linux/mm/mempool.c

292 lines
8.0 KiB
C
Raw Normal View History

/*
* linux/mm/mempool.c
*
* memory buffer pool support. Such pools are mostly used
* for guaranteed, deadlock-free memory allocations during
* extreme VM load.
*
* started by Ingo Molnar, Copyright (C) 2001
*/
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/mempool.h>
#include <linux/blkdev.h>
#include <linux/writeback.h>
static void add_element(mempool_t *pool, void *element)
{
BUG_ON(pool->curr_nr >= pool->min_nr);
pool->elements[pool->curr_nr++] = element;
}
static void *remove_element(mempool_t *pool)
{
BUG_ON(pool->curr_nr <= 0);
return pool->elements[--pool->curr_nr];
}
static void free_pool(mempool_t *pool)
{
while (pool->curr_nr) {
void *element = remove_element(pool);
pool->free(element, pool->pool_data);
}
kfree(pool->elements);
kfree(pool);
}
/**
* mempool_create - create a memory pool
* @min_nr: the minimum number of elements guaranteed to be
* allocated for this pool.
* @alloc_fn: user-defined element-allocation function.
* @free_fn: user-defined element-freeing function.
* @pool_data: optional private data available to the user-defined functions.
*
* this function creates and allocates a guaranteed size, preallocated
* memory pool. The pool can be used from the mempool_alloc and mempool_free
* functions. This function might sleep. Both the alloc_fn() and the free_fn()
* functions might sleep - as long as the mempool_alloc function is not called
* from IRQ contexts.
*/
mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
mempool_free_t *free_fn, void *pool_data)
{
return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,-1);
}
EXPORT_SYMBOL(mempool_create);
mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
mempool_free_t *free_fn, void *pool_data, int node_id)
{
mempool_t *pool;
pool = kmalloc_node(sizeof(*pool), GFP_KERNEL, node_id);
if (!pool)
return NULL;
memset(pool, 0, sizeof(*pool));
pool->elements = kmalloc_node(min_nr * sizeof(void *),
GFP_KERNEL, node_id);
if (!pool->elements) {
kfree(pool);
return NULL;
}
spin_lock_init(&pool->lock);
pool->min_nr = min_nr;
pool->pool_data = pool_data;
init_waitqueue_head(&pool->wait);
pool->alloc = alloc_fn;
pool->free = free_fn;
/*
* First pre-allocate the guaranteed number of buffers.
*/
while (pool->curr_nr < pool->min_nr) {
void *element;
element = pool->alloc(GFP_KERNEL, pool->pool_data);
if (unlikely(!element)) {
free_pool(pool);
return NULL;
}
add_element(pool, element);
}
return pool;
}
EXPORT_SYMBOL(mempool_create_node);
/**
* mempool_resize - resize an existing memory pool
* @pool: pointer to the memory pool which was allocated via
* mempool_create().
* @new_min_nr: the new minimum number of elements guaranteed to be
* allocated for this pool.
* @gfp_mask: the usual allocation bitmask.
*
* This function shrinks/grows the pool. In the case of growing,
* it cannot be guaranteed that the pool will be grown to the new
* size immediately, but new mempool_free() calls will refill it.
*
* Note, the caller must guarantee that no mempool_destroy is called
* while this function is running. mempool_alloc() & mempool_free()
* might be called (eg. from IRQ contexts) while this function executes.
*/
int mempool_resize(mempool_t *pool, int new_min_nr, unsigned int __nocast gfp_mask)
{
void *element;
void **new_elements;
unsigned long flags;
BUG_ON(new_min_nr <= 0);
spin_lock_irqsave(&pool->lock, flags);
if (new_min_nr <= pool->min_nr) {
while (new_min_nr < pool->curr_nr) {
element = remove_element(pool);
spin_unlock_irqrestore(&pool->lock, flags);
pool->free(element, pool->pool_data);
spin_lock_irqsave(&pool->lock, flags);
}
pool->min_nr = new_min_nr;
goto out_unlock;
}
spin_unlock_irqrestore(&pool->lock, flags);
/* Grow the pool */
new_elements = kmalloc(new_min_nr * sizeof(*new_elements), gfp_mask);
if (!new_elements)
return -ENOMEM;
spin_lock_irqsave(&pool->lock, flags);
if (unlikely(new_min_nr <= pool->min_nr)) {
/* Raced, other resize will do our work */
spin_unlock_irqrestore(&pool->lock, flags);
kfree(new_elements);
goto out;
}
memcpy(new_elements, pool->elements,
pool->curr_nr * sizeof(*new_elements));
kfree(pool->elements);
pool->elements = new_elements;
pool->min_nr = new_min_nr;
while (pool->curr_nr < pool->min_nr) {
spin_unlock_irqrestore(&pool->lock, flags);
element = pool->alloc(gfp_mask, pool->pool_data);
if (!element)
goto out;
spin_lock_irqsave(&pool->lock, flags);
if (pool->curr_nr < pool->min_nr) {
add_element(pool, element);
} else {
spin_unlock_irqrestore(&pool->lock, flags);
pool->free(element, pool->pool_data); /* Raced */
goto out;
}
}
out_unlock:
spin_unlock_irqrestore(&pool->lock, flags);
out:
return 0;
}
EXPORT_SYMBOL(mempool_resize);
/**
* mempool_destroy - deallocate a memory pool
* @pool: pointer to the memory pool which was allocated via
* mempool_create().
*
* this function only sleeps if the free_fn() function sleeps. The caller
* has to guarantee that all elements have been returned to the pool (ie:
* freed) prior to calling mempool_destroy().
*/
void mempool_destroy(mempool_t *pool)
{
if (pool->curr_nr != pool->min_nr)
BUG(); /* There were outstanding elements */
free_pool(pool);
}
EXPORT_SYMBOL(mempool_destroy);
/**
* mempool_alloc - allocate an element from a specific memory pool
* @pool: pointer to the memory pool which was allocated via
* mempool_create().
* @gfp_mask: the usual allocation bitmask.
*
* this function only sleeps if the alloc_fn function sleeps or
* returns NULL. Note that due to preallocation, this function
* *never* fails when called from process contexts. (it might
* fail if called from an IRQ context.)
*/
void * mempool_alloc(mempool_t *pool, unsigned int __nocast gfp_mask)
{
void *element;
unsigned long flags;
wait_queue_t wait;
unsigned int gfp_temp;
might_sleep_if(gfp_mask & __GFP_WAIT);
gfp_mask |= __GFP_NOMEMALLOC; /* don't allocate emergency reserves */
gfp_mask |= __GFP_NORETRY; /* don't loop in __alloc_pages */
gfp_mask |= __GFP_NOWARN; /* failures are OK */
gfp_temp = gfp_mask & ~(__GFP_WAIT|__GFP_IO);
repeat_alloc:
element = pool->alloc(gfp_temp, pool->pool_data);
if (likely(element != NULL))
return element;
spin_lock_irqsave(&pool->lock, flags);
if (likely(pool->curr_nr)) {
element = remove_element(pool);
spin_unlock_irqrestore(&pool->lock, flags);
return element;
}
spin_unlock_irqrestore(&pool->lock, flags);
/* We must not sleep in the GFP_ATOMIC case */
if (!(gfp_mask & __GFP_WAIT))
return NULL;
/* Now start performing page reclaim */
gfp_temp = gfp_mask;
init_wait(&wait);
prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
smp_mb();
if (!pool->curr_nr)
io_schedule();
finish_wait(&pool->wait, &wait);
goto repeat_alloc;
}
EXPORT_SYMBOL(mempool_alloc);
/**
* mempool_free - return an element to the pool.
* @element: pool element pointer.
* @pool: pointer to the memory pool which was allocated via
* mempool_create().
*
* this function only sleeps if the free_fn() function sleeps.
*/
void mempool_free(void *element, mempool_t *pool)
{
unsigned long flags;
smp_mb();
if (pool->curr_nr < pool->min_nr) {
spin_lock_irqsave(&pool->lock, flags);
if (pool->curr_nr < pool->min_nr) {
add_element(pool, element);
spin_unlock_irqrestore(&pool->lock, flags);
wake_up(&pool->wait);
return;
}
spin_unlock_irqrestore(&pool->lock, flags);
}
pool->free(element, pool->pool_data);
}
EXPORT_SYMBOL(mempool_free);
/*
* A commonly used alloc and free fn.
*/
void *mempool_alloc_slab(unsigned int __nocast gfp_mask, void *pool_data)
{
kmem_cache_t *mem = (kmem_cache_t *) pool_data;
return kmem_cache_alloc(mem, gfp_mask);
}
EXPORT_SYMBOL(mempool_alloc_slab);
void mempool_free_slab(void *element, void *pool_data)
{
kmem_cache_t *mem = (kmem_cache_t *) pool_data;
kmem_cache_free(mem, element);
}
EXPORT_SYMBOL(mempool_free_slab);