linux/kernel/gen_kheaders.sh

100 lines
3.1 KiB
Bash
Raw Permalink Normal View History

#!/bin/sh
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-26 19:04:29 +00:00
# SPDX-License-Identifier: GPL-2.0
# This script generates an archive consisting of kernel headers
# for CONFIG_IKHEADERS.
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-26 19:04:29 +00:00
set -e
sfile="$(readlink -f "$0")"
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-26 19:04:29 +00:00
outdir="$(pwd)"
tarfile=$1
cpio_dir=$outdir/${tarfile%/*}/.tmp_cpio_dir
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-26 19:04:29 +00:00
dir_list="
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-26 19:04:29 +00:00
include/
arch/$SRCARCH/include/
"
if ! command -v cpio >/dev/null; then
echo >&2 "***"
echo >&2 "*** 'cpio' could not be found."
echo >&2 "***"
exit 1
fi
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-26 19:04:29 +00:00
# Support incremental builds by skipping archive generation
# if timestamps of files being archived are not changed.
# This block is useful for debugging the incremental builds.
# Uncomment it for debugging.
# if [ ! -f /tmp/iter ]; then iter=1; echo 1 > /tmp/iter;
# else iter=$(($(cat /tmp/iter) + 1)); echo $iter > /tmp/iter; fi
# find $all_dirs -name "*.h" | xargs ls -l > /tmp/ls-$iter
all_dirs=
if [ "$building_out_of_srctree" ]; then
for d in $dir_list; do
all_dirs="$all_dirs $srctree/$d"
done
fi
all_dirs="$all_dirs $dir_list"
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-26 19:04:29 +00:00
kbuild: build init/built-in.a just once Kbuild builds init/built-in.a twice; first during the ordinary directory descending, second from scripts/link-vmlinux.sh. We do this because UTS_VERSION contains the build version and the timestamp. We cannot update it during the normal directory traversal since we do not yet know if we need to update vmlinux. UTS_VERSION is temporarily calculated, but omitted from the update check. Otherwise, vmlinux would be rebuilt every time. When Kbuild results in running link-vmlinux.sh, it increments the version number in the .version file and takes the timestamp at that time to really fix UTS_VERSION. However, updating the same file twice is a footgun. To avoid nasty timestamp issues, all build artifacts that depend on init/built-in.a are atomically generated in link-vmlinux.sh, where some of them do not need rebuilding. To fix this issue, this commit changes as follows: [1] Split UTS_VERSION out to include/generated/utsversion.h from include/generated/compile.h include/generated/utsversion.h is generated just before the vmlinux link. It is generated under include/generated/ because some decompressors (s390, x86) use UTS_VERSION. [2] Split init_uts_ns and linux_banner out to init/version-timestamp.c from init/version.c init_uts_ns and linux_banner contain UTS_VERSION. During the ordinary directory descending, they are compiled with __weak and used to determine if vmlinux needs relinking. Just before the vmlinux link, they are compiled without __weak to embed the real version and timestamp. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2022-08-28 02:39:53 +00:00
# include/generated/utsversion.h is ignored because it is generated after this
# script is executed. (utsversion.h is unneeded for kheaders)
#
# When Kconfig regenerates include/generated/autoconf.h, its timestamp is
# updated, but the contents might be still the same. When any CONFIG option is
# changed, Kconfig touches the corresponding timestamp file include/config/*.
# Hence, the md5sum detects the configuration change anyway. We do not need to
# check include/generated/autoconf.h explicitly.
#
# Ignore them for md5 calculation to avoid pointless regeneration.
headers_md5="$(find $all_dirs -name "*.h" |
kbuild: build init/built-in.a just once Kbuild builds init/built-in.a twice; first during the ordinary directory descending, second from scripts/link-vmlinux.sh. We do this because UTS_VERSION contains the build version and the timestamp. We cannot update it during the normal directory traversal since we do not yet know if we need to update vmlinux. UTS_VERSION is temporarily calculated, but omitted from the update check. Otherwise, vmlinux would be rebuilt every time. When Kbuild results in running link-vmlinux.sh, it increments the version number in the .version file and takes the timestamp at that time to really fix UTS_VERSION. However, updating the same file twice is a footgun. To avoid nasty timestamp issues, all build artifacts that depend on init/built-in.a are atomically generated in link-vmlinux.sh, where some of them do not need rebuilding. To fix this issue, this commit changes as follows: [1] Split UTS_VERSION out to include/generated/utsversion.h from include/generated/compile.h include/generated/utsversion.h is generated just before the vmlinux link. It is generated under include/generated/ because some decompressors (s390, x86) use UTS_VERSION. [2] Split init_uts_ns and linux_banner out to init/version-timestamp.c from init/version.c init_uts_ns and linux_banner contain UTS_VERSION. During the ordinary directory descending, they are compiled with __weak and used to determine if vmlinux needs relinking. Just before the vmlinux link, they are compiled without __weak to embed the real version and timestamp. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2022-08-28 02:39:53 +00:00
grep -v "include/generated/utsversion.h" |
grep -v "include/generated/autoconf.h" |
xargs ls -l | md5sum | cut -d ' ' -f1)"
# Any changes to this script will also cause a rebuild of the archive.
this_file_md5="$(ls -l $sfile | md5sum | cut -d ' ' -f1)"
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-26 19:04:29 +00:00
if [ -f $tarfile ]; then tarfile_md5="$(md5sum $tarfile | cut -d ' ' -f1)"; fi
if [ -f kernel/kheaders.md5 ] &&
[ "$(head -n 1 kernel/kheaders.md5)" = "$headers_md5" ] &&
[ "$(head -n 2 kernel/kheaders.md5 | tail -n 1)" = "$this_file_md5" ] &&
[ "$(tail -n 1 kernel/kheaders.md5)" = "$tarfile_md5" ]; then
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-26 19:04:29 +00:00
exit
fi
echo " GEN $tarfile"
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-26 19:04:29 +00:00
rm -rf $cpio_dir
mkdir $cpio_dir
if [ "$building_out_of_srctree" ]; then
(
cd $srctree
for f in $dir_list
do find "$f" -name "*.h";
done | cpio --quiet -pd $cpio_dir
)
fi
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-26 19:04:29 +00:00
# The second CPIO can complain if files already exist which can happen with out
# of tree builds having stale headers in srctree. Just silence CPIO for now.
for f in $dir_list;
do find "$f" -name "*.h";
done | cpio --quiet -pdu $cpio_dir >/dev/null 2>&1
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-26 19:04:29 +00:00
# Remove comments except SDPX lines
find $cpio_dir -type f -print0 |
xargs -0 -P8 -n1 perl -pi -e 'BEGIN {undef $/;}; s/\/\*((?!SPDX).)*?\*\///smg;'
# Create archive and try to normalize metadata for reproducibility.
tar "${KBUILD_BUILD_TIMESTAMP:+--mtime=$KBUILD_BUILD_TIMESTAMP}" \
--owner=0 --group=0 --sort=name --numeric-owner --mode=u=rw,go=r,a+X \
-I $XZ -cf $tarfile -C $cpio_dir/ . > /dev/null
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-26 19:04:29 +00:00
echo $headers_md5 > kernel/kheaders.md5
echo "$this_file_md5" >> kernel/kheaders.md5
Provide in-kernel headers to make extending kernel easier Introduce in-kernel headers which are made available as an archive through proc (/proc/kheaders.tar.xz file). This archive makes it possible to run eBPF and other tracing programs that need to extend the kernel for tracing purposes without any dependency on the file system having headers. A github PR is sent for the corresponding BCC patch at: https://github.com/iovisor/bcc/pull/2312 On Android and embedded systems, it is common to switch kernels but not have kernel headers available on the file system. Further once a different kernel is booted, any headers stored on the file system will no longer be useful. This is an issue even well known to distros. By storing the headers as a compressed archive within the kernel, we can avoid these issues that have been a hindrance for a long time. The best way to use this feature is by building it in. Several users have a need for this, when they switch debug kernels, they do not want to update the filesystem or worry about it where to store the headers on it. However, the feature is also buildable as a module in case the user desires it not being part of the kernel image. This makes it possible to load and unload the headers from memory on demand. A tracing program can load the module, do its operations, and then unload the module to save kernel memory. The total memory needed is 3.3MB. By having the archive available at a fixed location independent of filesystem dependencies and conventions, all debugging tools can directly refer to the fixed location for the archive, without concerning with where the headers on a typical filesystem which significantly simplifies tooling that needs kernel headers. The code to read the headers is based on /proc/config.gz code and uses the same technique to embed the headers. Other approaches were discussed such as having an in-memory mountable filesystem, but that has drawbacks such as requiring an in-kernel xz decompressor which we don't have today, and requiring usage of 42 MB of kernel memory to host the decompressed headers at anytime. Also this approach is simpler than such approaches. Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-26 19:04:29 +00:00
echo "$(md5sum $tarfile | cut -d ' ' -f1)" >> kernel/kheaders.md5
rm -rf $cpio_dir