linux/net/xdp/xdp_umem.c

415 lines
8.4 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/* XDP user-space packet buffer
* Copyright(c) 2018 Intel Corporation.
*/
#include <linux/init.h>
#include <linux/sched/mm.h>
#include <linux/sched/signal.h>
#include <linux/sched/task.h>
#include <linux/uaccess.h>
#include <linux/slab.h>
#include <linux/bpf.h>
#include <linux/mm.h>
#include <linux/netdevice.h>
#include <linux/rtnetlink.h>
#include <linux/idr.h>
#include "xdp_umem.h"
#include "xsk_queue.h"
xsk: new descriptor addressing scheme Currently, AF_XDP only supports a fixed frame-size memory scheme where each frame is referenced via an index (idx). A user passes the frame index to the kernel, and the kernel acts upon the data. Some NICs, however, do not have a fixed frame-size model, instead they have a model where a memory window is passed to the hardware and multiple frames are filled into that window (referred to as the "type-writer" model). By changing the descriptor format from the current frame index addressing scheme, AF_XDP can in the future be extended to support these kinds of NICs. In the index-based model, an idx refers to a frame of size frame_size. Addressing a frame in the UMEM is done by offseting the UMEM starting address by a global offset, idx * frame_size + offset. Communicating via the fill- and completion-rings are done by means of idx. In this commit, the idx is removed in favor of an address (addr), which is a relative address ranging over the UMEM. To convert an idx-based address to the new addr is simply: addr = idx * frame_size + offset. We also stop referring to the UMEM "frame" as a frame. Instead it is simply called a chunk. To transfer ownership of a chunk to the kernel, the addr of the chunk is passed in the fill-ring. Note, that the kernel will mask addr to make it chunk aligned, so there is no need for userspace to do that. E.g., for a chunk size of 2k, passing an addr of 2048, 2050 or 3000 to the fill-ring will refer to the same chunk. On the completion-ring, the addr will match that of the Tx descriptor, passed to the kernel. Changing the descriptor format to use chunks/addr will allow for future changes to move to a type-writer based model, where multiple frames can reside in one chunk. In this model passing one single chunk into the fill-ring, would potentially result in multiple Rx descriptors. This commit changes the uapi of AF_XDP sockets, and updates the documentation. Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-06-04 11:57:13 +00:00
#define XDP_UMEM_MIN_CHUNK_SIZE 2048
static DEFINE_IDA(umem_ida);
void xdp_add_sk_umem(struct xdp_umem *umem, struct xdp_sock *xs)
{
unsigned long flags;
spin_lock_irqsave(&umem->xsk_list_lock, flags);
list_add_rcu(&xs->list, &umem->xsk_list);
spin_unlock_irqrestore(&umem->xsk_list_lock, flags);
}
void xdp_del_sk_umem(struct xdp_umem *umem, struct xdp_sock *xs)
{
unsigned long flags;
spin_lock_irqsave(&umem->xsk_list_lock, flags);
list_del_rcu(&xs->list);
spin_unlock_irqrestore(&umem->xsk_list_lock, flags);
}
/* The umem is stored both in the _rx struct and the _tx struct as we do
* not know if the device has more tx queues than rx, or the opposite.
* This might also change during run time.
*/
static int xdp_reg_umem_at_qid(struct net_device *dev, struct xdp_umem *umem,
u16 queue_id)
{
if (queue_id >= max_t(unsigned int,
dev->real_num_rx_queues,
dev->real_num_tx_queues))
return -EINVAL;
if (queue_id < dev->real_num_rx_queues)
dev->_rx[queue_id].umem = umem;
if (queue_id < dev->real_num_tx_queues)
dev->_tx[queue_id].umem = umem;
return 0;
}
struct xdp_umem *xdp_get_umem_from_qid(struct net_device *dev,
u16 queue_id)
{
if (queue_id < dev->real_num_rx_queues)
return dev->_rx[queue_id].umem;
if (queue_id < dev->real_num_tx_queues)
return dev->_tx[queue_id].umem;
return NULL;
}
EXPORT_SYMBOL(xdp_get_umem_from_qid);
static void xdp_clear_umem_at_qid(struct net_device *dev, u16 queue_id)
{
if (queue_id < dev->real_num_rx_queues)
dev->_rx[queue_id].umem = NULL;
if (queue_id < dev->real_num_tx_queues)
dev->_tx[queue_id].umem = NULL;
}
int xdp_umem_assign_dev(struct xdp_umem *umem, struct net_device *dev,
u16 queue_id, u16 flags)
{
bool force_zc, force_copy;
struct netdev_bpf bpf;
int err = 0;
force_zc = flags & XDP_ZEROCOPY;
force_copy = flags & XDP_COPY;
if (force_zc && force_copy)
return -EINVAL;
rtnl_lock();
if (xdp_get_umem_from_qid(dev, queue_id)) {
err = -EBUSY;
goto out_rtnl_unlock;
}
err = xdp_reg_umem_at_qid(dev, umem, queue_id);
if (err)
goto out_rtnl_unlock;
umem->dev = dev;
umem->queue_id = queue_id;
dev_hold(dev);
if (force_copy)
/* For copy-mode, we are done. */
goto out_rtnl_unlock;
if (!dev->netdev_ops->ndo_bpf ||
!dev->netdev_ops->ndo_xsk_async_xmit) {
err = -EOPNOTSUPP;
goto err_unreg_umem;
}
bpf.command = XDP_SETUP_XSK_UMEM;
bpf.xsk.umem = umem;
bpf.xsk.queue_id = queue_id;
err = dev->netdev_ops->ndo_bpf(dev, &bpf);
if (err)
goto err_unreg_umem;
rtnl_unlock();
umem->zc = true;
return 0;
err_unreg_umem:
if (!force_zc)
err = 0; /* fallback to copy mode */
if (err)
xdp_clear_umem_at_qid(dev, queue_id);
out_rtnl_unlock:
rtnl_unlock();
return err;
}
static void xdp_umem_clear_dev(struct xdp_umem *umem)
{
struct netdev_bpf bpf;
int err;
if (!umem->dev)
return;
if (umem->zc) {
bpf.command = XDP_SETUP_XSK_UMEM;
bpf.xsk.umem = NULL;
bpf.xsk.queue_id = umem->queue_id;
rtnl_lock();
err = umem->dev->netdev_ops->ndo_bpf(umem->dev, &bpf);
rtnl_unlock();
if (err)
WARN(1, "failed to disable umem!\n");
}
rtnl_lock();
xdp_clear_umem_at_qid(umem->dev, umem->queue_id);
rtnl_unlock();
dev_put(umem->dev);
umem->dev = NULL;
umem->zc = false;
}
static void xdp_umem_unpin_pages(struct xdp_umem *umem)
{
unsigned int i;
for (i = 0; i < umem->npgs; i++) {
struct page *page = umem->pgs[i];
set_page_dirty_lock(page);
put_page(page);
}
kfree(umem->pgs);
umem->pgs = NULL;
}
static void xdp_umem_unaccount_pages(struct xdp_umem *umem)
{
bpf, xdp: fix crash in xdp_umem_unaccount_pages syzkaller was able to trigger the following panic for AF_XDP: BUG: KASAN: null-ptr-deref in atomic64_sub include/asm-generic/atomic-instrumented.h:144 [inline] BUG: KASAN: null-ptr-deref in atomic_long_sub include/asm-generic/atomic-long.h:199 [inline] BUG: KASAN: null-ptr-deref in xdp_umem_unaccount_pages.isra.4+0x3d/0x80 net/xdp/xdp_umem.c:135 Write of size 8 at addr 0000000000000060 by task syz-executor246/4527 CPU: 1 PID: 4527 Comm: syz-executor246 Not tainted 4.17.0+ #89 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1b9/0x294 lib/dump_stack.c:113 kasan_report_error mm/kasan/report.c:352 [inline] kasan_report.cold.7+0x6d/0x2fe mm/kasan/report.c:412 check_memory_region_inline mm/kasan/kasan.c:260 [inline] check_memory_region+0x13e/0x1b0 mm/kasan/kasan.c:267 kasan_check_write+0x14/0x20 mm/kasan/kasan.c:278 atomic64_sub include/asm-generic/atomic-instrumented.h:144 [inline] atomic_long_sub include/asm-generic/atomic-long.h:199 [inline] xdp_umem_unaccount_pages.isra.4+0x3d/0x80 net/xdp/xdp_umem.c:135 xdp_umem_reg net/xdp/xdp_umem.c:334 [inline] xdp_umem_create+0xd6c/0x10f0 net/xdp/xdp_umem.c:349 xsk_setsockopt+0x443/0x550 net/xdp/xsk.c:531 __sys_setsockopt+0x1bd/0x390 net/socket.c:1935 __do_sys_setsockopt net/socket.c:1946 [inline] __se_sys_setsockopt net/socket.c:1943 [inline] __x64_sys_setsockopt+0xbe/0x150 net/socket.c:1943 do_syscall_64+0x1b1/0x800 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x49/0xbe In xdp_umem_reg() the call to xdp_umem_account_pages() passed with CAP_IPC_LOCK where we didn't need to end up charging rlimit on memlock for the current user and therefore umem->user continues to be NULL. Later on through fault injection syzkaller triggered a failure in either umem->pgs or umem->pages allocation such that we bail out and undo accounting in xdp_umem_unaccount_pages() where we eventually hit the panic since it tries to deref the umem->user. The code is pretty close to mm_account_pinned_pages() and mm_unaccount_pinned_pages() pair and potentially could reuse it even in a later cleanup, and it appears that the initial commit c0c77d8fb787 ("xsk: add user memory registration support sockopt") got this right while later follow-up introduced the bug via a49049ea2576 ("xsk: simplified umem setup"). Fixes: a49049ea2576 ("xsk: simplified umem setup") Reported-by: syzbot+979217770b09ebf5c407@syzkaller.appspotmail.com Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-06-07 22:06:01 +00:00
if (umem->user) {
atomic_long_sub(umem->npgs, &umem->user->locked_vm);
free_uid(umem->user);
}
}
static void xdp_umem_release(struct xdp_umem *umem)
{
xdp_umem_clear_dev(umem);
ida_simple_remove(&umem_ida, umem->id);
if (umem->fq) {
xskq_destroy(umem->fq);
umem->fq = NULL;
}
if (umem->cq) {
xskq_destroy(umem->cq);
umem->cq = NULL;
}
xsk_reuseq_destroy(umem);
xdp_umem_unpin_pages(umem);
kfree(umem->pages);
umem->pages = NULL;
xdp_umem_unaccount_pages(umem);
kfree(umem);
}
static void xdp_umem_release_deferred(struct work_struct *work)
{
struct xdp_umem *umem = container_of(work, struct xdp_umem, work);
xdp_umem_release(umem);
}
void xdp_get_umem(struct xdp_umem *umem)
{
refcount_inc(&umem->users);
}
void xdp_put_umem(struct xdp_umem *umem)
{
if (!umem)
return;
if (refcount_dec_and_test(&umem->users)) {
INIT_WORK(&umem->work, xdp_umem_release_deferred);
schedule_work(&umem->work);
}
}
static int xdp_umem_pin_pages(struct xdp_umem *umem)
{
unsigned int gup_flags = FOLL_WRITE;
long npgs;
int err;
umem->pgs = kcalloc(umem->npgs, sizeof(*umem->pgs),
GFP_KERNEL | __GFP_NOWARN);
if (!umem->pgs)
return -ENOMEM;
down_read(&current->mm->mmap_sem);
mm/gup: replace get_user_pages_longterm() with FOLL_LONGTERM Pach series "Add FOLL_LONGTERM to GUP fast and use it". HFI1, qib, and mthca, use get_user_pages_fast() due to its performance advantages. These pages can be held for a significant time. But get_user_pages_fast() does not protect against mapping FS DAX pages. Introduce FOLL_LONGTERM and use this flag in get_user_pages_fast() which retains the performance while also adding the FS DAX checks. XDP has also shown interest in using this functionality.[1] In addition we change get_user_pages() to use the new FOLL_LONGTERM flag and remove the specialized get_user_pages_longterm call. [1] https://lkml.org/lkml/2019/3/19/939 "longterm" is a relative thing and at this point is probably a misnomer. This is really flagging a pin which is going to be given to hardware and can't move. I've thought of a couple of alternative names but I think we have to settle on if we are going to use FL_LAYOUT or something else to solve the "longterm" problem. Then I think we can change the flag to a better name. Secondly, it depends on how often you are registering memory. I have spoken with some RDMA users who consider MR in the performance path... For the overall application performance. I don't have the numbers as the tests for HFI1 were done a long time ago. But there was a significant advantage. Some of which is probably due to the fact that you don't have to hold mmap_sem. Finally, architecturally I think it would be good for everyone to use *_fast. There are patches submitted to the RDMA list which would allow the use of *_fast (they reworking the use of mmap_sem) and as soon as they are accepted I'll submit a patch to convert the RDMA core as well. Also to this point others are looking to use *_fast. As an aside, Jasons pointed out in my previous submission that *_fast and *_unlocked look very much the same. I agree and I think further cleanup will be coming. But I'm focused on getting the final solution for DAX at the moment. This patch (of 7): This patch starts a series which aims to support FOLL_LONGTERM in get_user_pages_fast(). Some callers who would like to do a longterm (user controlled pin) of pages with the fast variant of GUP for performance purposes. Rather than have a separate get_user_pages_longterm() call, introduce FOLL_LONGTERM and change the longterm callers to use it. This patch does not change any functionality. In the short term "longterm" or user controlled pins are unsafe for Filesystems and FS DAX in particular has been blocked. However, callers of get_user_pages_fast() were not "protected". FOLL_LONGTERM can _only_ be supported with get_user_pages[_fast]() as it requires vmas to determine if DAX is in use. NOTE: In merging with the CMA changes we opt to change the get_user_pages() call in check_and_migrate_cma_pages() to a call of __get_user_pages_locked() on the newly migrated pages. This makes the code read better in that we are calling __get_user_pages_locked() on the pages before and after a potential migration. As a side affect some of the interfaces are cleaned up but this is not the primary purpose of the series. In review[1] it was asked: <quote> > This I don't get - if you do lock down long term mappings performance > of the actual get_user_pages call shouldn't matter to start with. > > What do I miss? A couple of points. First "longterm" is a relative thing and at this point is probably a misnomer. This is really flagging a pin which is going to be given to hardware and can't move. I've thought of a couple of alternative names but I think we have to settle on if we are going to use FL_LAYOUT or something else to solve the "longterm" problem. Then I think we can change the flag to a better name. Second, It depends on how often you are registering memory. I have spoken with some RDMA users who consider MR in the performance path... For the overall application performance. I don't have the numbers as the tests for HFI1 were done a long time ago. But there was a significant advantage. Some of which is probably due to the fact that you don't have to hold mmap_sem. Finally, architecturally I think it would be good for everyone to use *_fast. There are patches submitted to the RDMA list which would allow the use of *_fast (they reworking the use of mmap_sem) and as soon as they are accepted I'll submit a patch to convert the RDMA core as well. Also to this point others are looking to use *_fast. As an asside, Jasons pointed out in my previous submission that *_fast and *_unlocked look very much the same. I agree and I think further cleanup will be coming. But I'm focused on getting the final solution for DAX at the moment. </quote> [1] https://lore.kernel.org/lkml/20190220180255.GA12020@iweiny-DESK2.sc.intel.com/T/#md6abad2569f3bf6c1f03686c8097ab6563e94965 [ira.weiny@intel.com: v3] Link: http://lkml.kernel.org/r/20190328084422.29911-2-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190328084422.29911-2-ira.weiny@intel.com Link: http://lkml.kernel.org/r/20190317183438.2057-2-ira.weiny@intel.com Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Rich Felker <dalias@libc.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: James Hogan <jhogan@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Mike Marshall <hubcap@omnibond.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 00:17:03 +00:00
npgs = get_user_pages(umem->address, umem->npgs,
gup_flags | FOLL_LONGTERM, &umem->pgs[0], NULL);
up_read(&current->mm->mmap_sem);
if (npgs != umem->npgs) {
if (npgs >= 0) {
umem->npgs = npgs;
err = -ENOMEM;
goto out_pin;
}
err = npgs;
goto out_pgs;
}
return 0;
out_pin:
xdp_umem_unpin_pages(umem);
out_pgs:
kfree(umem->pgs);
umem->pgs = NULL;
return err;
}
static int xdp_umem_account_pages(struct xdp_umem *umem)
{
unsigned long lock_limit, new_npgs, old_npgs;
if (capable(CAP_IPC_LOCK))
return 0;
lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
umem->user = get_uid(current_user());
do {
old_npgs = atomic_long_read(&umem->user->locked_vm);
new_npgs = old_npgs + umem->npgs;
if (new_npgs > lock_limit) {
free_uid(umem->user);
umem->user = NULL;
return -ENOBUFS;
}
} while (atomic_long_cmpxchg(&umem->user->locked_vm, old_npgs,
new_npgs) != old_npgs);
return 0;
}
static int xdp_umem_reg(struct xdp_umem *umem, struct xdp_umem_reg *mr)
{
xsk: new descriptor addressing scheme Currently, AF_XDP only supports a fixed frame-size memory scheme where each frame is referenced via an index (idx). A user passes the frame index to the kernel, and the kernel acts upon the data. Some NICs, however, do not have a fixed frame-size model, instead they have a model where a memory window is passed to the hardware and multiple frames are filled into that window (referred to as the "type-writer" model). By changing the descriptor format from the current frame index addressing scheme, AF_XDP can in the future be extended to support these kinds of NICs. In the index-based model, an idx refers to a frame of size frame_size. Addressing a frame in the UMEM is done by offseting the UMEM starting address by a global offset, idx * frame_size + offset. Communicating via the fill- and completion-rings are done by means of idx. In this commit, the idx is removed in favor of an address (addr), which is a relative address ranging over the UMEM. To convert an idx-based address to the new addr is simply: addr = idx * frame_size + offset. We also stop referring to the UMEM "frame" as a frame. Instead it is simply called a chunk. To transfer ownership of a chunk to the kernel, the addr of the chunk is passed in the fill-ring. Note, that the kernel will mask addr to make it chunk aligned, so there is no need for userspace to do that. E.g., for a chunk size of 2k, passing an addr of 2048, 2050 or 3000 to the fill-ring will refer to the same chunk. On the completion-ring, the addr will match that of the Tx descriptor, passed to the kernel. Changing the descriptor format to use chunks/addr will allow for future changes to move to a type-writer based model, where multiple frames can reside in one chunk. In this model passing one single chunk into the fill-ring, would potentially result in multiple Rx descriptors. This commit changes the uapi of AF_XDP sockets, and updates the documentation. Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-06-04 11:57:13 +00:00
u32 chunk_size = mr->chunk_size, headroom = mr->headroom;
unsigned int chunks, chunks_per_page;
u64 addr = mr->addr, size = mr->len;
int size_chk, err, i;
xsk: new descriptor addressing scheme Currently, AF_XDP only supports a fixed frame-size memory scheme where each frame is referenced via an index (idx). A user passes the frame index to the kernel, and the kernel acts upon the data. Some NICs, however, do not have a fixed frame-size model, instead they have a model where a memory window is passed to the hardware and multiple frames are filled into that window (referred to as the "type-writer" model). By changing the descriptor format from the current frame index addressing scheme, AF_XDP can in the future be extended to support these kinds of NICs. In the index-based model, an idx refers to a frame of size frame_size. Addressing a frame in the UMEM is done by offseting the UMEM starting address by a global offset, idx * frame_size + offset. Communicating via the fill- and completion-rings are done by means of idx. In this commit, the idx is removed in favor of an address (addr), which is a relative address ranging over the UMEM. To convert an idx-based address to the new addr is simply: addr = idx * frame_size + offset. We also stop referring to the UMEM "frame" as a frame. Instead it is simply called a chunk. To transfer ownership of a chunk to the kernel, the addr of the chunk is passed in the fill-ring. Note, that the kernel will mask addr to make it chunk aligned, so there is no need for userspace to do that. E.g., for a chunk size of 2k, passing an addr of 2048, 2050 or 3000 to the fill-ring will refer to the same chunk. On the completion-ring, the addr will match that of the Tx descriptor, passed to the kernel. Changing the descriptor format to use chunks/addr will allow for future changes to move to a type-writer based model, where multiple frames can reside in one chunk. In this model passing one single chunk into the fill-ring, would potentially result in multiple Rx descriptors. This commit changes the uapi of AF_XDP sockets, and updates the documentation. Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-06-04 11:57:13 +00:00
if (chunk_size < XDP_UMEM_MIN_CHUNK_SIZE || chunk_size > PAGE_SIZE) {
/* Strictly speaking we could support this, if:
* - huge pages, or*
* - using an IOMMU, or
* - making sure the memory area is consecutive
* but for now, we simply say "computer says no".
*/
return -EINVAL;
}
xsk: new descriptor addressing scheme Currently, AF_XDP only supports a fixed frame-size memory scheme where each frame is referenced via an index (idx). A user passes the frame index to the kernel, and the kernel acts upon the data. Some NICs, however, do not have a fixed frame-size model, instead they have a model where a memory window is passed to the hardware and multiple frames are filled into that window (referred to as the "type-writer" model). By changing the descriptor format from the current frame index addressing scheme, AF_XDP can in the future be extended to support these kinds of NICs. In the index-based model, an idx refers to a frame of size frame_size. Addressing a frame in the UMEM is done by offseting the UMEM starting address by a global offset, idx * frame_size + offset. Communicating via the fill- and completion-rings are done by means of idx. In this commit, the idx is removed in favor of an address (addr), which is a relative address ranging over the UMEM. To convert an idx-based address to the new addr is simply: addr = idx * frame_size + offset. We also stop referring to the UMEM "frame" as a frame. Instead it is simply called a chunk. To transfer ownership of a chunk to the kernel, the addr of the chunk is passed in the fill-ring. Note, that the kernel will mask addr to make it chunk aligned, so there is no need for userspace to do that. E.g., for a chunk size of 2k, passing an addr of 2048, 2050 or 3000 to the fill-ring will refer to the same chunk. On the completion-ring, the addr will match that of the Tx descriptor, passed to the kernel. Changing the descriptor format to use chunks/addr will allow for future changes to move to a type-writer based model, where multiple frames can reside in one chunk. In this model passing one single chunk into the fill-ring, would potentially result in multiple Rx descriptors. This commit changes the uapi of AF_XDP sockets, and updates the documentation. Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-06-04 11:57:13 +00:00
if (!is_power_of_2(chunk_size))
return -EINVAL;
if (!PAGE_ALIGNED(addr)) {
/* Memory area has to be page size aligned. For
* simplicity, this might change.
*/
return -EINVAL;
}
if ((addr + size) < addr)
return -EINVAL;
xsk: new descriptor addressing scheme Currently, AF_XDP only supports a fixed frame-size memory scheme where each frame is referenced via an index (idx). A user passes the frame index to the kernel, and the kernel acts upon the data. Some NICs, however, do not have a fixed frame-size model, instead they have a model where a memory window is passed to the hardware and multiple frames are filled into that window (referred to as the "type-writer" model). By changing the descriptor format from the current frame index addressing scheme, AF_XDP can in the future be extended to support these kinds of NICs. In the index-based model, an idx refers to a frame of size frame_size. Addressing a frame in the UMEM is done by offseting the UMEM starting address by a global offset, idx * frame_size + offset. Communicating via the fill- and completion-rings are done by means of idx. In this commit, the idx is removed in favor of an address (addr), which is a relative address ranging over the UMEM. To convert an idx-based address to the new addr is simply: addr = idx * frame_size + offset. We also stop referring to the UMEM "frame" as a frame. Instead it is simply called a chunk. To transfer ownership of a chunk to the kernel, the addr of the chunk is passed in the fill-ring. Note, that the kernel will mask addr to make it chunk aligned, so there is no need for userspace to do that. E.g., for a chunk size of 2k, passing an addr of 2048, 2050 or 3000 to the fill-ring will refer to the same chunk. On the completion-ring, the addr will match that of the Tx descriptor, passed to the kernel. Changing the descriptor format to use chunks/addr will allow for future changes to move to a type-writer based model, where multiple frames can reside in one chunk. In this model passing one single chunk into the fill-ring, would potentially result in multiple Rx descriptors. This commit changes the uapi of AF_XDP sockets, and updates the documentation. Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-06-04 11:57:13 +00:00
chunks = (unsigned int)div_u64(size, chunk_size);
if (chunks == 0)
return -EINVAL;
xsk: new descriptor addressing scheme Currently, AF_XDP only supports a fixed frame-size memory scheme where each frame is referenced via an index (idx). A user passes the frame index to the kernel, and the kernel acts upon the data. Some NICs, however, do not have a fixed frame-size model, instead they have a model where a memory window is passed to the hardware and multiple frames are filled into that window (referred to as the "type-writer" model). By changing the descriptor format from the current frame index addressing scheme, AF_XDP can in the future be extended to support these kinds of NICs. In the index-based model, an idx refers to a frame of size frame_size. Addressing a frame in the UMEM is done by offseting the UMEM starting address by a global offset, idx * frame_size + offset. Communicating via the fill- and completion-rings are done by means of idx. In this commit, the idx is removed in favor of an address (addr), which is a relative address ranging over the UMEM. To convert an idx-based address to the new addr is simply: addr = idx * frame_size + offset. We also stop referring to the UMEM "frame" as a frame. Instead it is simply called a chunk. To transfer ownership of a chunk to the kernel, the addr of the chunk is passed in the fill-ring. Note, that the kernel will mask addr to make it chunk aligned, so there is no need for userspace to do that. E.g., for a chunk size of 2k, passing an addr of 2048, 2050 or 3000 to the fill-ring will refer to the same chunk. On the completion-ring, the addr will match that of the Tx descriptor, passed to the kernel. Changing the descriptor format to use chunks/addr will allow for future changes to move to a type-writer based model, where multiple frames can reside in one chunk. In this model passing one single chunk into the fill-ring, would potentially result in multiple Rx descriptors. This commit changes the uapi of AF_XDP sockets, and updates the documentation. Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-06-04 11:57:13 +00:00
chunks_per_page = PAGE_SIZE / chunk_size;
if (chunks < chunks_per_page || chunks % chunks_per_page)
return -EINVAL;
xsk: new descriptor addressing scheme Currently, AF_XDP only supports a fixed frame-size memory scheme where each frame is referenced via an index (idx). A user passes the frame index to the kernel, and the kernel acts upon the data. Some NICs, however, do not have a fixed frame-size model, instead they have a model where a memory window is passed to the hardware and multiple frames are filled into that window (referred to as the "type-writer" model). By changing the descriptor format from the current frame index addressing scheme, AF_XDP can in the future be extended to support these kinds of NICs. In the index-based model, an idx refers to a frame of size frame_size. Addressing a frame in the UMEM is done by offseting the UMEM starting address by a global offset, idx * frame_size + offset. Communicating via the fill- and completion-rings are done by means of idx. In this commit, the idx is removed in favor of an address (addr), which is a relative address ranging over the UMEM. To convert an idx-based address to the new addr is simply: addr = idx * frame_size + offset. We also stop referring to the UMEM "frame" as a frame. Instead it is simply called a chunk. To transfer ownership of a chunk to the kernel, the addr of the chunk is passed in the fill-ring. Note, that the kernel will mask addr to make it chunk aligned, so there is no need for userspace to do that. E.g., for a chunk size of 2k, passing an addr of 2048, 2050 or 3000 to the fill-ring will refer to the same chunk. On the completion-ring, the addr will match that of the Tx descriptor, passed to the kernel. Changing the descriptor format to use chunks/addr will allow for future changes to move to a type-writer based model, where multiple frames can reside in one chunk. In this model passing one single chunk into the fill-ring, would potentially result in multiple Rx descriptors. This commit changes the uapi of AF_XDP sockets, and updates the documentation. Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-06-04 11:57:13 +00:00
headroom = ALIGN(headroom, 64);
xsk: new descriptor addressing scheme Currently, AF_XDP only supports a fixed frame-size memory scheme where each frame is referenced via an index (idx). A user passes the frame index to the kernel, and the kernel acts upon the data. Some NICs, however, do not have a fixed frame-size model, instead they have a model where a memory window is passed to the hardware and multiple frames are filled into that window (referred to as the "type-writer" model). By changing the descriptor format from the current frame index addressing scheme, AF_XDP can in the future be extended to support these kinds of NICs. In the index-based model, an idx refers to a frame of size frame_size. Addressing a frame in the UMEM is done by offseting the UMEM starting address by a global offset, idx * frame_size + offset. Communicating via the fill- and completion-rings are done by means of idx. In this commit, the idx is removed in favor of an address (addr), which is a relative address ranging over the UMEM. To convert an idx-based address to the new addr is simply: addr = idx * frame_size + offset. We also stop referring to the UMEM "frame" as a frame. Instead it is simply called a chunk. To transfer ownership of a chunk to the kernel, the addr of the chunk is passed in the fill-ring. Note, that the kernel will mask addr to make it chunk aligned, so there is no need for userspace to do that. E.g., for a chunk size of 2k, passing an addr of 2048, 2050 or 3000 to the fill-ring will refer to the same chunk. On the completion-ring, the addr will match that of the Tx descriptor, passed to the kernel. Changing the descriptor format to use chunks/addr will allow for future changes to move to a type-writer based model, where multiple frames can reside in one chunk. In this model passing one single chunk into the fill-ring, would potentially result in multiple Rx descriptors. This commit changes the uapi of AF_XDP sockets, and updates the documentation. Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-06-04 11:57:13 +00:00
size_chk = chunk_size - headroom - XDP_PACKET_HEADROOM;
if (size_chk < 0)
return -EINVAL;
umem->address = (unsigned long)addr;
umem->chunk_mask = ~((u64)chunk_size - 1);
umem->size = size;
xsk: new descriptor addressing scheme Currently, AF_XDP only supports a fixed frame-size memory scheme where each frame is referenced via an index (idx). A user passes the frame index to the kernel, and the kernel acts upon the data. Some NICs, however, do not have a fixed frame-size model, instead they have a model where a memory window is passed to the hardware and multiple frames are filled into that window (referred to as the "type-writer" model). By changing the descriptor format from the current frame index addressing scheme, AF_XDP can in the future be extended to support these kinds of NICs. In the index-based model, an idx refers to a frame of size frame_size. Addressing a frame in the UMEM is done by offseting the UMEM starting address by a global offset, idx * frame_size + offset. Communicating via the fill- and completion-rings are done by means of idx. In this commit, the idx is removed in favor of an address (addr), which is a relative address ranging over the UMEM. To convert an idx-based address to the new addr is simply: addr = idx * frame_size + offset. We also stop referring to the UMEM "frame" as a frame. Instead it is simply called a chunk. To transfer ownership of a chunk to the kernel, the addr of the chunk is passed in the fill-ring. Note, that the kernel will mask addr to make it chunk aligned, so there is no need for userspace to do that. E.g., for a chunk size of 2k, passing an addr of 2048, 2050 or 3000 to the fill-ring will refer to the same chunk. On the completion-ring, the addr will match that of the Tx descriptor, passed to the kernel. Changing the descriptor format to use chunks/addr will allow for future changes to move to a type-writer based model, where multiple frames can reside in one chunk. In this model passing one single chunk into the fill-ring, would potentially result in multiple Rx descriptors. This commit changes the uapi of AF_XDP sockets, and updates the documentation. Signed-off-by: Björn Töpel <bjorn.topel@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-06-04 11:57:13 +00:00
umem->headroom = headroom;
umem->chunk_size_nohr = chunk_size - headroom;
umem->npgs = size / PAGE_SIZE;
umem->pgs = NULL;
umem->user = NULL;
INIT_LIST_HEAD(&umem->xsk_list);
spin_lock_init(&umem->xsk_list_lock);
refcount_set(&umem->users, 1);
err = xdp_umem_account_pages(umem);
if (err)
return err;
err = xdp_umem_pin_pages(umem);
if (err)
goto out_account;
umem->pages = kcalloc(umem->npgs, sizeof(*umem->pages), GFP_KERNEL);
if (!umem->pages) {
err = -ENOMEM;
goto out_account;
}
for (i = 0; i < umem->npgs; i++)
umem->pages[i].addr = page_address(umem->pgs[i]);
return 0;
out_account:
xdp_umem_unaccount_pages(umem);
return err;
}
struct xdp_umem *xdp_umem_create(struct xdp_umem_reg *mr)
{
struct xdp_umem *umem;
int err;
umem = kzalloc(sizeof(*umem), GFP_KERNEL);
if (!umem)
return ERR_PTR(-ENOMEM);
err = ida_simple_get(&umem_ida, 0, 0, GFP_KERNEL);
if (err < 0) {
kfree(umem);
return ERR_PTR(err);
}
umem->id = err;
err = xdp_umem_reg(umem, mr);
if (err) {
ida_simple_remove(&umem_ida, umem->id);
kfree(umem);
return ERR_PTR(err);
}
return umem;
}
bool xdp_umem_validate_queues(struct xdp_umem *umem)
{
return umem->fq && umem->cq;
}