2018-03-06 09:44:42 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
|
|
|
|
/*
|
|
|
|
* SM4 Cipher Algorithm.
|
|
|
|
*
|
|
|
|
* Copyright (C) 2018 ARM Limited or its affiliates.
|
|
|
|
* All rights reserved.
|
|
|
|
*/
|
|
|
|
|
2022-11-25 04:36:28 +00:00
|
|
|
#include <crypto/algapi.h>
|
2018-03-06 09:44:42 +00:00
|
|
|
#include <crypto/sm4.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <asm/byteorder.h>
|
|
|
|
#include <asm/unaligned.h>
|
|
|
|
|
|
|
|
/**
|
2021-07-20 03:46:40 +00:00
|
|
|
* sm4_setkey - Set the SM4 key.
|
2018-03-06 09:44:42 +00:00
|
|
|
* @tfm: The %crypto_tfm that is used in the context.
|
|
|
|
* @in_key: The input key.
|
|
|
|
* @key_len: The size of the key.
|
|
|
|
*
|
crypto: sm4 - create SM4 library based on sm4 generic code
Take the existing small footprint and mostly time invariant C code
and turn it into a SM4 library that can be used for non-performance
critical, casual use of SM4, and as a fallback for, e.g., SIMD code
that needs a secondary path that can be taken in contexts where the
SIMD unit is off limits.
Secondly, some codes have been optimized, such as unrolling small
times loop, removing unnecessary memory shifts, exporting sbox, fk,
ck arrays, and basic encryption and decryption functions.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2021-07-20 03:46:39 +00:00
|
|
|
* This function uses sm4_expandkey() to expand the key.
|
2021-07-20 03:46:40 +00:00
|
|
|
* &sm4_ctx _must_ be the private data embedded in @tfm which is
|
2018-03-06 09:44:42 +00:00
|
|
|
* retrieved with crypto_tfm_ctx().
|
crypto: remove CRYPTO_TFM_RES_BAD_KEY_LEN
The CRYPTO_TFM_RES_BAD_KEY_LEN flag was apparently meant as a way to
make the ->setkey() functions provide more information about errors.
However, no one actually checks for this flag, which makes it pointless.
Also, many algorithms fail to set this flag when given a bad length key.
Reviewing just the generic implementations, this is the case for
aes-fixed-time, cbcmac, echainiv, nhpoly1305, pcrypt, rfc3686, rfc4309,
rfc7539, rfc7539esp, salsa20, seqiv, and xcbc. But there are probably
many more in arch/*/crypto/ and drivers/crypto/.
Some algorithms can even set this flag when the key is the correct
length. For example, authenc and authencesn set it when the key payload
is malformed in any way (not just a bad length), the atmel-sha and ccree
drivers can set it if a memory allocation fails, and the chelsio driver
sets it for bad auth tag lengths, not just bad key lengths.
So even if someone actually wanted to start checking this flag (which
seems unlikely, since it's been unused for a long time), there would be
a lot of work needed to get it working correctly. But it would probably
be much better to go back to the drawing board and just define different
return values, like -EINVAL if the key is invalid for the algorithm vs.
-EKEYREJECTED if the key was rejected by a policy like "no weak keys".
That would be much simpler, less error-prone, and easier to test.
So just remove this flag.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-12-31 03:19:36 +00:00
|
|
|
*
|
|
|
|
* Return: 0 on success; -EINVAL on failure (only happens for bad key lengths)
|
2018-03-06 09:44:42 +00:00
|
|
|
*/
|
2021-07-20 03:46:40 +00:00
|
|
|
static int sm4_setkey(struct crypto_tfm *tfm, const u8 *in_key,
|
2018-03-06 09:44:42 +00:00
|
|
|
unsigned int key_len)
|
|
|
|
{
|
2021-07-20 03:46:40 +00:00
|
|
|
struct sm4_ctx *ctx = crypto_tfm_ctx(tfm);
|
2018-03-06 09:44:42 +00:00
|
|
|
|
crypto: sm4 - create SM4 library based on sm4 generic code
Take the existing small footprint and mostly time invariant C code
and turn it into a SM4 library that can be used for non-performance
critical, casual use of SM4, and as a fallback for, e.g., SIMD code
that needs a secondary path that can be taken in contexts where the
SIMD unit is off limits.
Secondly, some codes have been optimized, such as unrolling small
times loop, removing unnecessary memory shifts, exporting sbox, fk,
ck arrays, and basic encryption and decryption functions.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2021-07-20 03:46:39 +00:00
|
|
|
return sm4_expandkey(ctx, in_key, key_len);
|
2018-03-06 09:44:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* encrypt a block of text */
|
|
|
|
|
2021-07-20 03:46:40 +00:00
|
|
|
static void sm4_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
|
2018-03-06 09:44:42 +00:00
|
|
|
{
|
2021-07-20 03:46:40 +00:00
|
|
|
const struct sm4_ctx *ctx = crypto_tfm_ctx(tfm);
|
2018-03-06 09:44:42 +00:00
|
|
|
|
crypto: sm4 - create SM4 library based on sm4 generic code
Take the existing small footprint and mostly time invariant C code
and turn it into a SM4 library that can be used for non-performance
critical, casual use of SM4, and as a fallback for, e.g., SIMD code
that needs a secondary path that can be taken in contexts where the
SIMD unit is off limits.
Secondly, some codes have been optimized, such as unrolling small
times loop, removing unnecessary memory shifts, exporting sbox, fk,
ck arrays, and basic encryption and decryption functions.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2021-07-20 03:46:39 +00:00
|
|
|
sm4_crypt_block(ctx->rkey_enc, out, in);
|
2018-03-06 09:44:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* decrypt a block of text */
|
|
|
|
|
2021-07-20 03:46:40 +00:00
|
|
|
static void sm4_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
|
2018-03-06 09:44:42 +00:00
|
|
|
{
|
2021-07-20 03:46:40 +00:00
|
|
|
const struct sm4_ctx *ctx = crypto_tfm_ctx(tfm);
|
2018-03-06 09:44:42 +00:00
|
|
|
|
crypto: sm4 - create SM4 library based on sm4 generic code
Take the existing small footprint and mostly time invariant C code
and turn it into a SM4 library that can be used for non-performance
critical, casual use of SM4, and as a fallback for, e.g., SIMD code
that needs a secondary path that can be taken in contexts where the
SIMD unit is off limits.
Secondly, some codes have been optimized, such as unrolling small
times loop, removing unnecessary memory shifts, exporting sbox, fk,
ck arrays, and basic encryption and decryption functions.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2021-07-20 03:46:39 +00:00
|
|
|
sm4_crypt_block(ctx->rkey_dec, out, in);
|
2018-03-06 09:44:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static struct crypto_alg sm4_alg = {
|
|
|
|
.cra_name = "sm4",
|
|
|
|
.cra_driver_name = "sm4-generic",
|
|
|
|
.cra_priority = 100,
|
|
|
|
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
|
|
|
|
.cra_blocksize = SM4_BLOCK_SIZE,
|
2021-07-20 03:46:40 +00:00
|
|
|
.cra_ctxsize = sizeof(struct sm4_ctx),
|
2018-03-06 09:44:42 +00:00
|
|
|
.cra_module = THIS_MODULE,
|
|
|
|
.cra_u = {
|
|
|
|
.cipher = {
|
|
|
|
.cia_min_keysize = SM4_KEY_SIZE,
|
|
|
|
.cia_max_keysize = SM4_KEY_SIZE,
|
2021-07-20 03:46:40 +00:00
|
|
|
.cia_setkey = sm4_setkey,
|
|
|
|
.cia_encrypt = sm4_encrypt,
|
|
|
|
.cia_decrypt = sm4_decrypt
|
2018-03-06 09:44:42 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
static int __init sm4_init(void)
|
|
|
|
{
|
|
|
|
return crypto_register_alg(&sm4_alg);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __exit sm4_fini(void)
|
|
|
|
{
|
|
|
|
crypto_unregister_alg(&sm4_alg);
|
|
|
|
}
|
|
|
|
|
2019-04-12 04:57:42 +00:00
|
|
|
subsys_initcall(sm4_init);
|
2018-03-06 09:44:42 +00:00
|
|
|
module_exit(sm4_fini);
|
|
|
|
|
|
|
|
MODULE_DESCRIPTION("SM4 Cipher Algorithm");
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
|
|
MODULE_ALIAS_CRYPTO("sm4");
|
|
|
|
MODULE_ALIAS_CRYPTO("sm4-generic");
|