
* Sets the TFCE and RFCE bits in the device control register to reflect
* the adapter settings. TFCE and RFCE need to be explicitly set by
* software when a Copper PHY is used because autonegotiation is managed
* by the PHY rather than the MAC. Software must also configure these
* bits when link is forced on a fiber connection.
*****************************************************************************/
int32_t
e1000_force_mac_fc(struct e1000_hw *hw)
{
uint32_t ctrl;
DEBUGFUNC("e1000_force_mac_fc");
/* Get the current configuration of the Device Control Register */
ctrl = E1000_READ_REG(hw, CTRL);
/* Because we didn't get link via the internal auto-negotiation
* mechanism (we either forced link or we got link via PHY
* auto-neg), we have to manually enable/disable transmit an
* receive flow control.
*
* The "Case" statement below enables/disable flow control
* according to the "hw->fc" parameter.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause
* frames but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* frames but we do not receive pause frames).
* 3: Both Rx and TX flow control (symmetric) is enabled.
* other: No other values should be possible at this point.
*/
switch (hw->fc) {
case e1000_fc_none:
ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
break;
case e1000_fc_rx_pause:
ctrl &= (~E1000_CTRL_TFCE);
ctrl |= E1000_CTRL_RFCE;
break;
case e1000_fc_tx_pause:
ctrl &= (~E1000_CTRL_RFCE);
ctrl |= E1000_CTRL_TFCE;
break;
case e1000_fc_full:
ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
}
/* Disable TX Flow Control for 82542 (rev 2.0) */
if(hw->mac_type == e1000_82542_rev2_0)
ctrl &= (~E1000_CTRL_TFCE);
E1000_WRITE_REG(hw, CTRL, ctrl);
return E1000_SUCCESS;
}
/******************************************************************************
* Configures flow control settings after link is established
*
* hw - Struct containing variables accessed by shared code
*
* Should be called immediately after a valid link has been established.
* Forces MAC flow control settings if link was forced. When in MII/GMII mode
* and autonegotiation is enabled, the MAC flow control settings will be set
* based on the flow control negotiated by the PHY. In TBI mode, the TFCE
* and RFCE bits will be automaticaly set to the negotiated flow control mode.
*****************************************************************************/
int32_t
e1000_config_fc_after_link_up(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t mii_status_reg;
uint16_t mii_nway_adv_reg;
uint16_t mii_nway_lp_ability_reg;
uint16_t speed;
uint16_t duplex;
DEBUGFUNC("e1000_config_fc_after_link_up");
/* Check for the case where we have fiber media and auto-neg failed
* so we had to force link. In this case, we need to force the
* configuration of the MAC to match the "fc" parameter.
*/
if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed)) ||
((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
ret_val = e1000_force_mac_fc(hw);
if(ret_val) {
DEBUGOUT("Error forcing flow control settings\n");
return ret_val;
}
}
/* Check for the case where we have copper media and auto-neg is
* enabled. In this case, we need to check and see if Auto-Neg
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
if((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
/* Read the MII Status Register and check to see if AutoNeg
* has completed. We read this twice because this reg has
* some "sticky" (latched) bits.
*/
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if(ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if(ret_val)
return ret_val;
if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
/* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement Register
* (Address 4) and the Auto_Negotiation Base Page Ability
* Register (Address 5) to determine how flow control was
* negotiated.
*/
ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
&mii_nway_adv_reg);
if(ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
&mii_nway_lp_ability_reg);
if(ret_val)
return ret_val;
/* Two bits in the Auto Negotiation Advertisement Register
* (Address 4) and two bits in the Auto Negotiation Base
* Page Ability Register (Address 5) determine flow control
* for both the PHY and the link partner. The following
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
* 1999, describes these PAUSE resolution bits and how flow
* control is determined based upon these settings.
* NOTE: DC = Don't Care
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
*-------|---------|-------|---------|--------------------
* 0 | 0 | DC | DC | e1000_fc_none
* 0 | 1 | 0 | DC | e1000_fc_none
* 0 | 1 | 1 | 0 | e1000_fc_none
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
* 1 | 0 | 0 | DC | e1000_fc_none
* 1 | DC | 1 | DC | e1000_fc_full
* 1 | 1 | 0 | 0 | e1000_fc_none
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*
*/
/* Are both PAUSE bits set to 1? If so, this implies
* Symmetric Flow Control is enabled at both ends. The
* ASM_DIR bits are irrelevant per the spec.
*
* For Symmetric Flow Control:
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | DC | 1 | DC | e1000_fc_full
*
*/
if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
/* Now we need to check if the user selected RX ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise RX
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
if(hw->original_fc == e1000_fc_full) {
hw->fc = e1000_fc_full;
DEBUGOUT("Flow Control = FULL.\r\n");
} else {
hw->fc = e1000_fc_rx_pause;
DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
}
}
/* For receiving PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
*
*/
else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc = e1000_fc_tx_pause;
DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
}
/* For transmitting PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*
*/
else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
!(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc = e1000_fc_rx_pause;
DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
}
/* Per the IEEE spec, at this point flow control should be
* disabled. However, we want to consider that we could
* be connected to a legacy switch that doesn't advertise
* desired flow control, but can be forced on the link
* partner. So if we advertised no flow control, that is
* what we will resolve to. If we advertised some kind of
* receive capability (Rx Pause Only or Full Flow Control)
* and the link partner advertised none, we will configure
* ourselves to enable Rx Flow Control only. We can do
* this safely for two reasons: If the link partner really
* didn't want flow control enabled, and we enable Rx, no
* harm done since we won't be receiving any PAUSE frames
* anyway. If the intent on the link partner was to have
* flow control enabled, then by us enabling RX only, we
* can at least receive pause frames and process them.
* This is a good idea because in most cases, since we are
* predominantly a server NIC, more times than not we will
* be asked to delay transmission of packets than asking
* our link partner to pause transmission of frames.
*/
else if((hw->original_fc == e1000_fc_none ||
hw->original_fc == e1000_fc_tx_pause) ||
hw->fc_strict_ieee) {
hw->fc = e1000_fc_none;
DEBUGOUT("Flow Control = NONE.\r\n");
} else {
hw->fc = e1000_fc_rx_pause;
DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
}
/* Now we need to do one last check... If we auto-
* negotiated to HALF DUPLEX, flow control should not be
* enabled per IEEE 802.3 spec.
*/
ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
if(ret_val) {
DEBUGOUT("Error getting link speed and duplex\n");
return ret_val;
}
if(duplex == HALF_DUPLEX)
hw->fc = e1000_fc_none;
/* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
ret_val = e1000_force_mac_fc(hw);
if(ret_val) {
DEBUGOUT("Error forcing flow control settings\n");
return ret_val;
}
} else {
DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n");
}
}
return E1000_SUCCESS;
}
/******************************************************************************
* Checks to see if the link status of the hardware has changed.
*
* hw - Struct containing variables accessed by shared code
*
* Called by any function that needs to check the link status of the adapter.
*****************************************************************************/
int32_t
e1000_check_for_link(struct e1000_hw *hw)
{
uint32_t rxcw = 0;
uint32_t ctrl;
uint32_t status;
uint32_t rctl;
uint32_t icr;
uint32_t signal = 0;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC("e1000_check_for_link");
ctrl = E1000_READ_REG(hw, CTRL);
status = E1000_READ_REG(hw, STATUS);
/* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
* set when the optics detect a signal. On older adapters, it will be
* cleared when there is a signal. This applies to fiber media only.
*/
if((hw->media_type == e1000_media_type_fiber) ||
(hw->media_type == e1000_media_type_internal_serdes)) {
rxcw = E1000_READ_REG(hw, RXCW);
if(hw->media_type == e1000_media_type_fiber) {
signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
if(status & E1000_STATUS_LU)
hw->get_link_status = FALSE;
}
}
/* If we have a copper PHY then we only want to go out to the PHY
* registers to see if Auto-Neg has completed and/or if our link
* status has changed. The get_link_status flag will be set if we
* receive a Link Status Change interrupt or we have Rx Sequence
* Errors.
*/
if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
/* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
* Read the register twice since the link bit is sticky.
*/
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if(ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if(ret_val)
return ret_val;
if(phy_data & MII_SR_LINK_STATUS) {
hw->get_link_status = FALSE;
/* Check if there was DownShift, must be checked immediately after
* link-up */
e1000_check_downshift(hw);
/* If we are on 82544 or 82543 silicon and speed/duplex
* are forced to 10H or 10F, then we will implement the polarity
* reversal workaround. We disable interrupts first, and upon
* returning, place the devices interrupt state to its previous
* value except for the link status change interrupt which will
* happen due to the execution of this workaround.
*/
if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
(!hw->autoneg) &&
(hw->forced_speed_duplex == e1000_10_full ||
hw->forced_speed_duplex == e1000_10_half)) {
E1000_WRITE_REG(hw, IMC, 0xffffffff);
ret_val = e1000_polarity_reversal_workaround(hw);
icr = E1000_READ_REG(hw, ICR);
E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
}
} else {
/* No link detected */
e1000_config_dsp_after_link_change(hw, FALSE);
return 0;
}
/* If we are forcing speed/duplex, then we simply return since
* we have already determined whether we have link or not.
*/
if(!hw->autoneg) return -E1000_ERR_CONFIG;
/* optimize the dsp settings for the igp phy */
e1000_config_dsp_after_link_change(hw, TRUE);
/* We have a M88E1000 PHY and Auto-Neg is enabled. If we
* have Si on board that is 82544 or newer, Auto
* Speed Detection takes care of MAC speed/duplex
* configuration. So we only need to configure Collision
* Distance in the MAC. Otherwise, we need to force
* speed/duplex on the MAC to the current PHY speed/duplex
* settings.
*/
if(hw->mac_type >= e1000_82544)
e1000_config_collision_dist(hw);
else {
ret_val = e1000_config_mac_to_phy(hw);
if(ret_val) {
DEBUGOUT("Error configuring MAC to PHY settings\n");
return ret_val;
}
}
/* Configure Flow Control now that Auto-Neg has completed. First, we
* need to restore the desired flow control settings because we may
* have had to re-autoneg with a different link partner.
*/
ret_val = e1000_config_fc_after_link_up(hw);
if(ret_val) {
DEBUGOUT("Error configuring flow control\n");
return ret_val;
}
/* At this point we know that we are on copper and we have
* auto-negotiated link. These are conditions for checking the link
* partner capability register. We use the link speed to determine if
* TBI compatibility needs to be turned on or off. If the link is not
* at gigabit speed, then TBI compatibility is not needed. If we are
* at gigabit speed, we turn on TBI compatibility.
*/
if(hw->tbi_compatibility_en) {
uint16_t speed, duplex;
e1000_get_speed_and_duplex(hw, &speed, &duplex);
if(speed != SPEED_1000) {
/* If link speed is not set to gigabit speed, we do not need
* to enable TBI compatibility.
*/
if(hw->tbi_compatibility_on) {
/* If we previously were in the mode, turn it off. */
rctl = E1000_READ_REG(hw, RCTL);
rctl &= ~E1000_RCTL_SBP;
E1000_WRITE_REG(hw, RCTL, rctl);
hw->tbi_compatibility_on = FALSE;
}
} else {
/* If TBI compatibility is was previously off, turn it on. For
* compatibility with a TBI link partner, we will store bad
* packets. Some frames have an additional byte on the end and
* will look like CRC errors to to the hardware.
*/
if(!hw->tbi_compatibility_on) {
hw->tbi_compatibility_on = TRUE;
rctl = E1000_READ_REG(hw, RCTL);
rctl |= E1000_RCTL_SBP;
E1000_WRITE_REG(hw, RCTL, rctl);
}
}
}
}
/* If we don't have link (auto-negotiation failed or link partner cannot
* auto-negotiate), the cable is plugged in (we have signal), and our
* link partner is not trying to auto-negotiate with us (we are receiving
* idles or data), we need to force link up. We also need to give
* auto-negotiation time to complete, in case the cable was just plugged
* in. The autoneg_failed flag does this.
*/
else if((((hw->media_type == e1000_media_type_fiber) &&
((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
(hw->media_type == e1000_media_type_internal_serdes)) &&
(!(status & E1000_STATUS_LU)) &&
(!(rxcw & E1000_RXCW_C))) {
if(hw->autoneg_failed == 0) {
hw->autoneg_failed = 1;
return 0;
}
DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
/* Disable auto-negotiation in the TXCW register */
E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
/* Force link-up and also force full-duplex. */
ctrl = E1000_READ_REG(hw, CTRL);
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
E1000_WRITE_REG(hw, CTRL, ctrl);
/* Configure Flow Control after forcing link up. */
ret_val = e1000_config_fc_after_link_up(hw);
if(ret_val) {
DEBUGOUT("Error configuring flow control\n");
return ret_val;
}
}
/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
* auto-negotiation in the TXCW register and disable forced link in the
* Device Control register in an attempt to auto-negotiate with our link
* partner.
*/
else if(((hw->media_type == e1000_media_type_fiber) ||
(hw->media_type == e1000_media_type_internal_serdes)) &&
(ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
E1000_WRITE_REG(hw, TXCW, hw->txcw);
E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
hw->serdes_link_down = FALSE;
}
/* If we force link for non-auto-negotiation switch, check link status
* based on MAC synchronization for internal serdes media type.
*/
else if((hw->media_type == e1000_media_type_internal_serdes) &&
!(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
/* SYNCH bit and IV bit are sticky. */
udelay(10);
if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
if(!(rxcw & E1000_RXCW_IV)) {
hw->serdes_link_down = FALSE;
DEBUGOUT("SERDES: Link is up.\n");
}
} else {
hw->serdes_link_down = TRUE;
DEBUGOUT("SERDES: Link is down.\n");
}
}
if((hw->media_type == e1000_media_type_internal_serdes) &&
(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
}
return E1000_SUCCESS;
}
/******************************************************************************
* Detects the current speed and duplex settings of the hardware.
*
* hw - Struct containing variables accessed by shared code
* speed - Speed of the connection
* duplex - Duplex setting of the connection
*****************************************************************************/
int32_t
e1000_get_speed_and_duplex(struct e1000_hw *hw,
uint16_t *speed,
uint16_t *duplex)
{
uint32_t status;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC("e1000_get_speed_and_duplex");
if(hw->mac_type >= e1000_82543) {
status = E1000_READ_REG(hw, STATUS);
if(status & E1000_STATUS_SPEED_1000) {
*speed = SPEED_1000;
DEBUGOUT("1000 Mbs, ");
} else if(status & E1000_STATUS_SPEED_100) {
*speed = SPEED_100;
DEBUGOUT("100 Mbs, ");
} else {
*speed = SPEED_10;
DEBUGOUT("10 Mbs, ");
}
if(status & E1000_STATUS_FD) {
*duplex = FULL_DUPLEX;
DEBUGOUT("Full Duplex\r\n");
} else {
*duplex = HALF_DUPLEX;
DEBUGOUT(" Half Duplex\r\n");
}
} else {
DEBUGOUT("1000 Mbs, Full Duplex\r\n");
*speed = SPEED_1000;
*duplex = FULL_DUPLEX;
}
/* IGP01 PHY may advertise full duplex operation after speed downgrade even
* if it is operating at half duplex. Here we set the duplex settings to
* match the duplex in the link partner's capabilities.
*/
if(hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
if(ret_val)
return ret_val;
if(!(phy_data & NWAY_ER_LP_NWAY_CAPS))
*duplex = HALF_DUPLEX;
else {
ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
if(ret_val)
return ret_val;
if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
(*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
*duplex = HALF_DUPLEX;
}
}
return E1000_SUCCESS;
}
/******************************************************************************
* Blocks until autoneg completes or times out (~4.5 seconds)
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
int32_t
e1000_wait_autoneg(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t i;
uint16_t phy_data;
DEBUGFUNC("e1000_wait_autoneg");
DEBUGOUT("Waiting for Auto-Neg to complete.\n");
/* We will wait for autoneg to complete or 4.5 seconds to expire. */
for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Auto-Neg
* Complete bit to be set.
*/
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if(ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if(ret_val)
return ret_val;
if(phy_data & MII_SR_AUTONEG_COMPLETE) {
return E1000_SUCCESS;
}
msec_delay(100);
}
return E1000_SUCCESS;
}
/******************************************************************************
* Raises the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void
e1000_raise_mdi_clk(struct e1000_hw *hw,
uint32_t *ctrl)
{
/* Raise the clock input to the Management Data Clock (by setting the MDC
* bit), and then delay 10 microseconds.
*/
E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
E1000_WRITE_FLUSH(hw);
udelay(10);
}
/******************************************************************************
* Lowers the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void
e1000_lower_mdi_clk(struct e1000_hw *hw,
uint32_t *ctrl)
{
/* Lower the clock input to the Management Data Clock (by clearing the MDC
* bit), and then delay 10 microseconds.
*/
E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
E1000_WRITE_FLUSH(hw);
udelay(10);
}
/******************************************************************************
* Shifts data bits out to the PHY
*
* hw - Struct containing variables accessed by shared code
* data - Data to send out to the PHY
* count - Number of bits to shift out
*
* Bits are shifted out in MSB to LSB order.
******************************************************************************/
static void
e1000_shift_out_mdi_bits(struct e1000_hw *hw,
uint32_t data,
uint16_t count)
{
uint32_t ctrl;
uint32_t mask;
/* We need to shift "count" number of bits out to the PHY. So, the value
* in the "data" parameter will be shifted out to the PHY one bit at a
* time. In order to do this, "data" must be broken down into bits.
*/
mask = 0x01;
mask <<= (count - 1);
ctrl = E1000_READ_REG(hw, CTRL);
/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
while(mask) {
/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
* then raising and lowering the Management Data Clock. A "0" is
* shifted out to the PHY by setting the MDIO bit to "0" and then
* raising and lowering the clock.
*/
if(data & mask) ctrl |= E1000_CTRL_MDIO;
else ctrl &= ~E1000_CTRL_MDIO;
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
udelay(10);
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
mask = mask >> 1;
}
}
/******************************************************************************
* Shifts data bits in from the PHY
*
* hw - Struct containing variables accessed by shared code
*
* Bits are shifted in in MSB to LSB order.
******************************************************************************/
static uint16_t
e1000_shift_in_mdi_bits(struct e1000_hw *hw)
{
uint32_t ctrl;
uint16_t data = 0;
uint8_t i;
/* In order to read a register from the PHY, we need to shift in a total
* of 18 bits from the PHY. The first two bit (turnaround) times are used
* to avoid contention on the MDIO pin when a read operation is performed.
* These two bits are ignored by us and thrown away. Bits are "shifted in"
* by raising the input to the Management Data Clock (setting the MDC bit),
* and then reading the value of the MDIO bit.
*/
ctrl = E1000_READ_REG(hw, CTRL);
/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
ctrl &= ~E1000_CTRL_MDIO_DIR;
ctrl &= ~E1000_CTRL_MDIO;
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
/* Raise and Lower the clock before reading in the data. This accounts for
* the turnaround bits. The first clock occurred when we clocked out the
* last bit of the Register Address.
*/
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
for(data = 0, i = 0; i < 16; i++) {
data = data << 1;
e1000_raise_mdi_clk(hw, &ctrl);
ctrl = E1000_READ_REG(hw, CTRL);
/* Check to see if we shifted in a "1". */
if(ctrl & E1000_CTRL_MDIO) data |= 1;
e1000_lower_mdi_clk(hw, &ctrl);
}
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
return data;
}
/*****************************************************************************
* Reads the value from a PHY register, if the value is on a specific non zero
* page, sets the page first.
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
******************************************************************************/
int32_t
e1000_read_phy_reg(struct e1000_hw *hw,
uint32_t reg_addr,
uint16_t *phy_data)
{
uint32_t ret_val;
DEBUGFUNC("e1000_read_phy_reg");
if((hw->phy_type == e1000_phy_igp ||
hw->phy_type == e1000_phy_igp_2) &&
(reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
(uint16_t)reg_addr);
if(ret_val) {
return ret_val;
}
}
ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
phy_data);
return ret_val;
}
int32_t
e1000_read_phy_reg_ex(struct e1000_hw *hw,
uint32_t reg_addr,
uint16_t *phy_data)
{
uint32_t i;
uint32_t mdic = 0;
const uint32_t phy_addr = 1;
DEBUGFUNC("e1000_read_phy_reg_ex");
if(reg_addr > MAX_PHY_REG_ADDRESS) {
DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
return -E1000_ERR_PARAM;
}
if(hw->mac_type > e1000_82543) {
/* Set up Op-code, Phy Address, and register address in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
(phy_addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_READ));
E1000_WRITE_REG(hw, MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */
for(i = 0; i < 64; i++) {
udelay(50);
mdic = E1000_READ_REG(hw, MDIC);
if(mdic & E1000_MDIC_READY) break;
}
if(!(mdic & E1000_MDIC_READY)) {
DEBUGOUT("MDI Read did not complete\n");
return -E1000_ERR_PHY;
}
if(mdic & E1000_MDIC_ERROR) {
DEBUGOUT("MDI Error\n");
return -E1000_ERR_PHY;
}
*phy_data = (uint16_t) mdic;
} else {
/* We must first send a preamble through the MDIO pin to signal the
* beginning of an MII instruction. This is done by sending 32
* consecutive "1" bits.
*/
e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
/* Now combine the next few fields that are required for a read
* operation. We use this method instead of calling the
* e1000_shift_out_mdi_bits routine five different times. The format of
* a MII read instruction consists of a shift out of 14 bits and is
* defined as follows:
* <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
* followed by a shift in of 18 bits. This first two bits shifted in
* are TurnAround bits used to avoid contention on the MDIO pin when a
* READ operation is performed. These two bits are thrown away
* followed by a shift in of 16 bits which contains the desired data.
*/
mdic = ((reg_addr) | (phy_addr << 5) |
(PHY_OP_READ << 10) | (PHY_SOF << 12));
e1000_shift_out_mdi_bits(hw, mdic, 14);
/* Now that we've shifted out the read command to the MII, we need to
* "shift in" the 16-bit value (18 total bits) of the requested PHY
* register address.
*/
*phy_data = e1000_shift_in_mdi_bits(hw);
}
return E1000_SUCCESS;
}
/******************************************************************************
* Writes a value to a PHY register
*
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
******************************************************************************/
int32_t
e1000_write_phy_reg(struct e1000_hw *hw,
uint32_t reg_addr,
uint16_t phy_data)
{
uint32_t ret_val;
DEBUGFUNC("e1000_write_phy_reg");
if((hw->phy_type == e1000_phy_igp ||
hw->phy_type == e1000_phy_igp_2) &&
(reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
(uint16_t)reg_addr);
if(ret_val) {
return ret_val;
}
}
ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
phy_data);
return ret_val;
}
int32_t
e1000_write_phy_reg_ex(struct e1000_hw *hw,
uint32_t reg_addr,
uint16_t phy_data)
{
uint32_t i;
uint32_t mdic = 0;
const uint32_t phy_addr = 1;
DEBUGFUNC("e1000_write_phy_reg_ex");
if(reg_addr > MAX_PHY_REG_ADDRESS) {
DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
return -E1000_ERR_PARAM;
}
if(hw->mac_type > e1000_82543) {
/* Set up Op-code, Phy Address, register address, and data intended
* for the PHY register in the MDI Control register. The MAC will take
* care of interfacing with the PHY to send the desired data.
*/
mdic = (((uint32_t) phy_data) |
(reg_addr << E1000_MDIC_REG_SHIFT) |
(phy_addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_WRITE));
E1000_WRITE_REG(hw, MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */
for(i = 0; i < 640; i++) {
udelay(5);
mdic = E1000_READ_REG(hw, MDIC);
if(mdic & E1000_MDIC_READY) break;
}
if(!(mdic & E1000_MDIC_READY)) {
DEBUGOUT("MDI Write did not complete\n");
return -E1000_ERR_PHY;
}
} else {
/* We'll need to use the SW defined pins to shift the write command
* out to the PHY. We first send a preamble to the PHY to signal the
* beginning of the MII instruction. This is done by sending 32
* consecutive "1" bits.
*/
e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
/* Now combine the remaining required fields that will indicate a
* write operation. We use this method instead of calling the
* e1000_shift_out_mdi_bits routine for each field in the command. The
* format of a MII write instruction is as follows:
* <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
*/
mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
mdic <<= 16;
mdic |= (uint32_t) phy_data;
e1000_shift_out_mdi_bits(hw, mdic, 32);
}
return E1000_SUCCESS;
}
/******************************************************************************
* Returns the PHY to the power-on reset state
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
int32_t
e1000_phy_hw_reset(struct e1000_hw *hw)
{
uint32_t ctrl, ctrl_ext;
uint32_t led_ctrl;
int32_t ret_val;
DEBUGFUNC("e1000_phy_hw_reset");
/* In the case of the phy reset being blocked, it's not an error, we
* simply return success without performing the reset. */
ret_val = e1000_check_phy_reset_block(hw);
if (ret_val)
return E1000_SUCCESS;
DEBUGOUT("Resetting Phy...\n");
if(hw->mac_type > e1000_82543) {
/* Read the device control register and assert the E1000_CTRL_PHY_RST
* bit. Then, take it out of reset.
*/
ctrl = E1000_READ_REG(hw, CTRL);
E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
E1000_WRITE_FLUSH(hw);
msec_delay(10);
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
} else {
/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
* bit to put the PHY into reset. Then, take it out of reset.
*/
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
msec_delay(10);
ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
}
udelay(150);
if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
/* Configure activity LED after PHY reset */
led_ctrl = E1000_READ_REG(hw, LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK;
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
}
/* Wait for FW to finish PHY configuration. */
ret_val = e1000_get_phy_cfg_done(hw);
return ret_val;
}
/******************************************************************************
* Resets the PHY
*
* hw - Struct containing variables accessed by shared code
*
* Sets bit 15 of the MII Control regiser
******************************************************************************/
int32_t
e1000_phy_reset(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC("e1000_phy_reset");
/* In the case of the phy reset being blocked, it's not an error, we
* simply return success without performing the reset. */
ret_val = e1000_check_phy_reset_block(hw);
if (ret_val)
return E1000_SUCCESS;
switch (hw->mac_type) {
case e1000_82541_rev_2:
case e1000_82571:
case e1000_82572:
ret_val = e1000_phy_hw_reset(hw);
if(ret_val)
return ret_val;
break;
default:
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
if(ret_val)
return ret_val;
phy_data |= MII_CR_RESET;
ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
if(ret_val)
return ret_val;
udelay(1);
break;
}
if(hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
e1000_phy_init_script(hw);
return E1000_SUCCESS;
}
/******************************************************************************
* Probes the expected PHY address for known PHY IDs
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
int32_t
e1000_detect_gig_phy(struct e1000_hw *hw)
{
int32_t phy_init_status, ret_val;
uint16_t phy_id_high, phy_id_low;
boolean_t match = FALSE;
DEBUGFUNC("e1000_detect_gig_phy");
/* The 82571 firmware may still be configuring the PHY. In this
* case, we cannot access the PHY until the configuration is done. So
* we explicitly set the PHY values. */
if(hw->mac_type == e1000_82571 ||
hw->mac_type == e1000_82572) {
hw->phy_id = IGP01E1000_I_PHY_ID;
hw->phy_type = e1000_phy_igp_2;
return E1000_SUCCESS;
}
/* Read the PHY ID Registers to identify which PHY is onboard. */
ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
if(ret_val)
return ret_val;
hw->phy_id = (uint32_t) (phy_id_high << 16);
udelay(20);
ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
if(ret_val)
return ret_val;
hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
switch(hw->mac_type) {
case e1000_82543:
if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
break;
case e1000_82544:
if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
break;
case e1000_82540:
case e1000_82545:
case e1000_82545_rev_3:
case e1000_82546:
case e1000_82546_rev_3:
if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
break;
case e1000_82541:
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
break;
case e1000_82573:
if(hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
break;
default:
DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
return -E1000_ERR_CONFIG;
}
phy_init_status = e1000_set_phy_type(hw);
if ((match) && (phy_init_status == E1000_SUCCESS)) {
DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
return E1000_SUCCESS;
}
DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
return -E1000_ERR_PHY;
}
/******************************************************************************
* Resets the PHY's DSP
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_phy_reset_dsp(struct e1000_hw *hw)
{
int32_t ret_val;
DEBUGFUNC("e1000_phy_reset_dsp");
do {
ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
if(ret_val) break;
ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
if(ret_val) break;
ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
if(ret_val) break;
ret_val = E1000_SUCCESS;
} while(0);
return ret_val;
}
/******************************************************************************
* Get PHY information from various PHY registers for igp PHY only.
*
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
int32_t
e1000_phy_igp_get_info(struct e1000_hw *hw,
struct e1000_phy_info *phy_info)
{
int32_t ret_val;
uint16_t phy_data, polarity, min_length, max_length, average;
DEBUGFUNC("e1000_phy_igp_get_info");
/* The downshift status is checked only once, after link is established,
* and it stored in the hw->speed_downgraded parameter. */
phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
/* IGP01E1000 does not need to support it. */
phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
/* IGP01E1000 always correct polarity reversal */
phy_info->polarity_correction = e1000_polarity_reversal_enabled;
/* Check polarity status */
ret_val = e1000_check_polarity(hw, &polarity);
if(ret_val)
return ret_val;
phy_info->cable_polarity = polarity;
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
if(ret_val)
return ret_val;
phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >>
IGP01E1000_PSSR_MDIX_SHIFT;
if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS) {
/* Local/Remote Receiver Information are only valid at 1000 Mbps */
ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
if(ret_val)
return ret_val;
phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
SR_1000T_LOCAL_RX_STATUS_SHIFT;
phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
SR_1000T_REMOTE_RX_STATUS_SHIFT;
/* Get cable length */
ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
if(ret_val)
return ret_val;
/* Translate to old method */
average = (max_length + min_length) / 2;
if(average <= e1000_igp_cable_length_50)
phy_info->cable_length = e1000_cable_length_50;
else if(average <= e1000_igp_cable_length_80)
phy_info->cable_length = e1000_cable_length_50_80;
else if(average <= e1000_igp_cable_length_110)
phy_info->cable_length = e1000_cable_length_80_110;
else if(average <= e1000_igp_cable_length_140)
phy_info->cable_length = e1000_cable_length_110_140;
else
phy_info->cable_length = e1000_cable_length_140;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Get PHY information from various PHY registers fot m88 PHY only.
*
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
int32_t
e1000_phy_m88_get_info(struct e1000_hw *hw,
struct e1000_phy_info *phy_info)
{
int32_t ret_val;
uint16_t phy_data, polarity;
DEBUGFUNC("e1000_phy_m88_get_info");
/* The downshift status is checked only once, after link is established,
* and it stored in the hw->speed_downgraded parameter. */
phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if(ret_val)
return ret_val;
phy_info->extended_10bt_distance =
(phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;
phy_info->polarity_correction =
(phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;
/* Check polarity status */
ret_val = e1000_check_polarity(hw, &polarity);
if(ret_val)
return ret_val;
phy_info->cable_polarity = polarity;
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
if(ret_val)
return ret_val;
phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
M88E1000_PSSR_MDIX_SHIFT;
if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
/* Cable Length Estimation and Local/Remote Receiver Information
* are only valid at 1000 Mbps.
*/
phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
M88E1000_PSSR_CABLE_LENGTH_SHIFT);
ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
if(ret_val)
return ret_val;
phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
SR_1000T_LOCAL_RX_STATUS_SHIFT;
phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
SR_1000T_REMOTE_RX_STATUS_SHIFT;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Get PHY information from various PHY registers
*
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
int32_t
e1000_phy_get_info(struct e1000_hw *hw,
struct e1000_phy_info *phy_info)
{
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC("e1000_phy_get_info");
phy_info->cable_length = e1000_cable_length_undefined;
phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
phy_info->cable_polarity = e1000_rev_polarity_undefined;
phy_info->downshift = e1000_downshift_undefined;
phy_info->polarity_correction = e1000_polarity_reversal_undefined;
phy_info->mdix_mode = e1000_auto_x_mode_undefined;
phy_info->local_rx = e1000_1000t_rx_status_undefined;
phy_info->remote_rx = e1000_1000t_rx_status_undefined;
if(hw->media_type != e1000_media_type_copper) {
DEBUGOUT("PHY info is only valid for copper media\n");
return -E1000_ERR_CONFIG;
}
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if(ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
if(ret_val)
return ret_val;
if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
DEBUGOUT("PHY info is only valid if link is up\n");
return -E1000_ERR_CONFIG;
}
if(hw->phy_type == e1000_phy_igp ||
hw->phy_type == e1000_phy_igp_2)
return e1000_phy_igp_get_info(hw, phy_info);
else
return e1000_phy_m88_get_info(hw, phy_info);
}
int32_t
e1000_validate_mdi_setting(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_validate_mdi_settings");
if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
DEBUGOUT("Invalid MDI setting detected\n");
hw->mdix = 1;
return -E1000_ERR_CONFIG;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Sets up eeprom variables in the hw struct. Must be called after mac_type
* is configured.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
int32_t
e1000_init_eeprom_params(struct e1000_hw *hw)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t eecd = E1000_READ_REG(hw, EECD);
int32_t ret_val = E1000_SUCCESS;
uint16_t eeprom_size;
DEBUGFUNC("e1000_init_eeprom_params");
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
case e1000_82544:
eeprom->type = e1000_eeprom_microwire;
eeprom->word_size = 64;
eeprom->opcode_bits = 3;
eeprom->address_bits = 6;
eeprom->delay_usec = 50;
eeprom->use_eerd = FALSE;
eeprom->use_eewr = FALSE;
break;
case e1000_82540:
case e1000_82545:
case e1000_82545_rev_3:
case e1000_82546:
case e1000_82546_rev_3:
eeprom->type = e1000_eeprom_microwire;
eeprom->opcode_bits = 3;
eeprom->delay_usec = 50;
if(eecd & E1000_EECD_SIZE) {
eeprom->word_size = 256;
eeprom->address_bits = 8;
} else {
eeprom->word_size = 64;
eeprom->address_bits = 6;
}
eeprom->use_eerd = FALSE;
eeprom->use_eewr = FALSE;
break;
case e1000_82541:
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
if (eecd & E1000_EECD_TYPE) {
eeprom->type = e1000_eeprom_spi;
eeprom->opcode_bits = 8;
eeprom->delay_usec = 1;
if (eecd & E1000_EECD_ADDR_BITS) {
eeprom->page_size = 32;
eeprom->address_bits = 16;
} else {
eeprom->page_size = 8;
eeprom->address_bits = 8;
}
} else {
eeprom->type = e1000_eeprom_microwire;
eeprom->opcode_bits = 3;
eeprom->delay_usec = 50;
if (eecd & E1000_EECD_ADDR_BITS) {
eeprom->word_size = 256;
eeprom->address_bits = 8;
} else {
eeprom->word_size = 64;
eeprom->address_bits = 6;
}
}
eeprom->use_eerd = FALSE;
eeprom->use_eewr = FALSE;
break;
case e1000_82571:
case e1000_82572:
eeprom->type = e1000_eeprom_spi;
eeprom->opcode_bits = 8;
eeprom->delay_usec = 1;
if (eecd & E1000_EECD_ADDR_BITS) {
eeprom->page_size = 32;
eeprom->address_bits = 16;
} else {
eeprom->page_size = 8;
eeprom->address_bits = 8;
}
eeprom->use_eerd = FALSE;
eeprom->use_eewr = FALSE;
break;
case e1000_82573:
eeprom->type = e1000_eeprom_spi;
eeprom->opcode_bits = 8;
eeprom->delay_usec = 1;
if (eecd & E1000_EECD_ADDR_BITS) {
eeprom->page_size = 32;
eeprom->address_bits = 16;
} else {
eeprom->page_size = 8;
eeprom->address_bits = 8;
}
eeprom->use_eerd = TRUE;
eeprom->use_eewr = TRUE;
if(e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
eeprom->type = e1000_eeprom_flash;
eeprom->word_size = 2048;
/* Ensure that the Autonomous FLASH update bit is cleared due to
* Flash update issue on parts which use a FLASH for NVM. */
eecd &= ~E1000_EECD_AUPDEN;
E1000_WRITE_REG(hw, EECD, eecd);
}
break;
default:
break;
}
if (eeprom->type == e1000_eeprom_spi) {
/* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
* 32KB (incremented by powers of 2).
*/
if(hw->mac_type <= e1000_82547_rev_2) {
/* Set to default value for initial eeprom read. */
eeprom->word_size = 64;
ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
if(ret_val)
return ret_val;
eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
/* 256B eeprom size was not supported in earlier hardware, so we
* bump eeprom_size up one to ensure that "1" (which maps to 256B)
* is never the result used in the shifting logic below. */
if(eeprom_size)
eeprom_size++;
} else {
eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
E1000_EECD_SIZE_EX_SHIFT);
}
eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
}
return ret_val;
}
/******************************************************************************
* Raises the EEPROM's clock input.
*
* hw - Struct containing variables accessed by shared code
* eecd - EECD's current value
*****************************************************************************/
static void
e1000_raise_ee_clk(struct e1000_hw *hw,
uint32_t *eecd)
{
/* Raise the clock input to the EEPROM (by setting the SK bit), and then
* wait <delay> microseconds.
*/
*eecd = *eecd | E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, *eecd);
E1000_WRITE_FLUSH(hw);
udelay(hw->eeprom.delay_usec);
}
/******************************************************************************
* Lowers the EEPROM's clock input.
*
* hw - Struct containing variables accessed by shared code
* eecd - EECD's current value
*****************************************************************************/
static void
e1000_lower_ee_clk(struct e1000_hw *hw,
uint32_t *eecd)
{
/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
* wait 50 microseconds.
*/
*eecd = *eecd & ~E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, *eecd);
E1000_WRITE_FLUSH(hw);
udelay(hw->eeprom.delay_usec);
}
/******************************************************************************
* Shift data bits out to the EEPROM.
*
* hw - Struct containing variables accessed by shared code
* data - data to send to the EEPROM
* count - number of bits to shift out
*****************************************************************************/
static void
e1000_shift_out_ee_bits(struct e1000_hw *hw,
uint16_t data,
uint16_t count)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t eecd;
uint32_t mask;
/* We need to shift "count" bits out to the EEPROM. So, value in the
* "data" parameter will be shifted out to the EEPROM one bit at a time.
* In order to do this, "data" must be broken down into bits.
*/
mask = 0x01 << (count - 1);
eecd = E1000_READ_REG(hw, EECD);
if (eeprom->type == e1000_eeprom_microwire) {
eecd &= ~E1000_EECD_DO;
} else if (eeprom->type == e1000_eeprom_spi) {
eecd |= E1000_EECD_DO;
}
do {
/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
* and then raising and then lowering the clock (the SK bit controls
* the clock input to the EEPROM). A "0" is shifted out to the EEPROM
* by setting "DI" to "0" and then raising and then lowering the clock.
*/
eecd &= ~E1000_EECD_DI;
if(data & mask)
eecd |= E1000_EECD_DI;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
e1000_raise_ee_clk(hw, &eecd);
e1000_lower_ee_clk(hw, &eecd);
mask = mask >> 1;
} while(mask);
/* We leave the "DI" bit set to "0" when we leave this routine. */
eecd &= ~E1000_EECD_DI;
E1000_WRITE_REG(hw, EECD, eecd);
}
/******************************************************************************
* Shift data bits in from the EEPROM
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static uint16_t
e1000_shift_in_ee_bits(struct e1000_hw *hw,
uint16_t count)
{
uint32_t eecd;
uint32_t i;
uint16_t data;
/* In order to read a register from the EEPROM, we need to shift 'count'
* bits in from the EEPROM. Bits are "shifted in" by raising the clock
* input to the EEPROM (setting the SK bit), and then reading the value of
* the "DO" bit. During this "shifting in" process the "DI" bit should
* always be clear.
*/
eecd = E1000_READ_REG(hw, EECD);
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
data = 0;
for(i = 0; i < count; i++) {
data = data << 1;
e1000_raise_ee_clk(hw, &eecd);
eecd = E1000_READ_REG(hw, EECD);
eecd &= ~(E1000_EECD_DI);
if(eecd & E1000_EECD_DO)
data |= 1;
e1000_lower_ee_clk(hw, &eecd);
}
return data;
}
/******************************************************************************
* Prepares EEPROM for access
*
* hw - Struct containing variables accessed by shared code
*
* Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
* function should be called before issuing a command to the EEPROM.
*****************************************************************************/
static int32_t
e1000_acquire_eeprom(struct e1000_hw *hw)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t eecd, i=0;
DEBUGFUNC("e1000_acquire_eeprom");
if(e1000_get_hw_eeprom_semaphore(hw))
return -E1000_ERR_EEPROM;
eecd = E1000_READ_REG(hw, EECD);
if (hw->mac_type != e1000_82573) {
/* Request EEPROM Access */
if(hw->mac_type > e1000_82544) {
eecd |= E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
eecd = E1000_READ_REG(hw, EECD);
while((!(eecd & E1000_EECD_GNT)) &&
(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
i++;
udelay(5);
eecd = E1000_READ_REG(hw, EECD);
}
if(!(eecd & E1000_EECD_GNT)) {
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
DEBUGOUT("Could not acquire EEPROM grant\n");
e1000_put_hw_eeprom_semaphore(hw);
return -E1000_ERR_EEPROM;
}
}
}
/* Setup EEPROM for Read/Write */
if (eeprom->type == e1000_eeprom_microwire) {
/* Clear SK and DI */
eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
E1000_WRITE_REG(hw, EECD, eecd);
/* Set CS */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd);
} else if (eeprom->type == e1000_eeprom_spi) {
/* Clear SK and CS */
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
E1000_WRITE_REG(hw, EECD, eecd);
udelay(1);
}
return E1000_SUCCESS;
}
/******************************************************************************
* Returns EEPROM to a "standby" state
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static void
e1000_standby_eeprom(struct e1000_hw *hw)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t eecd;
eecd = E1000_READ_REG(hw, EECD);
if(eeprom->type == e1000_eeprom_microwire) {
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
/* Clock high */
eecd |= E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
/* Select EEPROM */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
/* Clock low */
eecd &= ~E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
} else if(eeprom->type == e1000_eeprom_spi) {
/* Toggle CS to flush commands */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
eecd &= ~E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
}
}
/******************************************************************************
* Terminates a command by inverting the EEPROM's chip select pin
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static void
e1000_release_eeprom(struct e1000_hw *hw)
{
uint32_t eecd;
DEBUGFUNC("e1000_release_eeprom");
eecd = E1000_READ_REG(hw, EECD);
if (hw->eeprom.type == e1000_eeprom_spi) {
eecd |= E1000_EECD_CS; /* Pull CS high */
eecd &= ~E1000_EECD_SK; /* Lower SCK */
E1000_WRITE_REG(hw, EECD, eecd);
udelay(hw->eeprom.delay_usec);
} else if(hw->eeprom.type == e1000_eeprom_microwire) {
/* cleanup eeprom */
/* CS on Microwire is active-high */
eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
E1000_WRITE_REG(hw, EECD, eecd);
/* Rising edge of clock */
eecd |= E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(hw->eeprom.delay_usec);
/* Falling edge of clock */
eecd &= ~E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(hw->eeprom.delay_usec);
}
/* Stop requesting EEPROM access */
if(hw->mac_type > e1000_82544) {
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
}
e1000_put_hw_eeprom_semaphore(hw);
}
/******************************************************************************
* Reads a 16 bit word from the EEPROM.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
int32_t
e1000_spi_eeprom_ready(struct e1000_hw *hw)
{
uint16_t retry_count = 0;
uint8_t spi_stat_reg;
DEBUGFUNC("e1000_spi_eeprom_ready");
/* Read "Status Register" repeatedly until the LSB is cleared. The
* EEPROM will signal that the command has been completed by clearing
* bit 0 of the internal status register. If it's not cleared within
* 5 milliseconds, then error out.
*/
retry_count = 0;
do {
e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
hw->eeprom.opcode_bits);
spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
break;
udelay(5);
retry_count += 5;
e1000_standby_eeprom(hw);
} while(retry_count < EEPROM_MAX_RETRY_SPI);
/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
* only 0-5mSec on 5V devices)
*/
if(retry_count >= EEPROM_MAX_RETRY_SPI) {
DEBUGOUT("SPI EEPROM Status error\n");
return -E1000_ERR_EEPROM;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Reads a 16 bit word from the EEPROM.
*
* hw - Struct containing variables accessed by shared code
* offset - offset of word in the EEPROM to read
* data - word read from the EEPROM
* words - number of words to read
*****************************************************************************/
int32_t
e1000_read_eeprom(struct e1000_hw *hw,
uint16_t offset,
uint16_t words,
uint16_t *data)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t i = 0;
int32_t ret_val;
DEBUGFUNC("e1000_read_eeprom");
/* A check for invalid values: offset too large, too many words, and not
* enough words.
*/
if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
(words == 0)) {
DEBUGOUT("\"words\" parameter out of bounds\n");
return -E1000_ERR_EEPROM;
}
/* FLASH reads without acquiring the semaphore are safe in 82573-based
* controllers.
*/
if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) ||
(hw->mac_type != e1000_82573)) {
/* Prepare the EEPROM for reading */
if(e1000_acquire_eeprom(hw) != E1000_SUCCESS)
return -E1000_ERR_EEPROM;
}
if(eeprom->use_eerd == TRUE) {
ret_val = e1000_read_eeprom_eerd(hw, offset, words, data);
if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) ||
(hw->mac_type != e1000_82573))
e1000_release_eeprom(hw);
return ret_val;
}
if(eeprom->type == e1000_eeprom_spi) {
uint16_t word_in;
uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
if(e1000_spi_eeprom_ready(hw)) {
e1000_release_eeprom(hw);
return -E1000_ERR_EEPROM;
}
e1000_standby_eeprom(hw);
/* Some SPI eeproms use the 8th address bit embedded in the opcode */
if((eeprom->address_bits == 8) && (offset >= 128))
read_opcode |= EEPROM_A8_OPCODE_SPI;
/* Send the READ command (opcode + addr) */
e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
/* Read the data. The address of the eeprom internally increments with
* each byte (spi) being read, saving on the overhead of eeprom setup
* and tear-down. The address counter will roll over if reading beyond
* the size of the eeprom, thus allowing the entire memory to be read
* starting from any offset. */
for (i = 0; i < words; i++) {
word_in = e1000_shift_in_ee_bits(hw, 16);
data[i] = (word_in >> 8) | (word_in << 8);
}
} else if(eeprom->type == e1000_eeprom_microwire) {
for (i = 0; i < words; i++) {
/* Send the READ command (opcode + addr) */
e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
eeprom->opcode_bits);
e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
eeprom->address_bits);
/* Read the data. For microwire, each word requires the overhead
* of eeprom setup and tear-down. */
data[i] = e1000_shift_in_ee_bits(hw, 16);
e1000_standby_eeprom(hw);
}
}
/* End this read operation */
e1000_release_eeprom(hw);
return E1000_SUCCESS;
}
/******************************************************************************
* Reads a 16 bit word from the EEPROM using the EERD register.
*
* hw - Struct containing variables accessed by shared code
* offset - offset of word in the EEPROM to read
* data - word read from the EEPROM
* words - number of words to read
*****************************************************************************/
int32_t
e1000_read_eeprom_eerd(struct e1000_hw *hw,
uint16_t offset,
uint16_t words,
uint16_t *data)
{
uint32_t i, eerd = 0;
int32_t error = 0;
for (i = 0; i < words; i++) {
eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
E1000_EEPROM_RW_REG_START;
E1000_WRITE_REG(hw, EERD, eerd);
error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
if(error) {
break;
}
data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
}
return error;
}
/******************************************************************************
* Writes a 16 bit word from the EEPROM using the EEWR register.
*
* hw - Struct containing variables accessed by shared code
* offset - offset of word in the EEPROM to read
* data - word read from the EEPROM
* words - number of words to read
*****************************************************************************/
int32_t
e1000_write_eeprom_eewr(struct e1000_hw *hw,
uint16_t offset,
uint16_t words,
uint16_t *data)
{
uint32_t register_value = 0;
uint32_t i = 0;
int32_t error = 0;
for (i = 0; i < words; i++) {
register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
E1000_EEPROM_RW_REG_START;
error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
if(error) {
break;
}
E1000_WRITE_REG(hw, EEWR, register_value);
error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
if(error) {
break;
}
}
return error;
}
/******************************************************************************
* Polls the status bit (bit 1) of the EERD to determine when the read is done.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
int32_t
e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
{
uint32_t attempts = 100000;
uint32_t i, reg = 0;
int32_t done = E1000_ERR_EEPROM;
for(i = 0; i < attempts; i++) {
if(eerd == E1000_EEPROM_POLL_READ)
reg = E1000_READ_REG(hw, EERD);
else
reg = E1000_READ_REG(hw, EEWR);
if(reg & E1000_EEPROM_RW_REG_DONE) {
done = E1000_SUCCESS;
break;
}
udelay(5);
}
return done;
}
/***************************************************************************
* Description: Determines if the onboard NVM is FLASH or EEPROM.
*
* hw - Struct containing variables accessed by shared code
****************************************************************************/
boolean_t
e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
{
uint32_t eecd = 0;
if(hw->mac_type == e1000_82573) {
eecd = E1000_READ_REG(hw, EECD);
/* Isolate bits 15 & 16 */
eecd = ((eecd >> 15) & 0x03);
/* If both bits are set, device is Flash type */
if(eecd == 0x03) {
return FALSE;
}
}
return TRUE;
}
/******************************************************************************
* Verifies that the EEPROM has a valid checksum
*
* hw - Struct containing variables accessed by shared code
*
* Reads the first 64 16 bit words of the EEPROM and sums the values read.
* If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
* valid.
*****************************************************************************/
int32_t
e1000_validate_eeprom_checksum(struct e1000_hw *hw)
{
uint16_t checksum = 0;
uint16_t i, eeprom_data;
DEBUGFUNC("e1000_validate_eeprom_checksum");
if ((hw->mac_type == e1000_82573) &&
(e1000_is_onboard_nvm_eeprom(hw) == FALSE)) {
/* Check bit 4 of word 10h. If it is 0, firmware is done updating
* 10h-12h. Checksum may need to be fixed. */
e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
if ((eeprom_data & 0x10) == 0) {
/* Read 0x23 and check bit 15. This bit is a 1 when the checksum
* has already been fixed. If the checksum is still wrong and this
* bit is a 1, we need to return bad checksum. Otherwise, we need
* to set this bit to a 1 and update the checksum. */
e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
if ((eeprom_data & 0x8000) == 0) {
eeprom_data |= 0x8000;
e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
e1000_update_eeprom_checksum(hw);
}
}
}
for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
checksum += eeprom_data;
}
if(checksum == (uint16_t) EEPROM_SUM)
return E1000_SUCCESS;
else {
DEBUGOUT("EEPROM Checksum Invalid\n");
return -E1000_ERR_EEPROM;
}
}
/******************************************************************************
* Calculates the EEPROM checksum and writes it to the EEPROM
*
* hw - Struct containing variables accessed by shared code
*
* Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
* Writes the difference to word offset 63 of the EEPROM.
*****************************************************************************/
int32_t
e1000_update_eeprom_checksum(struct e1000_hw *hw)
{
uint16_t checksum = 0;
uint16_t i, eeprom_data;
DEBUGFUNC("e1000_update_eeprom_checksum");
for(i = 0; i < EEPROM_CHECKSUM_REG; i++) {
if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
checksum += eeprom_data;
}
checksum = (uint16_t) EEPROM_SUM - checksum;
if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
DEBUGOUT("EEPROM Write Error\n");
return -E1000_ERR_EEPROM;
} else if (hw->eeprom.type == e1000_eeprom_flash) {
e1000_commit_shadow_ram(hw);
}
return E1000_SUCCESS;
}
/******************************************************************************
* Parent function for writing words to the different EEPROM types.
*
* hw - Struct containing variables accessed by shared code
* offset - offset within the EEPROM to be written to
* words - number of words to write
* data - 16 bit word to be written to the EEPROM
*
* If e1000_update_eeprom_checksum is not called after this function, the
* EEPROM will most likely contain an invalid checksum.
*****************************************************************************/
int32_t
e1000_write_eeprom(struct e1000_hw *hw,
uint16_t offset,
uint16_t words,
uint16_t *data)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
int32_t status = 0;
DEBUGFUNC("e1000_write_eeprom");
/* A check for invalid values: offset too large, too many words, and not
* enough words.
*/
if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
(words == 0)) {
DEBUGOUT("\"words\" parameter out of bounds\n");
return -E1000_ERR_EEPROM;
}
/* 82573 writes only through eewr */
if(eeprom->use_eewr == TRUE)
return e1000_write_eeprom_eewr(hw, offset, words, data);
/* Prepare the EEPROM for writing */
if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
return -E1000_ERR_EEPROM;
if(eeprom->type == e1000_eeprom_microwire) {
status = e1000_write_eeprom_microwire(hw, offset, words, data);
} else {
status = e1000_write_eeprom_spi(hw, offset, words, data);
msec_delay(10);
}
/* Done with writing */
e1000_release_eeprom(hw);
return status;
}
/******************************************************************************
* Writes a 16 bit word to a given offset in an SPI EEPROM.
*
* hw - Struct containing variables accessed by shared code
* offset - offset within the EEPROM to be written to
* words - number of words to write
* data - pointer to array of 8 bit words to be written to the EEPROM
*
*****************************************************************************/
int32_t
e1000_write_eeprom_spi(struct e1000_hw *hw,
uint16_t offset,
uint16_t words,
uint16_t *data)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint16_t widx = 0;
DEBUGFUNC("e1000_write_eeprom_spi");
while (widx < words) {
uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
if(e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
e1000_standby_eeprom(hw);
/* Send the WRITE ENABLE command (8 bit opcode ) */
e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
eeprom->opcode_bits);
e1000_standby_eeprom(hw);
/* Some SPI eeproms use the 8th address bit embedded in the opcode */
if((eeprom->address_bits == 8) && (offset >= 128))
write_opcode |= EEPROM_A8_OPCODE_SPI;
/* Send the Write command (8-bit opcode + addr) */
e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
eeprom->address_bits);
/* Send the data */
/* Loop to allow for up to whole page write (32 bytes) of eeprom */
while (widx < words) {
uint16_t word_out = data[widx];
word_out = (word_out >> 8) | (word_out << 8);
e1000_shift_out_ee_bits(hw, word_out, 16);
widx++;
/* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
* operation, while the smaller eeproms are capable of an 8-byte
* PAGE WRITE operation. Break the inner loop to pass new address
*/
if((((offset + widx)*2) % eeprom->page_size) == 0) {
e1000_standby_eeprom(hw);
break;
}
}
}
return E1000_SUCCESS;
}
/******************************************************************************
* Writes a 16 bit word to a given offset in a Microwire EEPROM.
*
* hw - Struct containing variables accessed by shared code
* offset - offset within the EEPROM to be written to
* words - number of words to write
* data - pointer to array of 16 bit words to be written to the EEPROM
*
*****************************************************************************/
int32_t
e1000_write_eeprom_microwire(struct e1000_hw *hw,
uint16_t offset,
uint16_t words,
uint16_t *data)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t eecd;
uint16_t words_written = 0;
uint16_t i = 0;
DEBUGFUNC("e1000_write_eeprom_microwire");
/* Send the write enable command to the EEPROM (3-bit opcode plus
* 6/8-bit dummy address beginning with 11). It's less work to include
* the 11 of the dummy address as part of the opcode than it is to shift
* it over the correct number of bits for the address. This puts the
* EEPROM into write/erase mode.
*/
e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
(uint16_t)(eeprom->opcode_bits + 2));
e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
/* Prepare the EEPROM */
e1000_standby_eeprom(hw);
while (words_written < words) {
/* Send the Write command (3-bit opcode + addr) */
e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
eeprom->opcode_bits);
e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
eeprom->address_bits);
/* Send the data */
e1000_shift_out_ee_bits(hw, data[words_written], 16);
/* Toggle the CS line. This in effect tells the EEPROM to execute
* the previous command.
*/
e1000_standby_eeprom(hw);
/* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
* signal that the command has been completed by raising the DO signal.
* If DO does not go high in 10 milliseconds, then error out.
*/
for(i = 0; i < 200; i++) {
eecd = E1000_READ_REG(hw, EECD);
if(eecd & E1000_EECD_DO) break;
udelay(50);
}
if(i == 200) {
DEBUGOUT("EEPROM Write did not complete\n");
return -E1000_ERR_EEPROM;
}
/* Recover from write */
e1000_standby_eeprom(hw);
words_written++;
}
/* Send the write disable command to the EEPROM (3-bit opcode plus
* 6/8-bit dummy address beginning with 10). It's less work to include
* the 10 of the dummy address as part of the opcode than it is to shift
* it over the correct number of bits for the address. This takes the
* EEPROM out of write/erase mode.
*/
e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
(uint16_t)(eeprom->opcode_bits + 2));
e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
return E1000_SUCCESS;
}
/******************************************************************************
* Flushes the cached eeprom to NVM. This is done by saving the modified values
* in the eeprom cache and the non modified values in the currently active bank
* to the new bank.
*
* hw - Struct containing variables accessed by shared code
* offset - offset of word in the EEPROM to read
* data - word read from the EEPROM
* words - number of words to read
*****************************************************************************/
int32_t
e1000_commit_shadow_ram(struct e1000_hw *hw)
{
uint32_t attempts = 100000;
uint32_t eecd = 0;
uint32_t flop = 0;
uint32_t i = 0;
int32_t error = E1000_SUCCESS;
/* The flop register will be used to determine if flash type is STM */
flop = E1000_READ_REG(hw, FLOP);
if (hw->mac_type == e1000_82573) {
for (i=0; i < attempts; i++) {
eecd = E1000_READ_REG(hw, EECD);
if ((eecd & E1000_EECD_FLUPD) == 0) {
break;
}
udelay(5);
}
if (i == attempts) {
return -E1000_ERR_EEPROM;
}
/* If STM opcode located in bits 15:8 of flop, reset firmware */
if ((flop & 0xFF00) == E1000_STM_OPCODE) {
E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
}
/* Perform the flash update */
E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
for (i=0; i < attempts; i++) {
eecd = E1000_READ_REG(hw, EECD);
if ((eecd & E1000_EECD_FLUPD) == 0) {
break;
}
udelay(5);
}
if (i == attempts) {
return -E1000_ERR_EEPROM;
}
}
return error;
}
/******************************************************************************
* Reads the adapter's part number from the EEPROM
*
* hw - Struct containing variables accessed by shared code
* part_num - Adapter's part number
*****************************************************************************/
int32_t
e1000_read_part_num(struct e1000_hw *hw,
uint32_t *part_num)
{
uint16_t offset = EEPROM_PBA_BYTE_1;
uint16_t eeprom_data;
DEBUGFUNC("e1000_read_part_num");
/* Get word 0 from EEPROM */
if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
/* Save word 0 in upper half of part_num */
*part_num = (uint32_t) (eeprom_data << 16);
/* Get word 1 from EEPROM */
if(e1000_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
/* Save word 1 in lower half of part_num */
*part_num |= eeprom_data;
return E1000_SUCCESS;
}
/******************************************************************************
* Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
* second function of dual function devices
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
int32_t
e1000_read_mac_addr(struct e1000_hw * hw)
{
uint16_t offset;
uint16_t eeprom_data, i;
DEBUGFUNC("e1000_read_mac_addr");
for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
offset = i >> 1;
if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
}
switch (hw->mac_type) {
default:
break;
case e1000_82546:
case e1000_82546_rev_3:
case e1000_82571:
if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
hw->perm_mac_addr[5] ^= 0x01;
break;
}
for(i = 0; i < NODE_ADDRESS_SIZE; i++)
hw->mac_addr[i] = hw->perm_mac_addr[i];
return E1000_SUCCESS;
}
/******************************************************************************
* Initializes receive address filters.
*
* hw - Struct containing variables accessed by shared code
*
* Places the MAC address in receive address register 0 and clears the rest
* of the receive addresss registers. Clears the multicast table. Assumes
* the receiver is in reset when the routine is called.
*****************************************************************************/
void
e1000_init_rx_addrs(struct e1000_hw *hw)
{
uint32_t i;
uint32_t rar_num;
DEBUGFUNC("e1000_init_rx_addrs");
/* Setup the receive address. */
DEBUGOUT("Programming MAC Address into RAR[0]\n");
e1000_rar_set(hw, hw->mac_addr, 0);
rar_num = E1000_RAR_ENTRIES;
/* Reserve a spot for the Locally Administered Address to work around
* an 82571 issue in which a reset on one port will reload the MAC on
* the other port. */
if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
rar_num -= 1;
/* Zero out the other 15 receive addresses. */
DEBUGOUT("Clearing RAR[1-15]\n");
for(i = 1; i < rar_num; i++) {
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
}
}
/******************************************************************************
* Updates the MAC's list of multicast addresses.
*
* hw - Struct containing variables accessed by shared code
* mc_addr_list - the list of new multicast addresses
* mc_addr_count - number of addresses
* pad - number of bytes between addresses in the list
* rar_used_count - offset where to start adding mc addresses into the RAR's
*
* The given list replaces any existing list. Clears the last 15 receive
* address registers and the multicast table. Uses receive address registers
* for the first 15 multicast addresses, and hashes the rest into the
* multicast table.
*****************************************************************************/
void
e1000_mc_addr_list_update(struct e1000_hw *hw,
uint8_t *mc_addr_list,
uint32_t mc_addr_count,
uint32_t pad,
uint32_t rar_used_count)
{
uint32_t hash_value;
uint32_t i;
uint32_t num_rar_entry;
uint32_t num_mta_entry;
DEBUGFUNC("e1000_mc_addr_list_update");
/* Set the new number of MC addresses that we are being requested to use. */
hw->num_mc_addrs = mc_addr_count;
/* Clear RAR[1-15] */
DEBUGOUT(" Clearing RAR[1-15]\n");
num_rar_entry = E1000_RAR_ENTRIES;
/* Reserve a spot for the Locally Administered Address to work around
* an 82571 issue in which a reset on one port will reload the MAC on
* the other port. */
if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
num_rar_entry -= 1;
for(i = rar_used_count; i < num_rar_entry; i++) {
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
}
/* Clear the MTA */
DEBUGOUT(" Clearing MTA\n");
num_mta_entry = E1000_NUM_MTA_REGISTERS;
for(i = 0; i < num_mta_entry; i++) {
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
}
/* Add the new addresses */
for(i = 0; i < mc_addr_count; i++) {
DEBUGOUT(" Adding the multicast addresses:\n");
DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
hash_value = e1000_hash_mc_addr(hw,
mc_addr_list +
(i * (ETH_LENGTH_OF_ADDRESS + pad)));
DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
/* Place this multicast address in the RAR if there is room, *
* else put it in the MTA
*/
if (rar_used_count < num_rar_entry) {
e1000_rar_set(hw,
mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
rar_used_count);
rar_used_count++;
} else {
e1000_mta_set(hw, hash_value);
}
}
DEBUGOUT("MC Update Complete\n");
}
/******************************************************************************
* Hashes an address to determine its location in the multicast table
*
* hw - Struct containing variables accessed by shared code
* mc_addr - the multicast address to hash
*****************************************************************************/
uint32_t
e1000_hash_mc_addr(struct e1000_hw *hw,
uint8_t *mc_addr)
{
uint32_t hash_value = 0;
/* The portion of the address that is used for the hash table is
* determined by the mc_filter_type setting.
*/
switch (hw->mc_filter_type) {
/* [0] [1] [2] [3] [4] [5]
* 01 AA 00 12 34 56
* LSB MSB
*/
case 0:
/* [47:36] i.e. 0x563 for above example address */
hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
break;
case 1:
/* [46:35] i.e. 0xAC6 for above example address */
hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
break;
case 2:
/* [45:34] i.e. 0x5D8 for above example address */
hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
break;
case 3:
/* [43:32] i.e. 0x634 for above example address */
hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
break;
}
hash_value &= 0xFFF;
return hash_value;
}
/******************************************************************************
* Sets the bit in the multicast table corresponding to the hash value.
*
* hw - Struct containing variables accessed by shared code
* hash_value - Multicast address hash value
*****************************************************************************/
void
e1000_mta_set(struct e1000_hw *hw,
uint32_t hash_value)
{
uint32_t hash_bit, hash_reg;
uint32_t mta;
uint32_t temp;
/* The MTA is a register array of 128 32-bit registers.
* It is treated like an array of 4096 bits. We want to set
* bit BitArray[hash_value]. So we figure out what register
* the bit is in, read it, OR in the new bit, then write
* back the new value. The register is determined by the
* upper 7 bits of the hash value and the bit within that
* register are determined by the lower 5 bits of the value.
*/
hash_reg = (hash_value >> 5) & 0x7F;
hash_bit = hash_value & 0x1F;
mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
mta |= (1 << hash_bit);
/* If we are on an 82544 and we are trying to write an odd offset
* in the MTA, save off the previous entry before writing and
* restore the old value after writing.
*/
if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
} else {
E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
}
}
/******************************************************************************
* Puts an ethernet address into a receive address register.
*
* hw - Struct containing variables accessed by shared code
* addr - Address to put into receive address register
* index - Receive address register to write
*****************************************************************************/
void
e1000_rar_set(struct e1000_hw *hw,
uint8_t *addr,
uint32_t index)
{
uint32_t rar_low, rar_high;
/* HW expects these in little endian so we reverse the byte order
* from network order (big endian) to little endian
*/
rar_low = ((uint32_t) addr[0] |
((uint32_t) addr[1] << 8) |
((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8) | E1000_RAH_AV);
E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
}
/******************************************************************************
* Writes a value to the specified offset in the VLAN filter table.
*
* hw - Struct containing variables accessed by shared code
* offset - Offset in VLAN filer table to write
* value - Value to write into VLAN filter table
*****************************************************************************/
void
e1000_write_vfta(struct e1000_hw *hw,
uint32_t offset,
uint32_t value)
{
uint32_t temp;
if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
} else {
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
}
}
/******************************************************************************
* Clears the VLAN filer table
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
void
e1000_clear_vfta(struct e1000_hw *hw)
{
uint32_t offset;
uint32_t vfta_value = 0;
uint32_t vfta_offset = 0;
uint32_t vfta_bit_in_reg = 0;
if (hw->mac_type == e1000_82573) {
if (hw->mng_cookie.vlan_id != 0) {
/* The VFTA is a 4096b bit-field, each identifying a single VLAN
* ID. The following operations determine which 32b entry
* (i.e. offset) into the array we want to set the VLAN ID
* (i.e. bit) of the manageability unit. */
vfta_offset = (hw->mng_cookie.vlan_id >>
E1000_VFTA_ENTRY_SHIFT) &
E1000_VFTA_ENTRY_MASK;
vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
}
}
for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
/* If the offset we want to clear is the same offset of the
* manageability VLAN ID, then clear all bits except that of the
* manageability unit */
vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
}
}
int32_t
e1000_id_led_init(struct e1000_hw * hw)
{
uint32_t ledctl;
const uint32_t ledctl_mask = 0x000000FF;
const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
uint16_t eeprom_data, i, temp;
const uint16_t led_mask = 0x0F;
DEBUGFUNC("e1000_id_led_init");
if(hw->mac_type < e1000_82540) {
/* Nothing to do */
return E1000_SUCCESS;
}
ledctl = E1000_READ_REG(hw, LEDCTL);
hw->ledctl_default = ledctl;
hw->ledctl_mode1 = hw->ledctl_default;
hw->ledctl_mode2 = hw->ledctl_default;
if(e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
if((eeprom_data== ID_LED_RESERVED_0000) ||
(eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT;
for(i = 0; i < 4; i++) {
temp = (eeprom_data >> (i << 2)) & led_mask;
switch(temp) {
case ID_LED_ON1_DEF2:
case ID_LED_ON1_ON2:
case ID_LED_ON1_OFF2:
hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
hw->ledctl_mode1 |= ledctl_on << (i << 3);
break;
case ID_LED_OFF1_DEF2:
case ID_LED_OFF1_ON2:
case ID_LED_OFF1_OFF2:
hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
hw->ledctl_mode1 |= ledctl_off << (i << 3);
break;
default:
/* Do nothing */
break;
}
switch(temp) {
case ID_LED_DEF1_ON2:
case ID_LED_ON1_ON2:
case ID_LED_OFF1_ON2:
hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
hw->ledctl_mode2 |= ledctl_on << (i << 3);
break;
case ID_LED_DEF1_OFF2:
case ID_LED_ON1_OFF2:
case ID_LED_OFF1_OFF2:
hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
hw->ledctl_mode2 |= ledctl_off << (i << 3);
break;
default:
/* Do nothing */
break;
}
}
return E1000_SUCCESS;
}
/******************************************************************************
* Prepares SW controlable LED for use and saves the current state of the LED.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
int32_t
e1000_setup_led(struct e1000_hw *hw)
{
uint32_t ledctl;
int32_t ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_setup_led");
switch(hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
case e1000_82544:
/* No setup necessary */
break;
case e1000_82541:
case e1000_82547:
case e1000_82541_rev_2:
case e1000_82547_rev_2:
/* Turn off PHY Smart Power Down (if enabled) */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
&hw->phy_spd_default);
if(ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
(uint16_t)(hw->phy_spd_default &
~IGP01E1000_GMII_SPD));
if(ret_val)
return ret_val;
/* Fall Through */
default:
if(hw->media_type == e1000_media_type_fiber) {
ledctl = E1000_READ_REG(hw, LEDCTL);
/* Save current LEDCTL settings */
hw->ledctl_default = ledctl;
/* Turn off LED0 */
ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
E1000_LEDCTL_LED0_BLINK |
E1000_LEDCTL_LED0_MODE_MASK);
ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
E1000_LEDCTL_LED0_MODE_SHIFT);
E1000_WRITE_REG(hw, LEDCTL, ledctl);
} else if(hw->media_type == e1000_media_type_copper)
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
break;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Restores the saved state of the SW controlable LED.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
int32_t
e1000_cleanup_led(struct e1000_hw *hw)
{
int32_t ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_cleanup_led");
switch(hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
case e1000_82544:
/* No cleanup necessary */
break;
case e1000_82541:
case e1000_82547:
case e1000_82541_rev_2:
case e1000_82547_rev_2:
/* Turn on PHY Smart Power Down (if previously enabled) */
ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
hw->phy_spd_default);
if(ret_val)
return ret_val;
/* Fall Through */
default:
/* Restore LEDCTL settings */
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
break;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Turns on the software controllable LED
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
int32_t
e1000_led_on(struct e1000_hw *hw)
{
uint32_t ctrl = E1000_READ_REG(hw, CTRL);
DEBUGFUNC("e1000_led_on");
switch(hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
/* Set SW Defineable Pin 0 to turn on the LED */
ctrl |= E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
break;
case e1000_82544:
if(hw->media_type == e1000_media_type_fiber) {
/* Set SW Defineable Pin 0 to turn on the LED */
ctrl |= E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
} else {
/* Clear SW Defineable Pin 0 to turn on the LED */
ctrl &= ~E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
}
break;
default:
if(hw->media_type == e1000_media_type_fiber) {
/* Clear SW Defineable Pin 0 to turn on the LED */
ctrl &= ~E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
} else if(hw->media_type == e1000_media_type_copper) {
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
return E1000_SUCCESS;
}
break;
}
E1000_WRITE_REG(hw, CTRL, ctrl);
return E1000_SUCCESS;
}
/******************************************************************************
* Turns off the software controllable LED
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
int32_t
e1000_led_off(struct e1000_hw *hw)
{
uint32_t ctrl = E1000_READ_REG(hw, CTRL);
DEBUGFUNC("e1000_led_off");
switch(hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
/* Clear SW Defineable Pin 0 to turn off the LED */
ctrl &= ~E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
break;
case e1000_82544:
if(hw->media_type == e1000_media_type_fiber) {
/* Clear SW Defineable Pin 0 to turn off the LED */
ctrl &= ~E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
} else {
/* Set SW Defineable Pin 0 to turn off the LED */
ctrl |= E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
}
break;
default:
if(hw->media_type == e1000_media_type_fiber) {
/* Set SW Defineable Pin 0 to turn off the LED */
ctrl |= E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
} else if(hw->media_type == e1000_media_type_copper) {
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
return E1000_SUCCESS;
}
break;
}
E1000_WRITE_REG(hw, CTRL, ctrl);
return E1000_SUCCESS;
}
/******************************************************************************
* Clears all hardware statistics counters.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
void
e1000_clear_hw_cntrs(struct e1000_hw *hw)
{
volatile uint32_t temp;
temp = E1000_READ_REG(hw, CRCERRS);
temp = E1000_READ_REG(hw, SYMERRS);
temp = E1000_READ_REG(hw, MPC);
temp = E1000_READ_REG(hw, SCC);
temp = E1000_READ_REG(hw, ECOL);
temp = E1000_READ_REG(hw, MCC);
temp = E1000_READ_REG(hw, LATECOL);
temp = E1000_READ_REG(hw, COLC);
temp = E1000_READ_REG(hw, DC);
temp = E1000_READ_REG(hw, SEC);
temp = E1000_READ_REG(hw, RLEC);
temp = E1000_READ_REG(hw, XONRXC);
temp = E1000_READ_REG(hw, XONTXC);
temp = E1000_READ_REG(hw, XOFFRXC);
temp = E1000_READ_REG(hw, XOFFTXC);
temp = E1000_READ_REG(hw, FCRUC);
temp = E1000_READ_REG(hw, PRC64);
temp = E1000_READ_REG(hw, PRC127);
temp = E1000_READ_REG(hw, PRC255);
temp = E1000_READ_REG(hw, PRC511);
temp = E1000_READ_REG(hw, PRC1023);
temp = E1000_READ_REG(hw, PRC1522);
temp = E1000_READ_REG(hw, GPRC);
temp = E1000_READ_REG(hw, BPRC);
temp = E1000_READ_REG(hw, MPRC);
temp = E1000_READ_REG(hw, GPTC);
temp = E1000_READ_REG(hw, GORCL);
temp = E1000_READ_REG(hw, GORCH);
temp = E1000_READ_REG(hw, GOTCL);
temp = E1000_READ_REG(hw, GOTCH);
temp = E1000_READ_REG(hw, RNBC);
temp = E1000_READ_REG(hw, RUC);
temp = E1000_READ_REG(hw, RFC);
temp = E1000_READ_REG(hw, ROC);
temp = E1000_READ_REG(hw, RJC);
temp = E1000_READ_REG(hw, TORL);
temp = E1000_READ_REG(hw, TORH);
temp = E1000_READ_REG(hw, TOTL);
temp = E1000_READ_REG(hw, TOTH);
temp = E1000_READ_REG(hw, TPR);
temp = E1000_READ_REG(hw, TPT);
temp = E1000_READ_REG(hw, PTC64);
temp = E1000_READ_REG(hw, PTC127);
temp = E1000_READ_REG(hw, PTC255);
temp = E1000_READ_REG(hw, PTC511);
temp = E1000_READ_REG(hw, PTC1023);
temp = E1000_READ_REG(hw, PTC1522);
temp = E1000_READ_REG(hw, MPTC);
temp = E1000_READ_REG(hw, BPTC);
if(hw->mac_type < e1000_82543) return;
temp = E1000_READ_REG(hw, ALGNERRC);
temp = E1000_READ_REG(hw, RXERRC);
temp = E1000_READ_REG(hw, TNCRS);
temp = E1000_READ_REG(hw, CEXTERR);
temp = E1000_READ_REG(hw, TSCTC);
temp = E1000_READ_REG(hw, TSCTFC);
if(hw->mac_type <= e1000_82544) return;
temp = E1000_READ_REG(hw, MGTPRC);
temp = E1000_READ_REG(hw, MGTPDC);
temp = E1000_READ_REG(hw, MGTPTC);
if(hw->mac_type <= e1000_82547_rev_2) return;
temp = E1000_READ_REG(hw, IAC);
temp = E1000_READ_REG(hw, ICRXOC);
temp = E1000_READ_REG(hw, ICRXPTC);
temp = E1000_READ_REG(hw, ICRXATC);
temp = E1000_READ_REG(hw, ICTXPTC);
temp = E1000_READ_REG(hw, ICTXATC);
temp = E1000_READ_REG(hw, ICTXQEC);
temp = E1000_READ_REG(hw, ICTXQMTC);
temp = E1000_READ_REG(hw, ICRXDMTC);
}
/******************************************************************************
* Resets Adaptive IFS to its default state.
*
* hw - Struct containing variables accessed by shared code
*
* Call this after e1000_init_hw. You may override the IFS defaults by setting
* hw->ifs_params_forced to TRUE. However, you must initialize hw->
* current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
* before calling this function.
*****************************************************************************/
void
e1000_reset_adaptive(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_reset_adaptive");
if(hw->adaptive_ifs) {
if(!hw->ifs_params_forced) {
hw->current_ifs_val = 0;
hw->ifs_min_val = IFS_MIN;
hw->ifs_max_val = IFS_MAX;
hw->ifs_step_size = IFS_STEP;
hw->ifs_ratio = IFS_RATIO;
}
hw->in_ifs_mode = FALSE;
E1000_WRITE_REG(hw, AIT, 0);
} else {
DEBUGOUT("Not in Adaptive IFS mode!\n");
}
}
/******************************************************************************
* Called during the callback/watchdog routine to update IFS value based on
* the ratio of transmits to collisions.
*
* hw - Struct containing variables accessed by shared code
* tx_packets - Number of transmits since last callback
* total_collisions - Number of collisions since last callback
*****************************************************************************/
void
e1000_update_adaptive(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_update_adaptive");
if(hw->adaptive_ifs) {
if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
if(hw->tx_packet_delta > MIN_NUM_XMITS) {
hw->in_ifs_mode = TRUE;
if(hw->current_ifs_val < hw->ifs_max_val) {
if(hw->current_ifs_val == 0)
hw->current_ifs_val = hw->ifs_min_val;
else
hw->current_ifs_val += hw->ifs_step_size;
E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
}
}
} else {
if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
hw->current_ifs_val = 0;
hw->in_ifs_mode = FALSE;
E1000_WRITE_REG(hw, AIT, 0);
}
}
} else {
DEBUGOUT("Not in Adaptive IFS mode!\n");
}
}
/******************************************************************************
* Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
*
* hw - Struct containing variables accessed by shared code
* frame_len - The length of the frame in question
* mac_addr - The Ethernet destination address of the frame in question
*****************************************************************************/
void
e1000_tbi_adjust_stats(struct e1000_hw *hw,
struct e1000_hw_stats *stats,
uint32_t frame_len,
uint8_t *mac_addr)
{
uint64_t carry_bit;
/* First adjust the frame length. */
frame_len--;
/* We need to adjust the statistics counters, since the hardware
* counters overcount this packet as a CRC error and undercount
* the packet as a good packet
*/
/* This packet should not be counted as a CRC error. */
stats->crcerrs--;
/* This packet does count as a Good Packet Received. */
stats->gprc++;
/* Adjust the Good Octets received counters */
carry_bit = 0x80000000 & stats->gorcl;
stats->gorcl += frame_len;
/* If the high bit of Gorcl (the low 32 bits of the Good Octets
* Received Count) was one before the addition,
* AND it is zero after, then we lost the carry out,
* need to add one to Gorch (Good Octets Received Count High).
* This could be simplified if all environments supported
* 64-bit integers.
*/
if(carry_bit && ((stats->gorcl & 0x80000000) == 0))
stats->gorch++;
/* Is this a broadcast or multicast? Check broadcast first,
* since the test for a multicast frame will test positive on
* a broadcast frame.
*/
if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
/* Broadcast packet */
stats->bprc++;
else if(*mac_addr & 0x01)
/* Multicast packet */
stats->mprc++;
if(frame_len == hw->max_frame_size) {
/* In this case, the hardware has overcounted the number of
* oversize frames.
*/
if(stats->roc > 0)
stats->roc--;
}
/* Adjust the bin counters when the extra byte put the frame in the
* wrong bin. Remember that the frame_len was adjusted above.
*/
if(frame_len == 64) {
stats->prc64++;
stats->prc127--;
} else if(frame_len == 127) {
stats->prc127++;
stats->prc255--;
} else if(frame_len == 255) {
stats->prc255++;
stats->prc511--;
} else if(frame_len == 511) {
stats->prc511++;
stats->prc1023--;
} else if(frame_len == 1023) {
stats->prc1023++;
stats->prc1522--;
} else if(frame_len == 1522) {
stats->prc1522++;
}
}
/******************************************************************************
* Gets the current PCI bus type, speed, and width of the hardware
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
void
e1000_get_bus_info(struct e1000_hw *hw)
{
uint32_t status;
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
hw->bus_type = e1000_bus_type_unknown;
hw->bus_speed = e1000_bus_speed_unknown;
hw->bus_width = e1000_bus_width_unknown;
break;
case e1000_82571:
case e1000_82572:
case e1000_82573:
hw->bus_type = e1000_bus_type_pci_express;
hw->bus_speed = e1000_bus_speed_2500;
hw->bus_width = e1000_bus_width_pciex_4;
break;
default:
status = E1000_READ_REG(hw, STATUS);
hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
e1000_bus_type_pcix : e1000_bus_type_pci;
if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
e1000_bus_speed_66 : e1000_bus_speed_120;
} else if(hw->bus_type == e1000_bus_type_pci) {
hw->bus_speed = (status & E1000_STATUS_PCI66) ?
e1000_bus_speed_66 : e1000_bus_speed_33;
} else {
switch (status & E1000_STATUS_PCIX_SPEED) {
case E1000_STATUS_PCIX_SPEED_66:
hw->bus_speed = e1000_bus_speed_66;
break;
case E1000_STATUS_PCIX_SPEED_100:
hw->bus_speed = e1000_bus_speed_100;
break;
case E1000_STATUS_PCIX_SPEED_133:
hw->bus_speed = e1000_bus_speed_133;
break;
default:
hw->bus_speed = e1000_bus_speed_reserved;
break;
}
}
hw->bus_width = (status & E1000_STATUS_BUS64) ?
e1000_bus_width_64 : e1000_bus_width_32;
break;
}
}
/******************************************************************************
* Reads a value from one of the devices registers using port I/O (as opposed
* memory mapped I/O). Only 82544 and newer devices support port I/O.
*
* hw - Struct containing variables accessed by shared code
* offset - offset to read from
*****************************************************************************/
uint32_t
e1000_read_reg_io(struct e1000_hw *hw,
uint32_t offset)
{
unsigned long io_addr = hw->io_base;
unsigned long io_data = hw->io_base + 4;
e1000_io_write(hw, io_addr, offset);
return e1000_io_read(hw, io_data);
}
/******************************************************************************
* Writes a value to one of the devices registers using port I/O (as opposed to
* memory mapped I/O). Only 82544 and newer devices support port I/O.
*
* hw - Struct containing variables accessed by shared code
* offset - offset to write to
* value - value to write
*****************************************************************************/
void
e1000_write_reg_io(struct e1000_hw *hw,
uint32_t offset,
uint32_t value)
{
unsigned long io_addr = hw->io_base;
unsigned long io_data = hw->io_base + 4;
e1000_io_write(hw, io_addr, offset);
e1000_io_write(hw, io_data, value);
}
/******************************************************************************
* Estimates the cable length.
*
* hw - Struct containing variables accessed by shared code
* min_length - The estimated minimum length
* max_length - The estimated maximum length
*
* returns: - E1000_ERR_XXX
* E1000_SUCCESS
*
* This function always returns a ranged length (minimum & maximum).
* So for M88 phy's, this function interprets the one value returned from the
* register to the minimum and maximum range.
* For IGP phy's, the function calculates the range by the AGC registers.
*****************************************************************************/
int32_t
e1000_get_cable_length(struct e1000_hw *hw,
uint16_t *min_length,
uint16_t *max_length)
{
int32_t ret_val;
uint16_t agc_value = 0;
uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
uint16_t max_agc = 0;
uint16_t i, phy_data;
uint16_t cable_length;
DEBUGFUNC("e1000_get_cable_length");
*min_length = *max_length = 0;
/* Use old method for Phy older than IGP */
if(hw->phy_type == e1000_phy_m88) {
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
&phy_data);
if(ret_val)
return ret_val;
cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
M88E1000_PSSR_CABLE_LENGTH_SHIFT;
/* Convert the enum value to ranged values */
switch (cable_length) {
case e1000_cable_length_50:
*min_length = 0;
*max_length = e1000_igp_cable_length_50;
break;
case e1000_cable_length_50_80:
*min_length = e1000_igp_cable_length_50;
*max_length = e1000_igp_cable_length_80;
break;
case e1000_cable_length_80_110:
*min_length = e1000_igp_cable_length_80;
*max_length = e1000_igp_cable_length_110;
break;
case e1000_cable_length_110_140:
*min_length = e1000_igp_cable_length_110;
*max_length = e1000_igp_cable_length_140;
break;
case e1000_cable_length_140:
*min_length = e1000_igp_cable_length_140;
*max_length = e1000_igp_cable_length_170;
break;
default:
return -E1000_ERR_PHY;
break;
}
} else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
{IGP01E1000_PHY_AGC_A,
IGP01E1000_PHY_AGC_B,
IGP01E1000_PHY_AGC_C,
IGP01E1000_PHY_AGC_D};
/* Read the AGC registers for all channels */
for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
if(ret_val)
return ret_val;
cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
/* Array bound check. */
if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
(cur_agc == 0))
return -E1000_ERR_PHY;
agc_value += cur_agc;
/* Update minimal AGC value. */
if(min_agc > cur_agc)
min_agc = cur_agc;
}
/* Remove the minimal AGC result for length < 50m */
if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
agc_value -= min_agc;
/* Get the average length of the remaining 3 channels */
agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
} else {
/* Get the average length of all the 4 channels. */
agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
}
/* Set the range of the calculated length. */
*min_length = ((e1000_igp_cable_length_table[agc_value] -
IGP01E1000_AGC_RANGE) > 0) ?
(e1000_igp_cable_length_table[agc_value] -
IGP01E1000_AGC_RANGE) : 0;
*max_length = e1000_igp_cable_length_table[agc_value] +
IGP01E1000_AGC_RANGE;
} else if (hw->phy_type == e1000_phy_igp_2) {
uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
{IGP02E1000_PHY_AGC_A,
IGP02E1000_PHY_AGC_B,
IGP02E1000_PHY_AGC_C,
IGP02E1000_PHY_AGC_D};
/* Read the AGC registers for all channels */
for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
if (ret_val)
return ret_val;
/* Getting bits 15:9, which represent the combination of course and
* fine gain values. The result is a number that can be put into
* the lookup table to obtain the approximate cable length. */
cur_agc = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
IGP02E1000_AGC_LENGTH_MASK;
/* Remove min & max AGC values from calculation. */
if (e1000_igp_2_cable_length_table[min_agc] > e1000_igp_2_cable_length_table[cur_agc])
min_agc = cur_agc;
if (e1000_igp_2_cable_length_table[max_agc] < e1000_igp_2_cable_length_table[cur_agc])
max_agc = cur_agc;
agc_value += e1000_igp_2_cable_length_table[cur_agc];
}
agc_value -= (e1000_igp_2_cable_length_table[min_agc] + e1000_igp_2_cable_length_table[max_agc]);
agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
/* Calculate cable length with the error range of +/- 10 meters. */
*min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
(agc_value - IGP02E1000_AGC_RANGE) : 0;
*max_length = agc_value + IGP02E1000_AGC_RANGE;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Check the cable polarity
*
* hw - Struct containing variables accessed by shared code
* polarity - output parameter : 0 - Polarity is not reversed
* 1 - Polarity is reversed.
*
* returns: - E1000_ERR_XXX
* E1000_SUCCESS
*
* For phy's older then IGP, this function simply reads the polarity bit in the
* Phy Status register. For IGP phy's, this bit is valid only if link speed is
* 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
* return 0. If the link speed is 1000 Mbps the polarity status is in the
* IGP01E1000_PHY_PCS_INIT_REG.
*****************************************************************************/
int32_t
e1000_check_polarity(struct e1000_hw *hw,
uint16_t *polarity)
{
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC("e1000_check_polarity");
if(hw->phy_type == e1000_phy_m88) {
/* return the Polarity bit in the Status register. */
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
&phy_data);
if(ret_val)
return ret_val;
*polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
M88E1000_PSSR_REV_POLARITY_SHIFT;
} else if(hw->phy_type == e1000_phy_igp ||
hw->phy_type == e1000_phy_igp_2) {
/* Read the Status register to check the speed */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
&phy_data);
if(ret_val)
return ret_val;
/* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
* find the polarity status */
if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS) {
/* Read the GIG initialization PCS register (0x00B4) */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
&phy_data);
if(ret_val)
return ret_val;
/* Check the polarity bits */
*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0;
} else {
/* For 10 Mbps, read the polarity bit in the status register. (for
* 100 Mbps this bit is always 0) */
*polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
}
}
return E1000_SUCCESS;
}
/******************************************************************************
* Check if Downshift occured
*
* hw - Struct containing variables accessed by shared code
* downshift - output parameter : 0 - No Downshift ocured.
* 1 - Downshift ocured.
*
* returns: - E1000_ERR_XXX
* E1000_SUCCESS
*
* For phy's older then IGP, this function reads the Downshift bit in the Phy
* Specific Status register. For IGP phy's, it reads the Downgrade bit in the
* Link Health register. In IGP this bit is latched high, so the driver must
* read it immediately after link is established.
*****************************************************************************/
int32_t
e1000_check_downshift(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC("e1000_check_downshift");
if(hw->phy_type == e1000_phy_igp ||
hw->phy_type == e1000_phy_igp_2) {
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
&phy_data);
if(ret_val)
return ret_val;
hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
} else if(hw->phy_type == e1000_phy_m88) {
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
&phy_data);
if(ret_val)
return ret_val;
hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
M88E1000_PSSR_DOWNSHIFT_SHIFT;
}
return E1000_SUCCESS;
}
/*****************************************************************************
*
* 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
* gigabit link is achieved to improve link quality.
*
* hw: Struct containing variables accessed by shared code
*
* returns: - E1000_ERR_PHY if fail to read/write the PHY
* E1000_SUCCESS at any other case.
*
****************************************************************************/
int32_t
e1000_config_dsp_after_link_change(struct e1000_hw *hw,
boolean_t link_up)
{
int32_t ret_val;
uint16_t phy_data, phy_saved_data, speed, duplex, i;
uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
{IGP01E1000_PHY_AGC_PARAM_A,
IGP01E1000_PHY_AGC_PARAM_B,
IGP01E1000_PHY_AGC_PARAM_C,
IGP01E1000_PHY_AGC_PARAM_D};
uint16_t min_length, max_length;
DEBUGFUNC("e1000_config_dsp_after_link_change");
if(hw->phy_type != e1000_phy_igp)
return E1000_SUCCESS;
if(link_up) {
ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
if(ret_val) {
DEBUGOUT("Error getting link speed and duplex\n");
return ret_val;
}
if(speed == SPEED_1000) {
e1000_get_cable_length(hw, &min_length, &max_length);
if((hw->dsp_config_state == e1000_dsp_config_enabled) &&
min_length >= e1000_igp_cable_length_50) {
for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
&phy_data);
if(ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
phy_data);
if(ret_val)
return ret_val;
}
hw->dsp_config_state = e1000_dsp_config_activated;
}
if((hw->ffe_config_state == e1000_ffe_config_enabled) &&
(min_length < e1000_igp_cable_length_50)) {
uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
uint32_t idle_errs = 0;
/* clear previous idle error counts */
ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
&phy_data);
if(ret_val)
return ret_val;
for(i = 0; i < ffe_idle_err_timeout; i++) {
udelay(1000);
ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
&phy_data);
if(ret_val)
return ret_val;
idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
hw->ffe_config_state = e1000_ffe_config_active;
ret_val = e1000_write_phy_reg(hw,
IGP01E1000_PHY_DSP_FFE,
IGP01E1000_PHY_DSP_FFE_CM_CP);
if(ret_val)
return ret_val;
break;
}
if(idle_errs)
ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
}
}
}
} else {
if(hw->dsp_config_state == e1000_dsp_config_activated) {
/* Save off the current value of register 0x2F5B to be restored at
* the end of the routines. */
ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
if(ret_val)
return ret_val;
/* Disable the PHY transmitter */
ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
if(ret_val)
return ret_val;
msec_delay_irq(20);
ret_val = e1000_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_FORCE_GIGA);
if(ret_val)
return ret_val;
for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
if(ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
if(ret_val)
return ret_val;
}
ret_val = e1000_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_RESTART_AUTONEG);
if(ret_val)
return ret_val;
msec_delay_irq(20);
/* Now enable the transmitter */
ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
if(ret_val)
return ret_val;
hw->dsp_config_state = e1000_dsp_config_enabled;
}
if(hw->ffe_config_state == e1000_ffe_config_active) {
/* Save off the current value of register 0x2F5B to be restored at
* the end of the routines. */
ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
if(ret_val)
return ret_val;
/* Disable the PHY transmitter */
ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
if(ret_val)
return ret_val;
msec_delay_irq(20);
ret_val = e1000_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_FORCE_GIGA);
if(ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
IGP01E1000_PHY_DSP_FFE_DEFAULT);
if(ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_RESTART_AUTONEG);
if(ret_val)
return ret_val;
msec_delay_irq(20);
/* Now enable the transmitter */
ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
if(ret_val)
return ret_val;
hw->ffe_config_state = e1000_ffe_config_enabled;
}
}
return E1000_SUCCESS;
}
/*****************************************************************************
* Set PHY to class A mode
* Assumes the following operations will follow to enable the new class mode.
* 1. Do a PHY soft reset
* 2. Restart auto-negotiation or force link.
*
* hw - Struct containing variables accessed by shared code
****************************************************************************/
static int32_t
e1000_set_phy_mode(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t eeprom_data;
DEBUGFUNC("e1000_set_phy_mode");
if((hw->mac_type == e1000_82545_rev_3) &&
(hw->media_type == e1000_media_type_copper)) {
ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
if(ret_val) {
return ret_val;
}
if((eeprom_data != EEPROM_RESERVED_WORD) &&
(eeprom_data & EEPROM_PHY_CLASS_A)) {
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
if(ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
if(ret_val)
return ret_val;
hw->phy_reset_disable = FALSE;
}
}
return E1000_SUCCESS;
}
/*****************************************************************************
*
* This function sets the lplu state according to the active flag. When
* activating lplu this function also disables smart speed and vise versa.
* lplu will not be activated unless the device autonegotiation advertisment
* meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
* hw: Struct containing variables accessed by shared code
* active - true to enable lplu false to disable lplu.
*
* returns: - E1000_ERR_PHY if fail to read/write the PHY
* E1000_SUCCESS at any other case.
*
****************************************************************************/
int32_t
e1000_set_d3_lplu_state(struct e1000_hw *hw,
boolean_t active)
{
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC("e1000_set_d3_lplu_state");
if(hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2)
return E1000_SUCCESS;
/* During driver activity LPLU should not be used or it will attain link
* from the lowest speeds starting from 10Mbps. The capability is used for
* Dx transitions and states */
if(hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
if(ret_val)
return ret_val;
} else {
ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
if(ret_val)
return ret_val;
}
if(!active) {
if(hw->mac_type == e1000_82541_rev_2 ||
hw->mac_type == e1000_82547_rev_2) {
phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
if(ret_val)
return ret_val;
} else {
phy_data &= ~IGP02E1000_PM_D3_LPLU;
ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
phy_data);
if (ret_val)
return ret_val;
}
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
* Dx states where the power conservation is most important. During
* driver activity we should enable SmartSpeed, so performance is
* maintained. */
if (hw->smart_speed == e1000_smart_speed_on) {
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&phy_data);
if(ret_val)
return ret_val;
phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
if(ret_val)
return ret_val;
} else if (hw->smart_speed == e1000_smart_speed_off) {
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
if(ret_val)
return ret_val;
}
} else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
if(hw->mac_type == e1000_82541_rev_2 ||
hw->mac_type == e1000_82547_rev_2) {
phy_data |= IGP01E1000_GMII_FLEX_SPD;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
if(ret_val)
return ret_val;
} else {
phy_data |= IGP02E1000_PM_D3_LPLU;
ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
phy_data);
if (ret_val)
return ret_val;
}
/* When LPLU is enabled we should disable SmartSpeed */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
if(ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
if(ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/*****************************************************************************
*
* This function sets the lplu d0 state according to the active flag. When
* activating lplu this function also disables smart speed and vise versa.
* lplu will not be activated unless the device autonegotiation advertisment
* meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
* hw: Struct containing variables accessed by shared code
* active - true to enable lplu false to disable lplu.
*
* returns: - E1000_ERR_PHY if fail to read/write the PHY
* E1000_SUCCESS at any other case.
*
****************************************************************************/
int32_t
e1000_set_d0_lplu_state(struct e1000_hw *hw,
boolean_t active)
{
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC("e1000_set_d0_lplu_state");
if(hw->mac_type <= e1000_82547_rev_2)
return E1000_SUCCESS;
ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
if(ret_val)
return ret_val;
if (!active) {
phy_data &= ~IGP02E1000_PM_D0_LPLU;
ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
if (ret_val)
return ret_val;
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
* Dx states where the power conservation is most important. During
* driver activity we should enable SmartSpeed, so performance is
* maintained. */
if (hw->smart_speed == e1000_smart_speed_on) {
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&phy_data);
if(ret_val)
return ret_val;
phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
if(ret_val)
return ret_val;
} else if (hw->smart_speed == e1000_smart_speed_off) {
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
if(ret_val)
return ret_val;
}
} else {
phy_data |= IGP02E1000_PM_D0_LPLU;
ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
if (ret_val)
return ret_val;
/* When LPLU is enabled we should disable SmartSpeed */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
if(ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
if(ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Change VCO speed register to improve Bit Error Rate performance of SERDES.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static int32_t
e1000_set_vco_speed(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t default_page = 0;
uint16_t phy_data;
DEBUGFUNC("e1000_set_vco_speed");
switch(hw->mac_type) {
case e1000_82545_rev_3:
case e1000_82546_rev_3:
break;
default:
return E1000_SUCCESS;
}
/* Set PHY register 30, page 5, bit 8 to 0 */
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
if(ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
if(ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
if(ret_val)
return ret_val;
phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
if(ret_val)
return ret_val;
/* Set PHY register 30, page 4, bit 11 to 1 */
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
if(ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
if(ret_val)
return ret_val;
phy_data |= M88E1000_PHY_VCO_REG_BIT11;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
if(ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
if(ret_val)
return ret_val;
return E1000_SUCCESS;
}
/*****************************************************************************
* This function reads the cookie from ARC ram.
*
* returns: - E1000_SUCCESS .
****************************************************************************/
int32_t
e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
{
uint8_t i;
uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
length = (length >> 2);
offset = (offset >> 2);
for (i = 0; i < length; i++) {
*((uint32_t *) buffer + i) =
E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
}
return E1000_SUCCESS;
}
/*****************************************************************************
* This function checks whether the HOST IF is enabled for command operaton
* and also checks whether the previous command is completed.
* It busy waits in case of previous command is not completed.
*
* returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
* timeout
* - E1000_SUCCESS for success.
****************************************************************************/
int32_t
e1000_mng_enable_host_if(struct e1000_hw * hw)
{
uint32_t hicr;
uint8_t i;
/* Check that the host interface is enabled. */
hicr = E1000_READ_REG(hw, HICR);
if ((hicr & E1000_HICR_EN) == 0) {
DEBUGOUT("E1000_HOST_EN bit disabled.\n");
return -E1000_ERR_HOST_INTERFACE_COMMAND;
}
/* check the previous command is completed */
for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
hicr = E1000_READ_REG(hw, HICR);
if (!(hicr & E1000_HICR_C))
break;
msec_delay_irq(1);
}
if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
DEBUGOUT("Previous command timeout failed .\n");
return -E1000_ERR_HOST_INTERFACE_COMMAND;
}
return E1000_SUCCESS;
}
/*****************************************************************************
* This function writes the buffer content at the offset given on the host if.
* It also does alignment considerations to do the writes in most efficient way.
* Also fills up the sum of the buffer in *buffer parameter.
*
* returns - E1000_SUCCESS for success.
****************************************************************************/
int32_t
e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer,
uint16_t length, uint16_t offset, uint8_t *sum)
{
uint8_t *tmp;
uint8_t *bufptr = buffer;
uint32_t data;
uint16_t remaining, i, j, prev_bytes;
/* sum = only sum of the data and it is not checksum */
if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
return -E1000_ERR_PARAM;
}
tmp = (uint8_t *)&data;
prev_bytes = offset & 0x3;
offset &= 0xFFFC;
offset >>= 2;
if (prev_bytes) {
data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
for (j = prev_bytes; j < sizeof(uint32_t); j++) {
*(tmp + j) = *bufptr++;
*sum += *(tmp + j);
}
E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
length -= j - prev_bytes;
offset++;
}
remaining = length & 0x3;
length -= remaining;
/* Calculate length in DWORDs */
length >>= 2;
/* The device driver writes the relevant command block into the
* ram area. */
for (i = 0; i < length; i++) {
for (j = 0; j < sizeof(uint32_t); j++) {
*(tmp + j) = *bufptr++;
*sum += *(tmp + j);
}
E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
}
if (remaining) {
for (j = 0; j < sizeof(uint32_t); j++) {
if (j < remaining)
*(tmp + j) = *bufptr++;
else
*(tmp + j) = 0;
*sum += *(tmp + j);
}
E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
}
return E1000_SUCCESS;
}
/*****************************************************************************
* This function writes the command header after does the checksum calculation.
*
* returns - E1000_SUCCESS for success.
****************************************************************************/
int32_t
e1000_mng_write_cmd_header(struct e1000_hw * hw,
struct e1000_host_mng_command_header * hdr)
{
uint16_t i;
uint8_t sum;
uint8_t *buffer;
/* Write the whole command header structure which includes sum of
* the buffer */
uint16_t length = sizeof(struct e1000_host_mng_command_header);
sum = hdr->checksum;
hdr->checksum = 0;
buffer = (uint8_t *) hdr;
i = length;
while(i--)
sum += buffer[i];
hdr->checksum = 0 - sum;
length >>= 2;
/* The device driver writes the relevant command block into the ram area. */
for (i = 0; i < length; i++)
E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
return E1000_SUCCESS;
}
/*****************************************************************************
* This function indicates to ARC that a new command is pending which completes
* one write operation by the driver.
*
* returns - E1000_SUCCESS for success.
****************************************************************************/
int32_t
e1000_mng_write_commit(
struct e1000_hw * hw)
{
uint32_t hicr;
hicr = E1000_READ_REG(hw, HICR);
/* Setting this bit tells the ARC that a new command is pending. */
E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
return E1000_SUCCESS;
}
/*****************************************************************************
* This function checks the mode of the firmware.
*
* returns - TRUE when the mode is IAMT or FALSE.
****************************************************************************/
boolean_t
e1000_check_mng_mode(
struct e1000_hw *hw)
{
uint32_t fwsm;
fwsm = E1000_READ_REG(hw, FWSM);
if((fwsm & E1000_FWSM_MODE_MASK) ==
(E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
return TRUE;
return FALSE;
}
/*****************************************************************************
* This function writes the dhcp info .
****************************************************************************/
int32_t
e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer,
uint16_t length)
{
int32_t ret_val;
struct e1000_host_mng_command_header hdr;
hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
hdr.command_length = length;
hdr.reserved1 = 0;
hdr.reserved2 = 0;
hdr.checksum = 0;
ret_val = e1000_mng_enable_host_if(hw);
if (ret_val == E1000_SUCCESS) {
ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
&(hdr.checksum));
if (ret_val == E1000_SUCCESS) {
ret_val = e1000_mng_write_cmd_header(hw, &hdr);
if (ret_val == E1000_SUCCESS)
ret_val = e1000_mng_write_commit(hw);
}
}
return ret_val;
}
/*****************************************************************************
* This function calculates the checksum.
*
* returns - checksum of buffer contents.
****************************************************************************/
uint8_t
e1000_calculate_mng_checksum(char *buffer, uint32_t length)
{
uint8_t sum = 0;
uint32_t i;
if (!buffer)
return 0;
for (i=0; i < length; i++)
sum += buffer[i];
return (uint8_t) (0 - sum);
}
/*****************************************************************************
* This function checks whether tx pkt filtering needs to be enabled or not.
*
* returns - TRUE for packet filtering or FALSE.
****************************************************************************/
boolean_t
e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
{
/* called in init as well as watchdog timer functions */
int32_t ret_val, checksum;
boolean_t tx_filter = FALSE;
struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
if (e1000_check_mng_mode(hw)) {
ret_val = e1000_mng_enable_host_if(hw);
if (ret_val == E1000_SUCCESS) {
ret_val = e1000_host_if_read_cookie(hw, buffer);
if (ret_val == E1000_SUCCESS) {
checksum = hdr->checksum;
hdr->checksum = 0;
if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
checksum == e1000_calculate_mng_checksum((char *)buffer,
E1000_MNG_DHCP_COOKIE_LENGTH)) {
if (hdr->status &
E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
tx_filter = TRUE;
} else
tx_filter = TRUE;
} else
tx_filter = TRUE;
}
}
hw->tx_pkt_filtering = tx_filter;
return tx_filter;
}
/******************************************************************************
* Verifies the hardware needs to allow ARPs to be processed by the host
*
* hw - Struct containing variables accessed by shared code
*
* returns: - TRUE/FALSE
*
*****************************************************************************/
uint32_t
e1000_enable_mng_pass_thru(struct e1000_hw *hw)
{
uint32_t manc;
uint32_t fwsm, factps;
if (hw->asf_firmware_present) {
manc = E1000_READ_REG(hw, MANC);
if (!(manc & E1000_MANC_RCV_TCO_EN) ||
!(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
return FALSE;
if (e1000_arc_subsystem_valid(hw) == TRUE) {
fwsm = E1000_READ_REG(hw, FWSM);
factps = E1000_READ_REG(hw, FACTPS);
if (((fwsm & E1000_FWSM_MODE_MASK) ==
(e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) &&
(factps & E1000_FACTPS_MNGCG))
return TRUE;
} else
if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
return TRUE;
}
return FALSE;
}
static int32_t
e1000_polarity_reversal_workaround(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t mii_status_reg;
uint16_t i;
/* Polarity reversal workaround for forced 10F/10H links. */
/* Disable the transmitter on the PHY */
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
if(ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
if(ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
if(ret_val)
return ret_val;
/* This loop will early-out if the NO link condition has been met. */
for(i = PHY_FORCE_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Link Status bit
* to be clear.
*/
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if(ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if(ret_val)
return ret_val;
if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
msec_delay_irq(100);
}
/* Recommended delay time after link has been lost */
msec_delay_irq(1000);
/* Now we will re-enable th transmitter on the PHY */
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
if(ret_val)
return ret_val;
msec_delay_irq(50);
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
if(ret_val)
return ret_val;
msec_delay_irq(50);
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
if(ret_val)
return ret_val;
msec_delay_irq(50);
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
if(ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
if(ret_val)
return ret_val;
/* This loop will early-out if the link condition has been met. */
for(i = PHY_FORCE_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Link Status bit
* to be set.
*/
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if(ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
if(ret_val)
return ret_val;
if(mii_status_reg & MII_SR_LINK_STATUS) break;
msec_delay_irq(100);
}
return E1000_SUCCESS;
}
/***************************************************************************
*
* Disables PCI-Express master access.
*
* hw: Struct containing variables accessed by shared code
*
* returns: - none.
*
***************************************************************************/
void
e1000_set_pci_express_master_disable(struct e1000_hw *hw)
{
uint32_t ctrl;
DEBUGFUNC("e1000_set_pci_express_master_disable");
if (hw->bus_type != e1000_bus_type_pci_express)
return;
ctrl = E1000_READ_REG(hw, CTRL);
ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
E1000_WRITE_REG(hw, CTRL, ctrl);
}
/***************************************************************************
*
* Enables PCI-Express master access.
*
* hw: Struct containing variables accessed by shared code
*
* returns: - none.
*
***************************************************************************/
void
e1000_enable_pciex_master(struct e1000_hw *hw)
{
uint32_t ctrl;
DEBUGFUNC("e1000_enable_pciex_master");
if (hw->bus_type != e1000_bus_type_pci_express)
return;
ctrl = E1000_READ_REG(hw, CTRL);
ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
E1000_WRITE_REG(hw, CTRL, ctrl);
}
/*******************************************************************************
*
* Disables PCI-Express master access and verifies there are no pending requests
*
* hw: Struct containing variables accessed by shared code
*
* returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
* caused the master requests to be disabled.
* E1000_SUCCESS master requests disabled.
*
******************************************************************************/
int32_t
e1000_disable_pciex_master(struct e1000_hw *hw)
{
int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */
DEBUGFUNC("e1000_disable_pciex_master");
if (hw->bus_type != e1000_bus_type_pci_express)
return E1000_SUCCESS;
e1000_set_pci_express_master_disable(hw);
while(timeout) {
if(!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
break;
else
udelay(100);
timeout--;
}
if(!timeout) {
DEBUGOUT("Master requests are pending.\n");
return -E1000_ERR_MASTER_REQUESTS_PENDING;
}
return E1000_SUCCESS;
}
/*******************************************************************************
*
* Check for EEPROM Auto Read bit done.
*
* hw: Struct containing variables accessed by shared code
*
* returns: - E1000_ERR_RESET if fail to reset MAC
* E1000_SUCCESS at any other case.
*
******************************************************************************/
int32_t
e1000_get_auto_rd_done(struct e1000_hw *hw)
{
int32_t timeout = AUTO_READ_DONE_TIMEOUT;
DEBUGFUNC("e1000_get_auto_rd_done");
switch (hw->mac_type) {
default:
msec_delay(5);
break;
case e1000_82571:
case e1000_82572:
case e1000_82573:
while(timeout) {
if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break;
else msec_delay(1);
timeout--;
}
if(!timeout) {
DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
return -E1000_ERR_RESET;
}
break;
}
return E1000_SUCCESS;
}
/***************************************************************************
* Checks if the PHY configuration is done
*
* hw: Struct containing variables accessed by shared code
*
* returns: - E1000_ERR_RESET if fail to reset MAC
* E1000_SUCCESS at any other case.
*
***************************************************************************/
int32_t
e1000_get_phy_cfg_done(struct e1000_hw *hw)
{
int32_t timeout = PHY_CFG_TIMEOUT;
uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
DEBUGFUNC("e1000_get_phy_cfg_done");
switch (hw->mac_type) {
default:
msec_delay(10);
break;
case e1000_82571:
case e1000_82572:
while (timeout) {
if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
break;
else
msec_delay(1);
timeout--;
}
if (!timeout) {
DEBUGOUT("MNG configuration cycle has not completed.\n");
return -E1000_ERR_RESET;
}
break;
}
return E1000_SUCCESS;
}
/***************************************************************************
*
* Using the combination of SMBI and SWESMBI semaphore bits when resetting
* adapter or Eeprom access.
*
* hw: Struct containing variables accessed by shared code
*
* returns: - E1000_ERR_EEPROM if fail to access EEPROM.
* E1000_SUCCESS at any other case.
*
***************************************************************************/
int32_t
e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
{
int32_t timeout;
uint32_t swsm;
DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
if(!hw->eeprom_semaphore_present)
return E1000_SUCCESS;
/* Get the FW semaphore. */
timeout = hw->eeprom.word_size + 1;
while(timeout) {
swsm = E1000_READ_REG(hw, SWSM);
swsm |= E1000_SWSM_SWESMBI;
E1000_WRITE_REG(hw, SWSM, swsm);
/* if we managed to set the bit we got the semaphore. */
swsm = E1000_READ_REG(hw, SWSM);
if(swsm & E1000_SWSM_SWESMBI)
break;
udelay(50);
timeout--;
}
if(!timeout) {
/* Release semaphores */
e1000_put_hw_eeprom_semaphore(hw);
DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
return -E1000_ERR_EEPROM;
}
return E1000_SUCCESS;
}
/***************************************************************************
* This function clears HW semaphore bits.
*
* hw: Struct containing variables accessed by shared code
*
* returns: - None.
*
***************************************************************************/
void
e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
{
uint32_t swsm;
DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
if(!hw->eeprom_semaphore_present)
return;
swsm = E1000_READ_REG(hw, SWSM);
swsm &= ~(E1000_SWSM_SWESMBI);
E1000_WRITE_REG(hw, SWSM, swsm);
}
/******************************************************************************
* Checks if PHY reset is blocked due to SOL/IDER session, for example.
* Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
* the caller to figure out how to deal with it.
*
* hw - Struct containing variables accessed by shared code
*
* returns: - E1000_BLK_PHY_RESET
* E1000_SUCCESS
*
*****************************************************************************/
int32_t
e1000_check_phy_reset_block(struct e1000_hw *hw)
{
uint32_t manc = 0;
if(hw->mac_type > e1000_82547_rev_2)
manc = E1000_READ_REG(hw, MANC);
return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
E1000_BLK_PHY_RESET : E1000_SUCCESS;
}
uint8_t
e1000_arc_subsystem_valid(struct e1000_hw *hw)
{
uint32_t fwsm;
/* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
* may not be provided a DMA clock when no manageability features are
* enabled. We do not want to perform any reads/writes to these registers
* if this is the case. We read FWSM to determine the manageability mode.
*/
switch (hw->mac_type) {
case e1000_82571:
case e1000_82572:
case e1000_82573:
fwsm = E1000_READ_REG(hw, FWSM);
if((fwsm & E1000_FWSM_MODE_MASK) != 0)
return TRUE;
break;
default:
break;
}
return FALSE;
}