linux/sound/x86/intel_hdmi_audio.c

2044 lines
58 KiB
C
Raw Normal View History

/*
* intel_hdmi_audio.c - Intel HDMI audio driver
*
* Copyright (C) 2016 Intel Corp
* Authors: Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
* Ramesh Babu K V <ramesh.babu@intel.com>
* Vaibhav Agarwal <vaibhav.agarwal@intel.com>
* Jerome Anand <jerome.anand@intel.com>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* ALSA driver for Intel HDMI audio
*/
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/acpi.h>
#include <asm/cacheflush.h>
#include <sound/pcm.h>
#include <sound/core.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/control.h>
#include <sound/initval.h>
#include <drm/intel_lpe_audio.h>
#include "intel_hdmi_audio.h"
/*standard module options for ALSA. This module supports only one card*/
static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
module_param_named(index, hdmi_card_index, int, 0444);
MODULE_PARM_DESC(index,
"Index value for INTEL Intel HDMI Audio controller.");
module_param_named(id, hdmi_card_id, charp, 0444);
MODULE_PARM_DESC(id,
"ID string for INTEL Intel HDMI Audio controller.");
/*
* ELD SA bits in the CEA Speaker Allocation data block
*/
static const int eld_speaker_allocation_bits[] = {
[0] = FL | FR,
[1] = LFE,
[2] = FC,
[3] = RL | RR,
[4] = RC,
[5] = FLC | FRC,
[6] = RLC | RRC,
/* the following are not defined in ELD yet */
[7] = 0,
};
/*
* This is an ordered list!
*
* The preceding ones have better chances to be selected by
* hdmi_channel_allocation().
*/
static struct cea_channel_speaker_allocation channel_allocations[] = {
/* channel: 7 6 5 4 3 2 1 0 */
{ .ca_index = 0x00, .speakers = { 0, 0, 0, 0, 0, 0, FR, FL } },
/* 2.1 */
{ .ca_index = 0x01, .speakers = { 0, 0, 0, 0, 0, LFE, FR, FL } },
/* Dolby Surround */
{ .ca_index = 0x02, .speakers = { 0, 0, 0, 0, FC, 0, FR, FL } },
/* surround40 */
{ .ca_index = 0x08, .speakers = { 0, 0, RR, RL, 0, 0, FR, FL } },
/* surround41 */
{ .ca_index = 0x09, .speakers = { 0, 0, RR, RL, 0, LFE, FR, FL } },
/* surround50 */
{ .ca_index = 0x0a, .speakers = { 0, 0, RR, RL, FC, 0, FR, FL } },
/* surround51 */
{ .ca_index = 0x0b, .speakers = { 0, 0, RR, RL, FC, LFE, FR, FL } },
/* 6.1 */
{ .ca_index = 0x0f, .speakers = { 0, RC, RR, RL, FC, LFE, FR, FL } },
/* surround71 */
{ .ca_index = 0x13, .speakers = { RRC, RLC, RR, RL, FC, LFE, FR, FL } },
{ .ca_index = 0x03, .speakers = { 0, 0, 0, 0, FC, LFE, FR, FL } },
{ .ca_index = 0x04, .speakers = { 0, 0, 0, RC, 0, 0, FR, FL } },
{ .ca_index = 0x05, .speakers = { 0, 0, 0, RC, 0, LFE, FR, FL } },
{ .ca_index = 0x06, .speakers = { 0, 0, 0, RC, FC, 0, FR, FL } },
{ .ca_index = 0x07, .speakers = { 0, 0, 0, RC, FC, LFE, FR, FL } },
{ .ca_index = 0x0c, .speakers = { 0, RC, RR, RL, 0, 0, FR, FL } },
{ .ca_index = 0x0d, .speakers = { 0, RC, RR, RL, 0, LFE, FR, FL } },
{ .ca_index = 0x0e, .speakers = { 0, RC, RR, RL, FC, 0, FR, FL } },
{ .ca_index = 0x10, .speakers = { RRC, RLC, RR, RL, 0, 0, FR, FL } },
{ .ca_index = 0x11, .speakers = { RRC, RLC, RR, RL, 0, LFE, FR, FL } },
{ .ca_index = 0x12, .speakers = { RRC, RLC, RR, RL, FC, 0, FR, FL } },
{ .ca_index = 0x14, .speakers = { FRC, FLC, 0, 0, 0, 0, FR, FL } },
{ .ca_index = 0x15, .speakers = { FRC, FLC, 0, 0, 0, LFE, FR, FL } },
{ .ca_index = 0x16, .speakers = { FRC, FLC, 0, 0, FC, 0, FR, FL } },
{ .ca_index = 0x17, .speakers = { FRC, FLC, 0, 0, FC, LFE, FR, FL } },
{ .ca_index = 0x18, .speakers = { FRC, FLC, 0, RC, 0, 0, FR, FL } },
{ .ca_index = 0x19, .speakers = { FRC, FLC, 0, RC, 0, LFE, FR, FL } },
{ .ca_index = 0x1a, .speakers = { FRC, FLC, 0, RC, FC, 0, FR, FL } },
{ .ca_index = 0x1b, .speakers = { FRC, FLC, 0, RC, FC, LFE, FR, FL } },
{ .ca_index = 0x1c, .speakers = { FRC, FLC, RR, RL, 0, 0, FR, FL } },
{ .ca_index = 0x1d, .speakers = { FRC, FLC, RR, RL, 0, LFE, FR, FL } },
{ .ca_index = 0x1e, .speakers = { FRC, FLC, RR, RL, FC, 0, FR, FL } },
{ .ca_index = 0x1f, .speakers = { FRC, FLC, RR, RL, FC, LFE, FR, FL } },
};
static const struct channel_map_table map_tables[] = {
{ SNDRV_CHMAP_FL, 0x00, FL },
{ SNDRV_CHMAP_FR, 0x01, FR },
{ SNDRV_CHMAP_RL, 0x04, RL },
{ SNDRV_CHMAP_RR, 0x05, RR },
{ SNDRV_CHMAP_LFE, 0x02, LFE },
{ SNDRV_CHMAP_FC, 0x03, FC },
{ SNDRV_CHMAP_RLC, 0x06, RLC },
{ SNDRV_CHMAP_RRC, 0x07, RRC },
{} /* terminator */
};
/* hardware capability structure */
static const struct snd_pcm_hardware snd_intel_hadstream = {
.info = (SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_DOUBLE |
SNDRV_PCM_INFO_MMAP|
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_BATCH),
.formats = (SNDRV_PCM_FMTBIT_S24 |
SNDRV_PCM_FMTBIT_U24),
.rates = SNDRV_PCM_RATE_32000 |
SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000 |
SNDRV_PCM_RATE_88200 |
SNDRV_PCM_RATE_96000 |
SNDRV_PCM_RATE_176400 |
SNDRV_PCM_RATE_192000,
.rate_min = HAD_MIN_RATE,
.rate_max = HAD_MAX_RATE,
.channels_min = HAD_MIN_CHANNEL,
.channels_max = HAD_MAX_CHANNEL,
.buffer_bytes_max = HAD_MAX_BUFFER,
.period_bytes_min = HAD_MIN_PERIOD_BYTES,
.period_bytes_max = HAD_MAX_PERIOD_BYTES,
.periods_min = HAD_MIN_PERIODS,
.periods_max = HAD_MAX_PERIODS,
.fifo_size = HAD_FIFO_SIZE,
};
/* Get the active PCM substream;
* Call had_substream_put() for unreferecing.
* Don't call this inside had_spinlock, as it takes by itself
*/
static struct snd_pcm_substream *
had_substream_get(struct snd_intelhad *intelhaddata)
{
struct snd_pcm_substream *substream;
unsigned long flags;
spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
substream = intelhaddata->stream_info.substream;
if (substream)
intelhaddata->stream_info.substream_refcount++;
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
return substream;
}
/* Unref the active PCM substream;
* Don't call this inside had_spinlock, as it takes by itself
*/
static void had_substream_put(struct snd_intelhad *intelhaddata)
{
unsigned long flags;
spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
intelhaddata->stream_info.substream_refcount--;
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
}
/* Register access functions */
static inline void
mid_hdmi_audio_read(struct snd_intelhad *ctx, u32 reg, u32 *val)
{
*val = ioread32(ctx->mmio_start + ctx->had_config_offset + reg);
}
static inline void
mid_hdmi_audio_write(struct snd_intelhad *ctx, u32 reg, u32 val)
{
iowrite32(val, ctx->mmio_start + ctx->had_config_offset + reg);
}
static int had_read_register(struct snd_intelhad *intelhaddata,
u32 offset, u32 *data)
{
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED)
return -ENODEV;
mid_hdmi_audio_read(intelhaddata, offset, data);
return 0;
}
static void fixup_dp_config(struct snd_intelhad *intelhaddata,
u32 offset, u32 *data)
{
if (intelhaddata->dp_output) {
if (offset == AUD_CONFIG && (*data & AUD_CONFIG_VALID_BIT))
*data |= AUD_CONFIG_DP_MODE | AUD_CONFIG_BLOCK_BIT;
}
}
static int had_write_register(struct snd_intelhad *intelhaddata,
u32 offset, u32 data)
{
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED)
return -ENODEV;
fixup_dp_config(intelhaddata, offset, &data);
mid_hdmi_audio_write(intelhaddata, offset, data);
return 0;
}
static int had_read_modify(struct snd_intelhad *intelhaddata, u32 offset,
u32 data, u32 mask)
{
u32 val_tmp;
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED)
return -ENODEV;
mid_hdmi_audio_read(intelhaddata, offset, &val_tmp);
val_tmp &= ~mask;
val_tmp |= (data & mask);
fixup_dp_config(intelhaddata, offset, &val_tmp);
mid_hdmi_audio_write(intelhaddata, offset, val_tmp);
return 0;
}
/*
* enable / disable audio configuration
*
* The had_read_modify() function should not directly be used on VLV2 for
* updating AUD_CONFIG register.
* This is because:
* Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
* HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
* clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
* register. This field should be 1xy binary for configuration with 6 or
* more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
* causes the "channels" field to be updated as 0xy binary resulting in
* bad audio. The fix is to always write the AUD_CONFIG[6:4] with
* appropriate value when doing read-modify of AUD_CONFIG register.
*/
static void snd_intelhad_enable_audio(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata,
bool enable)
{
union aud_cfg cfg_val = {.cfg_regval = 0};
u8 channels, data, mask;
/*
* If substream is NULL, there is no active stream.
* In this case just set channels to 2
*/
channels = substream ? substream->runtime->channels : 2;
cfg_val.cfg_regx.num_ch = channels - 2;
data = cfg_val.cfg_regval;
if (enable)
data |= 1;
mask = AUD_CONFIG_CH_MASK | 1;
dev_dbg(intelhaddata->dev, "%s : data = %x, mask =%x\n",
__func__, data, mask);
had_read_modify(intelhaddata, AUD_CONFIG, data, mask);
}
/* enable / disable the audio interface */
static void snd_intelhad_enable_audio_int(struct snd_intelhad *ctx, bool enable)
{
u32 status_reg;
if (enable) {
mid_hdmi_audio_read(ctx, AUD_HDMI_STATUS, &status_reg);
status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
mid_hdmi_audio_write(ctx, AUD_HDMI_STATUS, status_reg);
mid_hdmi_audio_read(ctx, AUD_HDMI_STATUS, &status_reg);
}
}
static void snd_intelhad_reset_audio(struct snd_intelhad *intelhaddata,
u8 reset)
{
had_write_register(intelhaddata, AUD_HDMI_STATUS, reset);
}
/*
* initialize audio channel status registers
* This function is called in the prepare callback
*/
static int had_prog_status_reg(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
union aud_cfg cfg_val = {.cfg_regval = 0};
union aud_ch_status_0 ch_stat0 = {.status_0_regval = 0};
union aud_ch_status_1 ch_stat1 = {.status_1_regval = 0};
int format;
ch_stat0.status_0_regx.lpcm_id = (intelhaddata->aes_bits &
IEC958_AES0_NONAUDIO) >> 1;
ch_stat0.status_0_regx.clk_acc = (intelhaddata->aes_bits &
IEC958_AES3_CON_CLOCK) >> 4;
cfg_val.cfg_regx.val_bit = ch_stat0.status_0_regx.lpcm_id;
switch (substream->runtime->rate) {
case AUD_SAMPLE_RATE_32:
ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_32KHZ;
break;
case AUD_SAMPLE_RATE_44_1:
ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_44KHZ;
break;
case AUD_SAMPLE_RATE_48:
ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_48KHZ;
break;
case AUD_SAMPLE_RATE_88_2:
ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_88KHZ;
break;
case AUD_SAMPLE_RATE_96:
ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_96KHZ;
break;
case AUD_SAMPLE_RATE_176_4:
ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_176KHZ;
break;
case AUD_SAMPLE_RATE_192:
ch_stat0.status_0_regx.samp_freq = CH_STATUS_MAP_192KHZ;
break;
default:
/* control should never come here */
return -EINVAL;
}
had_write_register(intelhaddata,
AUD_CH_STATUS_0, ch_stat0.status_0_regval);
format = substream->runtime->format;
if (format == SNDRV_PCM_FORMAT_S16_LE) {
ch_stat1.status_1_regx.max_wrd_len = MAX_SMPL_WIDTH_20;
ch_stat1.status_1_regx.wrd_len = SMPL_WIDTH_16BITS;
} else if (format == SNDRV_PCM_FORMAT_S24_LE) {
ch_stat1.status_1_regx.max_wrd_len = MAX_SMPL_WIDTH_24;
ch_stat1.status_1_regx.wrd_len = SMPL_WIDTH_24BITS;
} else {
ch_stat1.status_1_regx.max_wrd_len = 0;
ch_stat1.status_1_regx.wrd_len = 0;
}
had_write_register(intelhaddata,
AUD_CH_STATUS_1, ch_stat1.status_1_regval);
return 0;
}
/*
* function to initialize audio
* registers and buffer confgiuration registers
* This function is called in the prepare callback
*/
static int snd_intelhad_audio_ctrl(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
union aud_cfg cfg_val = {.cfg_regval = 0};
union aud_buf_config buf_cfg = {.buf_cfgval = 0};
u8 channels;
had_prog_status_reg(substream, intelhaddata);
buf_cfg.buf_cfg_regx.audio_fifo_watermark = FIFO_THRESHOLD;
buf_cfg.buf_cfg_regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
buf_cfg.buf_cfg_regx.aud_delay = 0;
had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.buf_cfgval);
channels = substream->runtime->channels;
cfg_val.cfg_regx.num_ch = channels - 2;
if (channels <= 2)
cfg_val.cfg_regx.layout = LAYOUT0;
else
cfg_val.cfg_regx.layout = LAYOUT1;
cfg_val.cfg_regx.val_bit = 1;
had_write_register(intelhaddata, AUD_CONFIG, cfg_val.cfg_regval);
return 0;
}
/*
* Compute derived values in channel_allocations[].
*/
static void init_channel_allocations(void)
{
int i, j;
struct cea_channel_speaker_allocation *p;
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
p = channel_allocations + i;
p->channels = 0;
p->spk_mask = 0;
for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
if (p->speakers[j]) {
p->channels++;
p->spk_mask |= p->speakers[j];
}
}
}
/*
* The transformation takes two steps:
*
* eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
* spk_mask => (channel_allocations[]) => ai->CA
*
* TODO: it could select the wrong CA from multiple candidates.
*/
static int snd_intelhad_channel_allocation(struct snd_intelhad *intelhaddata,
int channels)
{
int i;
int ca = 0;
int spk_mask = 0;
/*
* CA defaults to 0 for basic stereo audio
*/
if (channels <= 2)
return 0;
/*
* expand ELD's speaker allocation mask
*
* ELD tells the speaker mask in a compact(paired) form,
* expand ELD's notions to match the ones used by Audio InfoFrame.
*/
for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
if (intelhaddata->eld.speaker_allocation_block & (1 << i))
spk_mask |= eld_speaker_allocation_bits[i];
}
/* search for the first working match in the CA table */
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
if (channels == channel_allocations[i].channels &&
(spk_mask & channel_allocations[i].spk_mask) ==
channel_allocations[i].spk_mask) {
ca = channel_allocations[i].ca_index;
break;
}
}
dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
return ca;
}
/* from speaker bit mask to ALSA API channel position */
static int spk_to_chmap(int spk)
{
const struct channel_map_table *t = map_tables;
for (; t->map; t++) {
if (t->spk_mask == spk)
return t->map;
}
return 0;
}
static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
{
int i, c;
int spk_mask = 0;
struct snd_pcm_chmap_elem *chmap;
u8 eld_high, eld_high_mask = 0xF0;
u8 high_msb;
chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
if (!chmap) {
intelhaddata->chmap->chmap = NULL;
return;
}
dev_dbg(intelhaddata->dev, "eld.speaker_allocation_block = %x\n",
intelhaddata->eld.speaker_allocation_block);
/* WA: Fix the max channel supported to 8 */
/*
* Sink may support more than 8 channels, if eld_high has more than
* one bit set. SOC supports max 8 channels.
* Refer eld_speaker_allocation_bits, for sink speaker allocation
*/
/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
eld_high = intelhaddata->eld.speaker_allocation_block & eld_high_mask;
if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
/* eld_high & (eld_high-1): if more than 1 bit set */
/* 0x1F: 7 channels */
for (i = 1; i < 4; i++) {
high_msb = eld_high & (0x80 >> i);
if (high_msb) {
intelhaddata->eld.speaker_allocation_block &=
high_msb | 0xF;
break;
}
}
}
for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
if (intelhaddata->eld.speaker_allocation_block & (1 << i))
spk_mask |= eld_speaker_allocation_bits[i];
}
for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
if (spk_mask == channel_allocations[i].spk_mask) {
for (c = 0; c < channel_allocations[i].channels; c++) {
chmap->map[c] = spk_to_chmap(
channel_allocations[i].speakers[
(MAX_SPEAKERS - 1) - c]);
}
chmap->channels = channel_allocations[i].channels;
intelhaddata->chmap->chmap = chmap;
break;
}
}
if (i >= ARRAY_SIZE(channel_allocations)) {
intelhaddata->chmap->chmap = NULL;
kfree(chmap);
}
}
/*
* ALSA API channel-map control callbacks
*/
static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
struct snd_intelhad *intelhaddata = info->private_data;
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED)
return -ENODEV;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = HAD_MAX_CHANNEL;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = SNDRV_CHMAP_LAST;
return 0;
}
static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
struct snd_intelhad *intelhaddata = info->private_data;
int i;
const struct snd_pcm_chmap_elem *chmap;
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED)
return -ENODEV;
mutex_lock(&intelhaddata->mutex);
if (!intelhaddata->chmap->chmap) {
mutex_unlock(&intelhaddata->mutex);
return -ENODATA;
}
chmap = intelhaddata->chmap->chmap;
for (i = 0; i < chmap->channels; i++)
ucontrol->value.integer.value[i] = chmap->map[i];
mutex_unlock(&intelhaddata->mutex);
return 0;
}
static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
struct snd_pcm *pcm)
{
int err;
err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
NULL, 0, (unsigned long)intelhaddata,
&intelhaddata->chmap);
if (err < 0)
return err;
intelhaddata->chmap->private_data = intelhaddata;
intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
intelhaddata->chmap->chmap = NULL;
return 0;
}
/*
* snd_intelhad_prog_dip - to initialize Data Island Packets registers
*
* @substream:substream for which the prepare function is called
* @intelhaddata:substream private data
*
* This function is called in the prepare callback
*/
static void snd_intelhad_prog_dip(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata)
{
int i;
union aud_ctrl_st ctrl_state = {.ctrl_val = 0};
union aud_info_frame2 frame2 = {.fr2_val = 0};
union aud_info_frame3 frame3 = {.fr3_val = 0};
u8 checksum = 0;
u32 info_frame;
int channels;
channels = substream->runtime->channels;
had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.ctrl_val);
if (intelhaddata->dp_output) {
info_frame = DP_INFO_FRAME_WORD1;
frame2.fr2_val = 1;
} else {
info_frame = HDMI_INFO_FRAME_WORD1;
frame2.fr2_regx.chnl_cnt = substream->runtime->channels - 1;
frame3.fr3_regx.chnl_alloc = snd_intelhad_channel_allocation(
intelhaddata, channels);
/* Calculte the byte wide checksum for all valid DIP words */
for (i = 0; i < BYTES_PER_WORD; i++)
checksum += (info_frame >> i*BITS_PER_BYTE) & MASK_BYTE0;
for (i = 0; i < BYTES_PER_WORD; i++)
checksum += (frame2.fr2_val >> i*BITS_PER_BYTE) & MASK_BYTE0;
for (i = 0; i < BYTES_PER_WORD; i++)
checksum += (frame3.fr3_val >> i*BITS_PER_BYTE) & MASK_BYTE0;
frame2.fr2_regx.chksum = -(checksum);
}
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.fr2_val);
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.fr3_val);
/* program remaining DIP words with zero */
for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
ctrl_state.ctrl_regx.dip_freq = 1;
ctrl_state.ctrl_regx.dip_en_sta = 1;
had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.ctrl_val);
}
/*
* snd_intelhad_prog_buffer - programs buffer address and length registers
* @substream: substream for which the prepare function is called
* @intelhaddata: substream private data
*
* This function programs ring buffer address and length into registers.
*/
static int snd_intelhad_prog_buffer(struct snd_pcm_substream *substream,
struct snd_intelhad *intelhaddata,
int start, int end)
{
u32 ring_buf_addr, ring_buf_size, period_bytes;
u8 i, num_periods;
ring_buf_addr = substream->runtime->dma_addr;
ring_buf_size = snd_pcm_lib_buffer_bytes(substream);
intelhaddata->stream_info.ring_buf_size = ring_buf_size;
period_bytes = frames_to_bytes(substream->runtime,
substream->runtime->period_size);
num_periods = substream->runtime->periods;
/*
* buffer addr should be 64 byte aligned, period bytes
* will be used to calculate addr offset
*/
period_bytes &= ~0x3F;
/* Hardware supports MAX_PERIODS buffers */
if (end >= HAD_MAX_PERIODS)
return -EINVAL;
for (i = start; i <= end; i++) {
/* Program the buf registers with addr and len */
intelhaddata->buf_info[i].buf_addr = ring_buf_addr +
(i * period_bytes);
if (i < num_periods-1)
intelhaddata->buf_info[i].buf_size = period_bytes;
else
intelhaddata->buf_info[i].buf_size = ring_buf_size -
(i * period_bytes);
had_write_register(intelhaddata,
AUD_BUF_A_ADDR + (i * HAD_REG_WIDTH),
intelhaddata->buf_info[i].buf_addr |
BIT(0) | BIT(1));
had_write_register(intelhaddata,
AUD_BUF_A_LENGTH + (i * HAD_REG_WIDTH),
period_bytes);
intelhaddata->buf_info[i].is_valid = true;
}
dev_dbg(intelhaddata->dev, "%s:buf[%d-%d] addr=%#x and size=%d\n",
__func__, start, end,
intelhaddata->buf_info[start].buf_addr,
intelhaddata->buf_info[start].buf_size);
intelhaddata->valid_buf_cnt = num_periods;
return 0;
}
static int snd_intelhad_read_len(struct snd_intelhad *intelhaddata)
{
int i, retval = 0;
u32 len[4];
for (i = 0; i < 4 ; i++) {
had_read_register(intelhaddata,
AUD_BUF_A_LENGTH + (i * HAD_REG_WIDTH),
&len[i]);
if (!len[i])
retval++;
}
if (retval != 1) {
for (i = 0; i < 4 ; i++)
dev_dbg(intelhaddata->dev, "buf[%d] size=%d\n",
i, len[i]);
}
return retval;
}
static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
{
u32 maud_val;
/* Select maud according to DP 1.2 spec */
if (link_rate == DP_2_7_GHZ) {
switch (aud_samp_freq) {
case AUD_SAMPLE_RATE_32:
maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_44_1:
maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_48:
maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_88_2:
maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_96:
maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_176_4:
maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
break;
case HAD_MAX_RATE:
maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
break;
default:
maud_val = -EINVAL;
break;
}
} else if (link_rate == DP_1_62_GHZ) {
switch (aud_samp_freq) {
case AUD_SAMPLE_RATE_32:
maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_44_1:
maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_48:
maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_88_2:
maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_96:
maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
break;
case AUD_SAMPLE_RATE_176_4:
maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
break;
case HAD_MAX_RATE:
maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
break;
default:
maud_val = -EINVAL;
break;
}
} else
maud_val = -EINVAL;
return maud_val;
}
/*
* snd_intelhad_prog_cts - Program HDMI audio CTS value
*
* @aud_samp_freq: sampling frequency of audio data
* @tmds: sampling frequency of the display data
* @n_param: N value, depends on aud_samp_freq
* @intelhaddata:substream private data
*
* Program CTS register based on the audio and display sampling frequency
*/
static void snd_intelhad_prog_cts(u32 aud_samp_freq, u32 tmds,
u32 link_rate, u32 n_param,
struct snd_intelhad *intelhaddata)
{
u32 cts_val;
u64 dividend, divisor;
if (intelhaddata->dp_output) {
/* Substitute cts_val with Maud according to DP 1.2 spec*/
cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
} else {
/* Calculate CTS according to HDMI 1.3a spec*/
dividend = (u64)tmds * n_param*1000;
divisor = 128 * aud_samp_freq;
cts_val = div64_u64(dividend, divisor);
}
dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
tmds, n_param, cts_val);
had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
}
static int had_calculate_n_value(u32 aud_samp_freq)
{
int n_val;
/* Select N according to HDMI 1.3a spec*/
switch (aud_samp_freq) {
case AUD_SAMPLE_RATE_32:
n_val = 4096;
break;
case AUD_SAMPLE_RATE_44_1:
n_val = 6272;
break;
case AUD_SAMPLE_RATE_48:
n_val = 6144;
break;
case AUD_SAMPLE_RATE_88_2:
n_val = 12544;
break;
case AUD_SAMPLE_RATE_96:
n_val = 12288;
break;
case AUD_SAMPLE_RATE_176_4:
n_val = 25088;
break;
case HAD_MAX_RATE:
n_val = 24576;
break;
default:
n_val = -EINVAL;
break;
}
return n_val;
}
/*
* snd_intelhad_prog_n - Program HDMI audio N value
*
* @aud_samp_freq: sampling frequency of audio data
* @n_param: N value, depends on aud_samp_freq
* @intelhaddata:substream private data
*
* This function is called in the prepare callback.
* It programs based on the audio and display sampling frequency
*/
static int snd_intelhad_prog_n(u32 aud_samp_freq, u32 *n_param,
struct snd_intelhad *intelhaddata)
{
int n_val;
if (intelhaddata->dp_output) {
/*
* According to DP specs, Maud and Naud values hold
* a relationship, which is stated as:
* Maud/Naud = 512 * fs / f_LS_Clk
* where, fs is the sampling frequency of the audio stream
* and Naud is 32768 for Async clock.
*/
n_val = DP_NAUD_VAL;
} else
n_val = had_calculate_n_value(aud_samp_freq);
if (n_val < 0)
return n_val;
had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
*n_param = n_val;
return 0;
}
static void snd_intelhad_handle_underrun(struct snd_intelhad *intelhaddata)
{
u32 hdmi_status = 0, i = 0;
/* Handle Underrun interrupt within Audio Unit */
had_write_register(intelhaddata, AUD_CONFIG, 0);
/* Reset buffer pointers */
had_write_register(intelhaddata, AUD_HDMI_STATUS, 1);
had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
/*
* The interrupt status 'sticky' bits might not be cleared by
* setting '1' to that bit once...
*/
do { /* clear bit30, 31 AUD_HDMI_STATUS */
had_read_register(intelhaddata, AUD_HDMI_STATUS,
&hdmi_status);
dev_dbg(intelhaddata->dev, "HDMI status =0x%x\n", hdmi_status);
if (hdmi_status & AUD_CONFIG_MASK_UNDERRUN) {
i++;
had_write_register(intelhaddata,
AUD_HDMI_STATUS, hdmi_status);
} else
break;
} while (i < MAX_CNT);
if (i >= MAX_CNT)
dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
}
/*
* snd_intelhad_open - stream initializations are done here
* @substream:substream for which the stream function is called
*
* This function is called whenever a PCM stream is opened
*/
static int snd_intelhad_open(struct snd_pcm_substream *substream)
{
struct snd_intelhad *intelhaddata;
struct snd_pcm_runtime *runtime;
struct had_stream_data *had_stream;
int retval;
intelhaddata = snd_pcm_substream_chip(substream);
had_stream = &intelhaddata->stream_data;
runtime = substream->runtime;
intelhaddata->underrun_count = 0;
pm_runtime_get(intelhaddata->dev);
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) {
dev_dbg(intelhaddata->dev, "%s: HDMI cable plugged-out\n",
__func__);
retval = -ENODEV;
goto error;
}
/* set the runtime hw parameter with local snd_pcm_hardware struct */
runtime->hw = snd_intel_hadstream;
retval = snd_pcm_hw_constraint_integer(runtime,
SNDRV_PCM_HW_PARAM_PERIODS);
if (retval < 0)
goto error;
/* Make sure, that the period size is always aligned
* 64byte boundary
*/
retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
if (retval < 0) {
dev_dbg(intelhaddata->dev, "%s:step_size=64 failed,err=%d\n",
__func__, retval);
goto error;
}
spin_lock_irq(&intelhaddata->had_spinlock);
intelhaddata->stream_info.substream = substream;
intelhaddata->stream_info.substream_refcount++;
spin_unlock_irq(&intelhaddata->had_spinlock);
return retval;
error:
pm_runtime_put(intelhaddata->dev);
return retval;
}
/*
* snd_intelhad_close - to free parameteres when stream is stopped
* @substream: substream for which the function is called
*
* This function is called by ALSA framework when stream is stopped
*/
static int snd_intelhad_close(struct snd_pcm_substream *substream)
{
struct snd_intelhad *intelhaddata;
intelhaddata = snd_pcm_substream_chip(substream);
intelhaddata->stream_info.buffer_rendered = 0;
spin_lock_irq(&intelhaddata->had_spinlock);
intelhaddata->stream_info.substream = NULL;
intelhaddata->stream_info.substream_refcount--;
while (intelhaddata->stream_info.substream_refcount > 0) {
spin_unlock_irq(&intelhaddata->had_spinlock);
cpu_relax();
spin_lock_irq(&intelhaddata->had_spinlock);
}
spin_unlock_irq(&intelhaddata->had_spinlock);
/* Check if following drv_status modification is required - VA */
if (intelhaddata->drv_status != HAD_DRV_DISCONNECTED) {
intelhaddata->drv_status = HAD_DRV_CONNECTED;
dev_dbg(intelhaddata->dev,
"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
__func__, __LINE__);
}
pm_runtime_put(intelhaddata->dev);
return 0;
}
/*
* snd_intelhad_hw_params - to setup the hardware parameters
* like allocating the buffers
* @substream: substream for which the function is called
* @hw_params: hardware parameters
*
* This function is called by ALSA framework when hardware params are set
*/
static int snd_intelhad_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_intelhad *intelhaddata;
unsigned long addr;
int pages, buf_size, retval;
if (!hw_params)
return -EINVAL;
intelhaddata = snd_pcm_substream_chip(substream);
buf_size = params_buffer_bytes(hw_params);
retval = snd_pcm_lib_malloc_pages(substream, buf_size);
if (retval < 0)
return retval;
dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
__func__, buf_size);
/* mark the pages as uncached region */
addr = (unsigned long) substream->runtime->dma_area;
pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE;
retval = set_memory_uc(addr, pages);
if (retval) {
dev_err(intelhaddata->dev, "set_memory_uc failed.Error:%d\n",
retval);
return retval;
}
memset(substream->runtime->dma_area, 0, buf_size);
return retval;
}
/*
* snd_intelhad_hw_free - to release the resources allocated during
* hardware params setup
* @substream: substream for which the function is called
*
* This function is called by ALSA framework before close callback.
*/
static int snd_intelhad_hw_free(struct snd_pcm_substream *substream)
{
unsigned long addr;
u32 pages;
/* mark back the pages as cached/writeback region before the free */
if (substream->runtime->dma_area != NULL) {
addr = (unsigned long) substream->runtime->dma_area;
pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) /
PAGE_SIZE;
set_memory_wb(addr, pages);
return snd_pcm_lib_free_pages(substream);
}
return 0;
}
/*
* snd_intelhad_pcm_trigger - stream activities are handled here
* @substream: substream for which the stream function is called
* @cmd: the stream commamd thats requested from upper layer
*
* This function is called whenever an a stream activity is invoked
*/
static int snd_intelhad_pcm_trigger(struct snd_pcm_substream *substream,
int cmd)
{
int retval = 0;
struct snd_intelhad *intelhaddata;
struct had_stream_data *had_stream;
intelhaddata = snd_pcm_substream_chip(substream);
had_stream = &intelhaddata->stream_data;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
/* Disable local INTRs till register prgmng is done */
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) {
dev_dbg(intelhaddata->dev,
"_START: HDMI cable plugged-out\n");
retval = -ENODEV;
break;
}
had_stream->stream_type = HAD_RUNNING_STREAM;
/* Enable Audio */
snd_intelhad_enable_audio_int(intelhaddata, true);
snd_intelhad_enable_audio(substream, intelhaddata, true);
break;
case SNDRV_PCM_TRIGGER_STOP:
spin_lock(&intelhaddata->had_spinlock);
intelhaddata->curr_buf = 0;
/* Stop reporting BUFFER_DONE/UNDERRUN to above layers */
had_stream->stream_type = HAD_INIT;
spin_unlock(&intelhaddata->had_spinlock);
/* Disable Audio */
snd_intelhad_enable_audio_int(intelhaddata, false);
snd_intelhad_enable_audio(substream, intelhaddata, false);
/* Reset buffer pointers */
snd_intelhad_reset_audio(intelhaddata, 1);
snd_intelhad_reset_audio(intelhaddata, 0);
snd_intelhad_enable_audio_int(intelhaddata, false);
break;
default:
retval = -EINVAL;
}
return retval;
}
/*
* snd_intelhad_pcm_prepare - internal preparation before starting a stream
* @substream: substream for which the function is called
*
* This function is called when a stream is started for internal preparation.
*/
static int snd_intelhad_pcm_prepare(struct snd_pcm_substream *substream)
{
int retval;
u32 disp_samp_freq, n_param;
u32 link_rate = 0;
struct snd_intelhad *intelhaddata;
struct snd_pcm_runtime *runtime;
struct had_stream_data *had_stream;
intelhaddata = snd_pcm_substream_chip(substream);
runtime = substream->runtime;
had_stream = &intelhaddata->stream_data;
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) {
dev_dbg(intelhaddata->dev, "%s: HDMI cable plugged-out\n",
__func__);
retval = -ENODEV;
goto prep_end;
}
dev_dbg(intelhaddata->dev, "period_size=%d\n",
(int)frames_to_bytes(runtime, runtime->period_size));
dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
(int)snd_pcm_lib_buffer_bytes(substream));
dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
intelhaddata->stream_info.buffer_rendered = 0;
/* Get N value in KHz */
disp_samp_freq = intelhaddata->tmds_clock_speed;
retval = snd_intelhad_prog_n(substream->runtime->rate, &n_param,
intelhaddata);
if (retval) {
dev_err(intelhaddata->dev,
"programming N value failed %#x\n", retval);
goto prep_end;
}
if (intelhaddata->dp_output)
link_rate = intelhaddata->link_rate;
snd_intelhad_prog_cts(substream->runtime->rate,
disp_samp_freq, link_rate,
n_param, intelhaddata);
snd_intelhad_prog_dip(substream, intelhaddata);
retval = snd_intelhad_audio_ctrl(substream, intelhaddata);
/* Prog buffer address */
retval = snd_intelhad_prog_buffer(substream, intelhaddata,
HAD_BUF_TYPE_A, HAD_BUF_TYPE_D);
/*
* Program channel mapping in following order:
* FL, FR, C, LFE, RL, RR
*/
had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
prep_end:
return retval;
}
/*
* snd_intelhad_pcm_pointer- to send the current buffer pointerprocessed by hw
* @substream: substream for which the function is called
*
* This function is called by ALSA framework to get the current hw buffer ptr
* when a period is elapsed
*/
static snd_pcm_uframes_t snd_intelhad_pcm_pointer(
struct snd_pcm_substream *substream)
{
struct snd_intelhad *intelhaddata;
u32 bytes_rendered = 0;
u32 t;
int buf_id;
intelhaddata = snd_pcm_substream_chip(substream);
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED)
return SNDRV_PCM_POS_XRUN;
/* Use a hw register to calculate sub-period position reports.
* This makes PulseAudio happier.
*/
buf_id = intelhaddata->curr_buf % 4;
had_read_register(intelhaddata,
AUD_BUF_A_LENGTH + (buf_id * HAD_REG_WIDTH), &t);
if ((t == 0) || (t == ((u32)-1L))) {
intelhaddata->underrun_count++;
dev_dbg(intelhaddata->dev,
"discovered buffer done for buf %d, count = %d\n",
buf_id, intelhaddata->underrun_count);
if (intelhaddata->underrun_count > (HAD_MIN_PERIODS/2)) {
dev_dbg(intelhaddata->dev,
"assume audio_codec_reset, underrun = %d - do xrun\n",
intelhaddata->underrun_count);
intelhaddata->underrun_count = 0;
return SNDRV_PCM_POS_XRUN;
}
} else {
/* Reset Counter */
intelhaddata->underrun_count = 0;
}
t = intelhaddata->buf_info[buf_id].buf_size - t;
if (intelhaddata->stream_info.buffer_rendered)
div_u64_rem(intelhaddata->stream_info.buffer_rendered,
intelhaddata->stream_info.ring_buf_size,
&(bytes_rendered));
return bytes_to_frames(substream->runtime, bytes_rendered + t);
}
/*
* snd_intelhad_pcm_mmap- mmaps a kernel buffer to user space for copying data
* @substream: substream for which the function is called
* @vma: struct instance of memory VMM memory area
*
* This function is called by OS when a user space component
* tries to get mmap memory from driver
*/
static int snd_intelhad_pcm_mmap(struct snd_pcm_substream *substream,
struct vm_area_struct *vma)
{
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
return remap_pfn_range(vma, vma->vm_start,
substream->dma_buffer.addr >> PAGE_SHIFT,
vma->vm_end - vma->vm_start, vma->vm_page_prot);
}
/* process mode change of the running stream; called in mutex */
static int hdmi_audio_mode_change(struct snd_intelhad *intelhaddata)
{
struct snd_pcm_substream *substream;
int retval = 0;
u32 disp_samp_freq, n_param;
u32 link_rate = 0;
substream = had_substream_get(intelhaddata);
if (!substream)
return 0;
/* Disable Audio */
snd_intelhad_enable_audio(substream, intelhaddata, false);
/* Update CTS value */
disp_samp_freq = intelhaddata->tmds_clock_speed;
retval = snd_intelhad_prog_n(substream->runtime->rate, &n_param,
intelhaddata);
if (retval) {
dev_err(intelhaddata->dev,
"programming N value failed %#x\n", retval);
goto out;
}
if (intelhaddata->dp_output)
link_rate = intelhaddata->link_rate;
snd_intelhad_prog_cts(substream->runtime->rate,
disp_samp_freq, link_rate,
n_param, intelhaddata);
/* Enable Audio */
snd_intelhad_enable_audio(substream, intelhaddata, true);
out:
had_substream_put(intelhaddata);
return retval;
}
/*
* hdmi_lpe_audio_suspend - power management suspend function
* @pdev: platform device
*
* This function is called to suspend the hdmi audio.
*/
static int hdmi_lpe_audio_suspend(struct platform_device *pdev,
pm_message_t state)
{
struct had_stream_data *had_stream;
struct snd_intelhad *intelhaddata = platform_get_drvdata(pdev);
had_stream = &intelhaddata->stream_data;
if (!pm_runtime_status_suspended(intelhaddata->dev)) {
dev_err(intelhaddata->dev, "audio stream is active\n");
return -EAGAIN;
}
spin_lock_irq(&intelhaddata->had_spinlock);
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) {
spin_unlock_irq(&intelhaddata->had_spinlock);
dev_dbg(intelhaddata->dev, "had not connected\n");
return 0;
}
if (intelhaddata->drv_status == HAD_DRV_SUSPENDED) {
spin_unlock_irq(&intelhaddata->had_spinlock);
dev_dbg(intelhaddata->dev, "had already suspended\n");
return 0;
}
intelhaddata->drv_status = HAD_DRV_SUSPENDED;
dev_dbg(intelhaddata->dev,
"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_SUSPENDED\n",
__func__, __LINE__);
spin_unlock_irq(&intelhaddata->had_spinlock);
snd_intelhad_enable_audio_int(intelhaddata, false);
return 0;
}
/*
* hdmi_lpe_audio_resume - power management resume function
* @pdev: platform device
*
* This function is called to resume the hdmi audio.
*/
static int hdmi_lpe_audio_resume(struct platform_device *pdev)
{
struct snd_intelhad *intelhaddata = platform_get_drvdata(pdev);
spin_lock_irq(&intelhaddata->had_spinlock);
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) {
spin_unlock_irq(&intelhaddata->had_spinlock);
dev_dbg(intelhaddata->dev, "had not connected\n");
return 0;
}
if (intelhaddata->drv_status != HAD_DRV_SUSPENDED) {
spin_unlock_irq(&intelhaddata->had_spinlock);
dev_dbg(intelhaddata->dev, "had is not in suspended state\n");
return 0;
}
intelhaddata->drv_status = HAD_DRV_CONNECTED;
dev_dbg(intelhaddata->dev,
"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
__func__, __LINE__);
spin_unlock_irq(&intelhaddata->had_spinlock);
snd_intelhad_enable_audio_int(intelhaddata, true);
return 0;
}
static inline int had_chk_intrmiss(struct snd_intelhad *intelhaddata,
enum intel_had_aud_buf_type buf_id)
{
int i, intr_count = 0;
enum intel_had_aud_buf_type buff_done;
u32 buf_size, buf_addr;
struct had_stream_data *had_stream;
had_stream = &intelhaddata->stream_data;
buff_done = buf_id;
intr_count = snd_intelhad_read_len(intelhaddata);
if (intr_count > 1) {
/* In case of active playback */
dev_err(intelhaddata->dev,
"Driver detected %d missed buffer done interrupt(s)\n",
(intr_count - 1));
if (intr_count > 3)
return intr_count;
buf_id += (intr_count - 1);
/* Reprogram registers*/
for (i = buff_done; i < buf_id; i++) {
int j = i % 4;
buf_size = intelhaddata->buf_info[j].buf_size;
buf_addr = intelhaddata->buf_info[j].buf_addr;
had_write_register(intelhaddata,
AUD_BUF_A_LENGTH +
(j * HAD_REG_WIDTH), buf_size);
had_write_register(intelhaddata,
AUD_BUF_A_ADDR+(j * HAD_REG_WIDTH),
(buf_addr | BIT(0) | BIT(1)));
}
buf_id = buf_id % 4;
intelhaddata->buff_done = buf_id;
}
return intr_count;
}
/* called from irq handler */
static int had_process_buffer_done(struct snd_intelhad *intelhaddata)
{
u32 len = 1;
enum intel_had_aud_buf_type buf_id;
enum intel_had_aud_buf_type buff_done;
struct pcm_stream_info *stream;
struct snd_pcm_substream *substream;
u32 buf_size;
struct had_stream_data *had_stream;
int intr_count;
unsigned long flags;
had_stream = &intelhaddata->stream_data;
stream = &intelhaddata->stream_info;
intr_count = 1;
spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) {
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
dev_dbg(intelhaddata->dev,
"%s:Device already disconnected\n", __func__);
return 0;
}
buf_id = intelhaddata->curr_buf;
intelhaddata->buff_done = buf_id;
buff_done = intelhaddata->buff_done;
buf_size = intelhaddata->buf_info[buf_id].buf_size;
/* Every debug statement has an implication
* of ~5msec. Thus, avoid having >3 debug statements
* for each buffer_done handling.
*/
/* Check for any intr_miss in case of active playback */
if (had_stream->stream_type == HAD_RUNNING_STREAM) {
intr_count = had_chk_intrmiss(intelhaddata, buf_id);
if (!intr_count || (intr_count > 3)) {
spin_unlock_irqrestore(&intelhaddata->had_spinlock,
flags);
dev_err(intelhaddata->dev,
"HAD SW state in non-recoverable mode\n");
return 0;
}
buf_id += (intr_count - 1);
buf_id = buf_id % 4;
}
intelhaddata->buf_info[buf_id].is_valid = true;
if (intelhaddata->valid_buf_cnt-1 == buf_id) {
if (had_stream->stream_type >= HAD_RUNNING_STREAM)
intelhaddata->curr_buf = HAD_BUF_TYPE_A;
} else
intelhaddata->curr_buf = buf_id + 1;
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) {
dev_dbg(intelhaddata->dev, "HDMI cable plugged-out\n");
return 0;
}
/* Reprogram the registers with addr and length */
had_write_register(intelhaddata,
AUD_BUF_A_LENGTH + (buf_id * HAD_REG_WIDTH),
buf_size);
had_write_register(intelhaddata,
AUD_BUF_A_ADDR + (buf_id * HAD_REG_WIDTH),
intelhaddata->buf_info[buf_id].buf_addr |
BIT(0) | BIT(1));
had_read_register(intelhaddata,
AUD_BUF_A_LENGTH + (buf_id * HAD_REG_WIDTH),
&len);
dev_dbg(intelhaddata->dev, "%s:Enabled buf[%d]\n", __func__, buf_id);
/* In case of actual data,
* report buffer_done to above ALSA layer
*/
substream = had_substream_get(intelhaddata);
if (substream) {
buf_size = intelhaddata->buf_info[buf_id].buf_size;
intelhaddata->stream_info.buffer_rendered +=
(intr_count * buf_size);
snd_pcm_period_elapsed(substream);
had_substream_put(intelhaddata);
}
return 0;
}
/* called from irq handler */
static int had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
{
enum intel_had_aud_buf_type buf_id;
struct pcm_stream_info *stream;
struct had_stream_data *had_stream;
struct snd_pcm_substream *substream;
enum had_status_stream stream_type;
unsigned long flags;
int drv_status;
had_stream = &intelhaddata->stream_data;
stream = &intelhaddata->stream_info;
spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
buf_id = intelhaddata->curr_buf;
stream_type = had_stream->stream_type;
intelhaddata->buff_done = buf_id;
drv_status = intelhaddata->drv_status;
if (stream_type == HAD_RUNNING_STREAM)
intelhaddata->curr_buf = HAD_BUF_TYPE_A;
spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
dev_dbg(intelhaddata->dev, "Enter:%s buf_id=%d, stream_type=%d\n",
__func__, buf_id, stream_type);
snd_intelhad_handle_underrun(intelhaddata);
if (drv_status == HAD_DRV_DISCONNECTED) {
dev_dbg(intelhaddata->dev,
"%s:Device already disconnected\n", __func__);
return 0;
}
if (stream_type == HAD_RUNNING_STREAM) {
/* Report UNDERRUN error to above layers */
substream = had_substream_get(intelhaddata);
if (substream) {
snd_pcm_stop_xrun(substream);
had_substream_put(intelhaddata);
}
}
return 0;
}
/* process hot plug, called from wq with mutex locked */
static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
{
enum intel_had_aud_buf_type buf_id;
struct snd_pcm_substream *substream;
struct had_stream_data *had_stream;
had_stream = &intelhaddata->stream_data;
spin_lock_irq(&intelhaddata->had_spinlock);
if (intelhaddata->drv_status == HAD_DRV_CONNECTED) {
dev_dbg(intelhaddata->dev, "Device already connected\n");
spin_unlock_irq(&intelhaddata->had_spinlock);
return;
}
buf_id = intelhaddata->curr_buf;
intelhaddata->buff_done = buf_id;
intelhaddata->drv_status = HAD_DRV_CONNECTED;
dev_dbg(intelhaddata->dev,
"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
__func__, __LINE__);
spin_unlock_irq(&intelhaddata->had_spinlock);
dev_dbg(intelhaddata->dev, "Processing HOT_PLUG, buf_id = %d\n",
buf_id);
/* Safety check */
substream = had_substream_get(intelhaddata);
if (substream) {
dev_dbg(intelhaddata->dev,
"Force to stop the active stream by disconnection\n");
/* Set runtime->state to hw_params done */
snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
had_substream_put(intelhaddata);
}
had_build_channel_allocation_map(intelhaddata);
}
/* process hot unplug, called from wq with mutex locked */
static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
{
enum intel_had_aud_buf_type buf_id;
struct had_stream_data *had_stream;
struct snd_pcm_substream *substream;
had_stream = &intelhaddata->stream_data;
buf_id = intelhaddata->curr_buf;
substream = had_substream_get(intelhaddata);
spin_lock_irq(&intelhaddata->had_spinlock);
if (intelhaddata->drv_status == HAD_DRV_DISCONNECTED) {
dev_dbg(intelhaddata->dev, "Device already disconnected\n");
spin_unlock_irq(&intelhaddata->had_spinlock);
goto out;
}
/* Disable Audio */
snd_intelhad_enable_audio_int(intelhaddata, false);
snd_intelhad_enable_audio(substream, intelhaddata, false);
intelhaddata->drv_status = HAD_DRV_DISCONNECTED;
dev_dbg(intelhaddata->dev,
"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
__func__, __LINE__);
had_stream->stream_type = HAD_INIT;
spin_unlock_irq(&intelhaddata->had_spinlock);
/* Report to above ALSA layer */
if (substream)
snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
out:
if (substream)
had_substream_put(intelhaddata);
kfree(intelhaddata->chmap->chmap);
intelhaddata->chmap->chmap = NULL;
}
/* PCM operations structure and the calls back for the same */
static struct snd_pcm_ops snd_intelhad_playback_ops = {
.open = snd_intelhad_open,
.close = snd_intelhad_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_intelhad_hw_params,
.hw_free = snd_intelhad_hw_free,
.prepare = snd_intelhad_pcm_prepare,
.trigger = snd_intelhad_pcm_trigger,
.pointer = snd_intelhad_pcm_pointer,
.mmap = snd_intelhad_pcm_mmap,
};
static int had_iec958_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int had_iec958_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
mutex_lock(&intelhaddata->mutex);
ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
ucontrol->value.iec958.status[2] =
(intelhaddata->aes_bits >> 16) & 0xff;
ucontrol->value.iec958.status[3] =
(intelhaddata->aes_bits >> 24) & 0xff;
mutex_unlock(&intelhaddata->mutex);
return 0;
}
static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = 0xff;
ucontrol->value.iec958.status[1] = 0xff;
ucontrol->value.iec958.status[2] = 0xff;
ucontrol->value.iec958.status[3] = 0xff;
return 0;
}
static int had_iec958_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
unsigned int val;
struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
int changed = 0;
val = (ucontrol->value.iec958.status[0] << 0) |
(ucontrol->value.iec958.status[1] << 8) |
(ucontrol->value.iec958.status[2] << 16) |
(ucontrol->value.iec958.status[3] << 24);
mutex_lock(&intelhaddata->mutex);
if (intelhaddata->aes_bits != val) {
intelhaddata->aes_bits = val;
changed = 1;
}
mutex_unlock(&intelhaddata->mutex);
return changed;
}
static struct snd_kcontrol_new had_control_iec958_mask = {
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
.info = had_iec958_info, /* shared */
.get = had_iec958_mask_get,
};
static struct snd_kcontrol_new had_control_iec958 = {
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
.info = had_iec958_info,
.get = had_iec958_get,
.put = had_iec958_put
};
static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
{
struct snd_intelhad *ctx = dev_id;
u32 audio_stat, audio_reg;
audio_reg = AUD_HDMI_STATUS;
mid_hdmi_audio_read(ctx, audio_reg, &audio_stat);
if (audio_stat & HDMI_AUDIO_UNDERRUN) {
mid_hdmi_audio_write(ctx, audio_reg, HDMI_AUDIO_UNDERRUN);
had_process_buffer_underrun(ctx);
}
if (audio_stat & HDMI_AUDIO_BUFFER_DONE) {
mid_hdmi_audio_write(ctx, audio_reg, HDMI_AUDIO_BUFFER_DONE);
had_process_buffer_done(ctx);
}
return IRQ_HANDLED;
}
static void notify_audio_lpe(struct platform_device *pdev)
{
struct snd_intelhad *ctx = platform_get_drvdata(pdev);
schedule_work(&ctx->hdmi_audio_wq);
}
static void had_audio_wq(struct work_struct *work)
{
struct snd_intelhad *ctx =
container_of(work, struct snd_intelhad, hdmi_audio_wq);
struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
mutex_lock(&ctx->mutex);
if (!pdata->hdmi_connected) {
dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG\n",
__func__);
had_process_hot_unplug(ctx);
} else {
struct intel_hdmi_lpe_audio_eld *eld = &pdata->eld;
dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
__func__, eld->port_id, pdata->tmds_clock_speed);
switch (eld->pipe_id) {
case 0:
ctx->had_config_offset = AUDIO_HDMI_CONFIG_A;
break;
case 1:
ctx->had_config_offset = AUDIO_HDMI_CONFIG_B;
break;
case 2:
ctx->had_config_offset = AUDIO_HDMI_CONFIG_C;
break;
default:
dev_dbg(ctx->dev, "Invalid pipe %d\n",
eld->pipe_id);
break;
}
memcpy(&ctx->eld, eld->eld_data, sizeof(ctx->eld));
ctx->dp_output = pdata->dp_output;
ctx->tmds_clock_speed = pdata->tmds_clock_speed;
ctx->link_rate = pdata->link_rate;
had_process_hot_plug(ctx);
/* Process mode change if stream is active */
if (ctx->stream_data.stream_type == HAD_RUNNING_STREAM)
hdmi_audio_mode_change(ctx);
}
mutex_unlock(&ctx->mutex);
}
/* release resources */
static void hdmi_lpe_audio_free(struct snd_card *card)
{
struct snd_intelhad *ctx = card->private_data;
cancel_work_sync(&ctx->hdmi_audio_wq);
if (ctx->mmio_start)
iounmap(ctx->mmio_start);
if (ctx->irq >= 0)
free_irq(ctx->irq, ctx);
}
/*
* hdmi_lpe_audio_probe - start bridge with i915
*
* This function is called when the i915 driver creates the
* hdmi-lpe-audio platform device.
*/
static int hdmi_lpe_audio_probe(struct platform_device *pdev)
{
struct snd_card *card;
struct snd_intelhad *ctx;
struct snd_pcm *pcm;
struct intel_hdmi_lpe_audio_pdata *pdata;
int irq;
struct resource *res_mmio;
int ret;
dev_dbg(&pdev->dev, "dma_mask: %p\n", pdev->dev.dma_mask);
pdata = pdev->dev.platform_data;
if (!pdata) {
dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
return -EINVAL;
}
/* get resources */
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "Could not get irq resource\n");
return -ENODEV;
}
res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res_mmio) {
dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
return -ENXIO;
}
/* create a card instance with ALSA framework */
ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
THIS_MODULE, sizeof(*ctx), &card);
if (ret)
return ret;
ctx = card->private_data;
spin_lock_init(&ctx->had_spinlock);
mutex_init(&ctx->mutex);
ctx->drv_status = HAD_DRV_DISCONNECTED;
ctx->dev = &pdev->dev;
ctx->card = card;
ctx->aes_bits = SNDRV_PCM_DEFAULT_CON_SPDIF;
strcpy(card->driver, INTEL_HAD);
strcpy(card->shortname, INTEL_HAD);
ctx->irq = -1;
ctx->tmds_clock_speed = DIS_SAMPLE_RATE_148_5;
INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
card->private_free = hdmi_lpe_audio_free;
/* assume pipe A as default */
ctx->had_config_offset = AUDIO_HDMI_CONFIG_A;
platform_set_drvdata(pdev, ctx);
dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
__func__, (unsigned int)res_mmio->start,
(unsigned int)res_mmio->end);
ctx->mmio_start = ioremap_nocache(res_mmio->start,
(size_t)(resource_size(res_mmio)));
if (!ctx->mmio_start) {
dev_err(&pdev->dev, "Could not get ioremap\n");
ret = -EACCES;
goto err;
}
/* setup interrupt handler */
ret = request_irq(irq, display_pipe_interrupt_handler, 0,
pdev->name, ctx);
if (ret < 0) {
dev_err(&pdev->dev, "request_irq failed\n");
goto err;
}
ctx->irq = irq;
ret = snd_pcm_new(card, INTEL_HAD, PCM_INDEX, MAX_PB_STREAMS,
MAX_CAP_STREAMS, &pcm);
if (ret)
goto err;
/* setup private data which can be retrieved when required */
pcm->private_data = ctx;
pcm->info_flags = 0;
strncpy(pcm->name, card->shortname, strlen(card->shortname));
/* setup the ops for playabck */
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
&snd_intelhad_playback_ops);
/* allocate dma pages for ALSA stream operations
* memory allocated is based on size, not max value
* thus using same argument for max & size
*/
snd_pcm_lib_preallocate_pages_for_all(pcm,
SNDRV_DMA_TYPE_DEV, NULL,
HAD_MAX_BUFFER, HAD_MAX_BUFFER);
/* IEC958 controls */
ret = snd_ctl_add(card, snd_ctl_new1(&had_control_iec958_mask, ctx));
if (ret < 0)
goto err;
ret = snd_ctl_add(card, snd_ctl_new1(&had_control_iec958, ctx));
if (ret < 0)
goto err;
init_channel_allocations();
/* Register channel map controls */
ret = had_register_chmap_ctls(ctx, pcm);
if (ret < 0)
goto err;
ret = snd_card_register(card);
if (ret)
goto err;
spin_lock_irq(&pdata->lpe_audio_slock);
pdata->notify_audio_lpe = notify_audio_lpe;
pdata->notify_pending = false;
spin_unlock_irq(&pdata->lpe_audio_slock);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
schedule_work(&ctx->hdmi_audio_wq);
return 0;
err:
snd_card_free(card);
return ret;
}
/*
* hdmi_lpe_audio_remove - stop bridge with i915
*
* This function is called when the platform device is destroyed.
*/
static int hdmi_lpe_audio_remove(struct platform_device *pdev)
{
struct snd_intelhad *ctx = platform_get_drvdata(pdev);
if (ctx->drv_status != HAD_DRV_DISCONNECTED)
snd_intelhad_enable_audio_int(ctx, false);
snd_card_free(ctx->card);
return 0;
}
static struct platform_driver hdmi_lpe_audio_driver = {
.driver = {
.name = "hdmi-lpe-audio",
},
.probe = hdmi_lpe_audio_probe,
.remove = hdmi_lpe_audio_remove,
.suspend = hdmi_lpe_audio_suspend,
.resume = hdmi_lpe_audio_resume
};
module_platform_driver(hdmi_lpe_audio_driver);
MODULE_ALIAS("platform:hdmi_lpe_audio");
MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
MODULE_DESCRIPTION("Intel HDMI Audio driver");
MODULE_LICENSE("GPL v2");
MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");