linux/fs/binfmt_flat.c

947 lines
26 KiB
C
Raw Permalink Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
// SPDX-License-Identifier: GPL-2.0
/****************************************************************************/
/*
* linux/fs/binfmt_flat.c
*
* Copyright (C) 2000-2003 David McCullough <davidm@snapgear.com>
* Copyright (C) 2002 Greg Ungerer <gerg@snapgear.com>
* Copyright (C) 2002 SnapGear, by Paul Dale <pauli@snapgear.com>
* Copyright (C) 2000, 2001 Lineo, by David McCullough <davidm@lineo.com>
* based heavily on:
*
* linux/fs/binfmt_aout.c:
* Copyright (C) 1991, 1992, 1996 Linus Torvalds
* linux/fs/binfmt_flat.c for 2.0 kernel
* Copyright (C) 1998 Kenneth Albanowski <kjahds@kjahds.com>
* JAN/99 -- coded full program relocation (gerg@snapgear.com)
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/string.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/ptrace.h>
#include <linux/user.h>
#include <linux/slab.h>
#include <linux/binfmts.h>
#include <linux/personality.h>
#include <linux/init.h>
#include <linux/flat.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#include <asm/byteorder.h>
#include <linux/unaligned.h>
#include <asm/cacheflush.h>
#include <asm/page.h>
#include <asm/flat.h>
#ifndef flat_get_relocate_addr
#define flat_get_relocate_addr(rel) (rel)
#endif
/****************************************************************************/
/*
* User data (data section and bss) needs to be aligned.
* We pick 0x20 here because it is the max value elf2flt has always
* used in producing FLAT files, and because it seems to be large
* enough to make all the gcc alignment related tests happy.
*/
#define FLAT_DATA_ALIGN (0x20)
/*
* User data (stack) also needs to be aligned.
* Here we can be a bit looser than the data sections since this
* needs to only meet arch ABI requirements.
*/
#define FLAT_STACK_ALIGN max_t(unsigned long, sizeof(void *), ARCH_SLAB_MINALIGN)
#define RELOC_FAILED 0xff00ff01 /* Relocation incorrect somewhere */
#define UNLOADED_LIB 0x7ff000ff /* Placeholder for unused library */
#define MAX_SHARED_LIBS (1)
#ifdef CONFIG_BINFMT_FLAT_NO_DATA_START_OFFSET
#define DATA_START_OFFSET_WORDS (0)
#define MAX_SHARED_LIBS_UPDATE (0)
#else
#define DATA_START_OFFSET_WORDS (MAX_SHARED_LIBS)
#define MAX_SHARED_LIBS_UPDATE (MAX_SHARED_LIBS)
#endif
struct lib_info {
struct {
unsigned long start_code; /* Start of text segment */
unsigned long start_data; /* Start of data segment */
unsigned long start_brk; /* End of data segment */
unsigned long text_len; /* Length of text segment */
unsigned long entry; /* Start address for this module */
unsigned long build_date; /* When this one was compiled */
bool loaded; /* Has this library been loaded? */
} lib_list[MAX_SHARED_LIBS];
};
static int load_flat_binary(struct linux_binprm *);
static struct linux_binfmt flat_format = {
.module = THIS_MODULE,
.load_binary = load_flat_binary,
};
/****************************************************************************/
/*
* create_flat_tables() parses the env- and arg-strings in new user
* memory and creates the pointer tables from them, and puts their
* addresses on the "stack", recording the new stack pointer value.
*/
static int create_flat_tables(struct linux_binprm *bprm, unsigned long arg_start)
{
char __user *p;
unsigned long __user *sp;
long i, len;
p = (char __user *)arg_start;
sp = (unsigned long __user *)current->mm->start_stack;
sp -= bprm->envc + 1;
sp -= bprm->argc + 1;
if (IS_ENABLED(CONFIG_BINFMT_FLAT_ARGVP_ENVP_ON_STACK))
sp -= 2; /* argvp + envp */
sp -= 1; /* &argc */
current->mm->start_stack = (unsigned long)sp & -FLAT_STACK_ALIGN;
sp = (unsigned long __user *)current->mm->start_stack;
if (put_user(bprm->argc, sp++))
return -EFAULT;
if (IS_ENABLED(CONFIG_BINFMT_FLAT_ARGVP_ENVP_ON_STACK)) {
unsigned long argv, envp;
argv = (unsigned long)(sp + 2);
envp = (unsigned long)(sp + 2 + bprm->argc + 1);
if (put_user(argv, sp++) || put_user(envp, sp++))
return -EFAULT;
}
current->mm->arg_start = (unsigned long)p;
for (i = bprm->argc; i > 0; i--) {
if (put_user((unsigned long)p, sp++))
return -EFAULT;
len = strnlen_user(p, MAX_ARG_STRLEN);
if (!len || len > MAX_ARG_STRLEN)
return -EINVAL;
p += len;
}
if (put_user(0, sp++))
return -EFAULT;
current->mm->arg_end = (unsigned long)p;
current->mm->env_start = (unsigned long) p;
for (i = bprm->envc; i > 0; i--) {
if (put_user((unsigned long)p, sp++))
return -EFAULT;
len = strnlen_user(p, MAX_ARG_STRLEN);
if (!len || len > MAX_ARG_STRLEN)
return -EINVAL;
p += len;
}
if (put_user(0, sp++))
return -EFAULT;
current->mm->env_end = (unsigned long)p;
return 0;
}
/****************************************************************************/
#ifdef CONFIG_BINFMT_ZFLAT
#include <linux/zlib.h>
#define LBUFSIZE 4000
/* gzip flag byte */
#define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */
#define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
#define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
#define ORIG_NAME 0x08 /* bit 3 set: original file name present */
#define COMMENT 0x10 /* bit 4 set: file comment present */
#define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */
#define RESERVED 0xC0 /* bit 6,7: reserved */
static int decompress_exec(struct linux_binprm *bprm, loff_t fpos, char *dst,
long len, int fd)
{
unsigned char *buf;
z_stream strm;
int ret, retval;
pr_debug("decompress_exec(offset=%llx,buf=%p,len=%lx)\n", fpos, dst, len);
memset(&strm, 0, sizeof(strm));
strm.workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
if (!strm.workspace)
return -ENOMEM;
buf = kmalloc(LBUFSIZE, GFP_KERNEL);
if (!buf) {
retval = -ENOMEM;
goto out_free;
}
/* Read in first chunk of data and parse gzip header. */
ret = kernel_read(bprm->file, buf, LBUFSIZE, &fpos);
strm.next_in = buf;
strm.avail_in = ret;
strm.total_in = 0;
retval = -ENOEXEC;
/* Check minimum size -- gzip header */
if (ret < 10) {
pr_debug("file too small?\n");
goto out_free_buf;
}
/* Check gzip magic number */
if ((buf[0] != 037) || ((buf[1] != 0213) && (buf[1] != 0236))) {
pr_debug("unknown compression magic?\n");
goto out_free_buf;
}
/* Check gzip method */
if (buf[2] != 8) {
pr_debug("unknown compression method?\n");
goto out_free_buf;
}
/* Check gzip flags */
if ((buf[3] & ENCRYPTED) || (buf[3] & CONTINUATION) ||
(buf[3] & RESERVED)) {
pr_debug("unknown flags?\n");
goto out_free_buf;
}
ret = 10;
if (buf[3] & EXTRA_FIELD) {
ret += 2 + buf[10] + (buf[11] << 8);
if (unlikely(ret >= LBUFSIZE)) {
pr_debug("buffer overflow (EXTRA)?\n");
goto out_free_buf;
}
}
if (buf[3] & ORIG_NAME) {
while (ret < LBUFSIZE && buf[ret++] != 0)
;
if (unlikely(ret == LBUFSIZE)) {
pr_debug("buffer overflow (ORIG_NAME)?\n");
goto out_free_buf;
}
}
if (buf[3] & COMMENT) {
while (ret < LBUFSIZE && buf[ret++] != 0)
;
if (unlikely(ret == LBUFSIZE)) {
pr_debug("buffer overflow (COMMENT)?\n");
goto out_free_buf;
}
}
strm.next_in += ret;
strm.avail_in -= ret;
strm.next_out = dst;
strm.avail_out = len;
strm.total_out = 0;
if (zlib_inflateInit2(&strm, -MAX_WBITS) != Z_OK) {
pr_debug("zlib init failed?\n");
goto out_free_buf;
}
while ((ret = zlib_inflate(&strm, Z_NO_FLUSH)) == Z_OK) {
ret = kernel_read(bprm->file, buf, LBUFSIZE, &fpos);
if (ret <= 0)
break;
len -= ret;
strm.next_in = buf;
strm.avail_in = ret;
strm.total_in = 0;
}
if (ret < 0) {
pr_debug("decompression failed (%d), %s\n",
ret, strm.msg);
goto out_zlib;
}
retval = 0;
out_zlib:
zlib_inflateEnd(&strm);
out_free_buf:
kfree(buf);
out_free:
kfree(strm.workspace);
return retval;
}
#endif /* CONFIG_BINFMT_ZFLAT */
/****************************************************************************/
static unsigned long
calc_reloc(unsigned long r, struct lib_info *p)
{
unsigned long addr;
unsigned long start_brk;
unsigned long start_data;
unsigned long text_len;
unsigned long start_code;
start_brk = p->lib_list[0].start_brk;
start_data = p->lib_list[0].start_data;
start_code = p->lib_list[0].start_code;
text_len = p->lib_list[0].text_len;
if (r > start_brk - start_data + text_len) {
pr_err("reloc outside program 0x%lx (0 - 0x%lx/0x%lx)",
r, start_brk-start_data+text_len, text_len);
goto failed;
}
if (r < text_len) /* In text segment */
addr = r + start_code;
else /* In data segment */
addr = r - text_len + start_data;
/* Range checked already above so doing the range tests is redundant...*/
return addr;
failed:
pr_cont(", killing %s!\n", current->comm);
send_sig(SIGSEGV, current, 0);
return RELOC_FAILED;
}
/****************************************************************************/
#ifdef CONFIG_BINFMT_FLAT_OLD
static void old_reloc(unsigned long rl)
{
static const char *segment[] = { "TEXT", "DATA", "BSS", "*UNKNOWN*" };
flat_v2_reloc_t r;
unsigned long __user *ptr;
unsigned long val;
r.value = rl;
#if defined(CONFIG_COLDFIRE)
ptr = (unsigned long __user *)(current->mm->start_code + r.reloc.offset);
#else
ptr = (unsigned long __user *)(current->mm->start_data + r.reloc.offset);
#endif
get_user(val, ptr);
pr_debug("Relocation of variable at DATASEG+%x "
"(address %p, currently %lx) into segment %s\n",
r.reloc.offset, ptr, val, segment[r.reloc.type]);
switch (r.reloc.type) {
case OLD_FLAT_RELOC_TYPE_TEXT:
val += current->mm->start_code;
break;
case OLD_FLAT_RELOC_TYPE_DATA:
val += current->mm->start_data;
break;
case OLD_FLAT_RELOC_TYPE_BSS:
val += current->mm->end_data;
break;
default:
pr_err("Unknown relocation type=%x\n", r.reloc.type);
break;
}
put_user(val, ptr);
pr_debug("Relocation became %lx\n", val);
}
#endif /* CONFIG_BINFMT_FLAT_OLD */
/****************************************************************************/
binfmt_flat: do not stop relocating GOT entries prematurely on riscv bFLT binaries are usually created using elf2flt. The linker script used by elf2flt has defined the .data section like the following for the last 19 years: .data : { _sdata = . ; __data_start = . ; data_start = . ; *(.got.plt) *(.got) FILL(0) ; . = ALIGN(0x20) ; LONG(-1) . = ALIGN(0x20) ; ... } It places the .got.plt input section before the .got input section. The same is true for the default linker script (ld --verbose) on most architectures except x86/x86-64. The binfmt_flat loader should relocate all GOT entries until it encounters a -1 (the LONG(-1) in the linker script). The problem is that the .got.plt input section starts with a GOTPLT header (which has size 16 bytes on elf64-riscv and 8 bytes on elf32-riscv), where the first word is set to -1. See the binutils implementation for riscv [1]. This causes the binfmt_flat loader to stop relocating GOT entries prematurely and thus causes the application to crash when running. Fix this by skipping the whole GOTPLT header, since the whole GOTPLT header is reserved for the dynamic linker. The GOTPLT header will only be skipped for bFLT binaries with flag FLAT_FLAG_GOTPIC set. This flag is unconditionally set by elf2flt if the supplied ELF binary has the symbol _GLOBAL_OFFSET_TABLE_ defined. ELF binaries without a .got input section should thus remain unaffected. Tested on RISC-V Canaan Kendryte K210 and RISC-V QEMU nommu_virt_defconfig. [1] https://sourceware.org/git/?p=binutils-gdb.git;a=blob;f=bfd/elfnn-riscv.c;hb=binutils-2_38#l3275 Cc: <stable@vger.kernel.org> Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Reviewed-by: Damien Le Moal <damien.lemoal@opensource.wdc.com> Link: https://lore.kernel.org/r/20220414091018.896737-1-niklas.cassel@wdc.com Fixed-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/lkml/202204182333.OIUOotK8-lkp@intel.com Signed-off-by: Kees Cook <keescook@chromium.org>
2022-04-14 09:10:18 +00:00
static inline u32 __user *skip_got_header(u32 __user *rp)
{
if (IS_ENABLED(CONFIG_RISCV)) {
/*
* RISC-V has a 16 byte GOT PLT header for elf64-riscv
* and 8 byte GOT PLT header for elf32-riscv.
* Skip the whole GOT PLT header, since it is reserved
* for the dynamic linker (ld.so).
*/
u32 rp_val0, rp_val1;
if (get_user(rp_val0, rp))
return rp;
if (get_user(rp_val1, rp + 1))
return rp;
if (rp_val0 == 0xffffffff && rp_val1 == 0xffffffff)
rp += 4;
else if (rp_val0 == 0xffffffff)
rp += 2;
}
return rp;
}
static int load_flat_file(struct linux_binprm *bprm,
struct lib_info *libinfo, unsigned long *extra_stack)
{
struct flat_hdr *hdr;
unsigned long textpos, datapos, realdatastart;
u32 text_len, data_len, bss_len, stack_len, full_data, flags;
unsigned long len, memp, memp_size, extra, rlim;
__be32 __user *reloc;
u32 __user *rp;
int i, rev, relocs;
loff_t fpos;
unsigned long start_code, end_code;
ssize_t result;
int ret;
hdr = ((struct flat_hdr *) bprm->buf); /* exec-header */
text_len = ntohl(hdr->data_start);
data_len = ntohl(hdr->data_end) - ntohl(hdr->data_start);
bss_len = ntohl(hdr->bss_end) - ntohl(hdr->data_end);
stack_len = ntohl(hdr->stack_size);
if (extra_stack) {
stack_len += *extra_stack;
*extra_stack = stack_len;
}
relocs = ntohl(hdr->reloc_count);
flags = ntohl(hdr->flags);
rev = ntohl(hdr->rev);
full_data = data_len + relocs * sizeof(unsigned long);
if (strncmp(hdr->magic, "bFLT", 4)) {
/*
* Previously, here was a printk to tell people
* "BINFMT_FLAT: bad header magic".
* But for the kernel which also use ELF FD-PIC format, this
* error message is confusing.
* because a lot of people do not manage to produce good
*/
ret = -ENOEXEC;
goto err;
}
if (flags & FLAT_FLAG_KTRACE)
pr_info("Loading file: %s\n", bprm->filename);
#ifdef CONFIG_BINFMT_FLAT_OLD
if (rev != FLAT_VERSION && rev != OLD_FLAT_VERSION) {
pr_err("bad flat file version 0x%x (supported 0x%lx and 0x%lx)\n",
rev, FLAT_VERSION, OLD_FLAT_VERSION);
ret = -ENOEXEC;
goto err;
}
/*
* fix up the flags for the older format, there were all kinds
* of endian hacks, this only works for the simple cases
*/
if (rev == OLD_FLAT_VERSION &&
(flags || IS_ENABLED(CONFIG_BINFMT_FLAT_OLD_ALWAYS_RAM)))
flags = FLAT_FLAG_RAM;
#else /* CONFIG_BINFMT_FLAT_OLD */
if (rev != FLAT_VERSION) {
pr_err("bad flat file version 0x%x (supported 0x%lx)\n",
rev, FLAT_VERSION);
ret = -ENOEXEC;
goto err;
}
#endif /* !CONFIG_BINFMT_FLAT_OLD */
/*
* Make sure the header params are sane.
* 28 bits (256 MB) is way more than reasonable in this case.
* If some top bits are set we have probable binary corruption.
*/
if ((text_len | data_len | bss_len | stack_len | full_data) >> 28) {
pr_err("bad header\n");
ret = -ENOEXEC;
goto err;
}
#ifndef CONFIG_BINFMT_ZFLAT
if (flags & (FLAT_FLAG_GZIP|FLAT_FLAG_GZDATA)) {
pr_err("Support for ZFLAT executables is not enabled.\n");
ret = -ENOEXEC;
goto err;
}
#endif
/*
* Check initial limits. This avoids letting people circumvent
* size limits imposed on them by creating programs with large
* arrays in the data or bss.
*/
rlim = rlimit(RLIMIT_DATA);
if (rlim >= RLIM_INFINITY)
rlim = ~0;
if (data_len + bss_len > rlim) {
ret = -ENOMEM;
goto err;
}
/* Flush all traces of the currently running executable */
ret = begin_new_exec(bprm);
if (ret)
goto err;
/* OK, This is the point of no return */
set_personality(PER_LINUX_32BIT);
setup_new_exec(bprm);
/*
* calculate the extra space we need to map in
*/
extra = max_t(unsigned long, bss_len + stack_len,
relocs * sizeof(unsigned long));
/*
* there are a couple of cases here, the separate code/data
* case, and then the fully copied to RAM case which lumps
* it all together.
*/
if (!IS_ENABLED(CONFIG_MMU) && !(flags & (FLAT_FLAG_RAM|FLAT_FLAG_GZIP))) {
/*
* this should give us a ROM ptr, but if it doesn't we don't
* really care
*/
pr_debug("ROM mapping of file (we hope)\n");
textpos = vm_mmap(bprm->file, 0, text_len, PROT_READ|PROT_EXEC,
MAP_PRIVATE, 0);
if (!textpos || IS_ERR_VALUE(textpos)) {
ret = textpos;
if (!textpos)
ret = -ENOMEM;
pr_err("Unable to mmap process text, errno %d\n", ret);
goto err;
}
len = data_len + extra +
DATA_START_OFFSET_WORDS * sizeof(unsigned long);
len = PAGE_ALIGN(len);
realdatastart = vm_mmap(NULL, 0, len,
PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, 0);
if (realdatastart == 0 || IS_ERR_VALUE(realdatastart)) {
ret = realdatastart;
if (!realdatastart)
ret = -ENOMEM;
pr_err("Unable to allocate RAM for process data, "
"errno %d\n", ret);
vm_munmap(textpos, text_len);
goto err;
}
datapos = ALIGN(realdatastart +
DATA_START_OFFSET_WORDS * sizeof(unsigned long),
FLAT_DATA_ALIGN);
pr_debug("Allocated data+bss+stack (%u bytes): %lx\n",
data_len + bss_len + stack_len, datapos);
fpos = ntohl(hdr->data_start);
#ifdef CONFIG_BINFMT_ZFLAT
if (flags & FLAT_FLAG_GZDATA) {
result = decompress_exec(bprm, fpos, (char *)datapos,
full_data, 0);
} else
#endif
{
result = read_code(bprm->file, datapos, fpos,
full_data);
}
if (IS_ERR_VALUE(result)) {
ret = result;
pr_err("Unable to read data+bss, errno %d\n", ret);
vm_munmap(textpos, text_len);
vm_munmap(realdatastart, len);
goto err;
}
reloc = (__be32 __user *)
(datapos + (ntohl(hdr->reloc_start) - text_len));
memp = realdatastart;
memp_size = len;
} else {
len = text_len + data_len + extra +
DATA_START_OFFSET_WORDS * sizeof(u32);
len = PAGE_ALIGN(len);
textpos = vm_mmap(NULL, 0, len,
PROT_READ | PROT_EXEC | PROT_WRITE, MAP_PRIVATE, 0);
if (!textpos || IS_ERR_VALUE(textpos)) {
ret = textpos;
if (!textpos)
ret = -ENOMEM;
pr_err("Unable to allocate RAM for process text/data, "
"errno %d\n", ret);
goto err;
}
realdatastart = textpos + ntohl(hdr->data_start);
datapos = ALIGN(realdatastart +
DATA_START_OFFSET_WORDS * sizeof(u32),
FLAT_DATA_ALIGN);
reloc = (__be32 __user *)
(datapos + (ntohl(hdr->reloc_start) - text_len));
memp = textpos;
memp_size = len;
#ifdef CONFIG_BINFMT_ZFLAT
/*
* load it all in and treat it like a RAM load from now on
*/
if (flags & FLAT_FLAG_GZIP) {
#ifndef CONFIG_MMU
result = decompress_exec(bprm, sizeof(struct flat_hdr),
(((char *)textpos) + sizeof(struct flat_hdr)),
(text_len + full_data
- sizeof(struct flat_hdr)),
0);
memmove((void *) datapos, (void *) realdatastart,
full_data);
#else
/*
* This is used on MMU systems mainly for testing.
* Let's use a kernel buffer to simplify things.
*/
long unz_text_len = text_len - sizeof(struct flat_hdr);
long unz_len = unz_text_len + full_data;
char *unz_data = vmalloc(unz_len);
if (!unz_data) {
result = -ENOMEM;
} else {
result = decompress_exec(bprm, sizeof(struct flat_hdr),
unz_data, unz_len, 0);
if (result == 0 &&
(copy_to_user((void __user *)textpos + sizeof(struct flat_hdr),
unz_data, unz_text_len) ||
copy_to_user((void __user *)datapos,
unz_data + unz_text_len, full_data)))
result = -EFAULT;
vfree(unz_data);
}
#endif
} else if (flags & FLAT_FLAG_GZDATA) {
result = read_code(bprm->file, textpos, 0, text_len);
if (!IS_ERR_VALUE(result)) {
#ifndef CONFIG_MMU
result = decompress_exec(bprm, text_len, (char *) datapos,
full_data, 0);
#else
char *unz_data = vmalloc(full_data);
if (!unz_data) {
result = -ENOMEM;
} else {
result = decompress_exec(bprm, text_len,
unz_data, full_data, 0);
if (result == 0 &&
copy_to_user((void __user *)datapos,
unz_data, full_data))
result = -EFAULT;
vfree(unz_data);
}
#endif
}
} else
#endif /* CONFIG_BINFMT_ZFLAT */
{
result = read_code(bprm->file, textpos, 0, text_len);
if (!IS_ERR_VALUE(result))
result = read_code(bprm->file, datapos,
ntohl(hdr->data_start),
full_data);
}
if (IS_ERR_VALUE(result)) {
ret = result;
pr_err("Unable to read code+data+bss, errno %d\n", ret);
vm_munmap(textpos, text_len + data_len + extra +
DATA_START_OFFSET_WORDS * sizeof(u32));
goto err;
}
}
start_code = textpos + sizeof(struct flat_hdr);
end_code = textpos + text_len;
text_len -= sizeof(struct flat_hdr); /* the real code len */
/* The main program needs a little extra setup in the task structure */
current->mm->start_code = start_code;
current->mm->end_code = end_code;
current->mm->start_data = datapos;
current->mm->end_data = datapos + data_len;
/*
* set up the brk stuff, uses any slack left in data/bss/stack
* allocation. We put the brk after the bss (between the bss
* and stack) like other platforms.
* Userspace code relies on the stack pointer starting out at
* an address right at the end of a page.
*/
current->mm->start_brk = datapos + data_len + bss_len;
current->mm->brk = (current->mm->start_brk + 3) & ~3;
#ifndef CONFIG_MMU
current->mm->context.end_brk = memp + memp_size - stack_len;
#endif
if (flags & FLAT_FLAG_KTRACE) {
pr_info("Mapping is %lx, Entry point is %x, data_start is %x\n",
textpos, 0x00ffffff&ntohl(hdr->entry), ntohl(hdr->data_start));
pr_info("%s %s: TEXT=%lx-%lx DATA=%lx-%lx BSS=%lx-%lx\n",
"Load", bprm->filename,
start_code, end_code, datapos, datapos + data_len,
datapos + data_len, (datapos + data_len + bss_len + 3) & ~3);
}
/* Store the current module values into the global library structure */
libinfo->lib_list[0].start_code = start_code;
libinfo->lib_list[0].start_data = datapos;
libinfo->lib_list[0].start_brk = datapos + data_len + bss_len;
libinfo->lib_list[0].text_len = text_len;
libinfo->lib_list[0].loaded = 1;
libinfo->lib_list[0].entry = (0x00ffffff & ntohl(hdr->entry)) + textpos;
libinfo->lib_list[0].build_date = ntohl(hdr->build_date);
/*
* We just load the allocations into some temporary memory to
* help simplify all this mumbo jumbo
*
* We've got two different sections of relocation entries.
* The first is the GOT which resides at the beginning of the data segment
* and is terminated with a -1. This one can be relocated in place.
* The second is the extra relocation entries tacked after the image's
* data segment. These require a little more processing as the entry is
* really an offset into the image which contains an offset into the
* image.
*/
if (flags & FLAT_FLAG_GOTPIC) {
binfmt_flat: do not stop relocating GOT entries prematurely on riscv bFLT binaries are usually created using elf2flt. The linker script used by elf2flt has defined the .data section like the following for the last 19 years: .data : { _sdata = . ; __data_start = . ; data_start = . ; *(.got.plt) *(.got) FILL(0) ; . = ALIGN(0x20) ; LONG(-1) . = ALIGN(0x20) ; ... } It places the .got.plt input section before the .got input section. The same is true for the default linker script (ld --verbose) on most architectures except x86/x86-64. The binfmt_flat loader should relocate all GOT entries until it encounters a -1 (the LONG(-1) in the linker script). The problem is that the .got.plt input section starts with a GOTPLT header (which has size 16 bytes on elf64-riscv and 8 bytes on elf32-riscv), where the first word is set to -1. See the binutils implementation for riscv [1]. This causes the binfmt_flat loader to stop relocating GOT entries prematurely and thus causes the application to crash when running. Fix this by skipping the whole GOTPLT header, since the whole GOTPLT header is reserved for the dynamic linker. The GOTPLT header will only be skipped for bFLT binaries with flag FLAT_FLAG_GOTPIC set. This flag is unconditionally set by elf2flt if the supplied ELF binary has the symbol _GLOBAL_OFFSET_TABLE_ defined. ELF binaries without a .got input section should thus remain unaffected. Tested on RISC-V Canaan Kendryte K210 and RISC-V QEMU nommu_virt_defconfig. [1] https://sourceware.org/git/?p=binutils-gdb.git;a=blob;f=bfd/elfnn-riscv.c;hb=binutils-2_38#l3275 Cc: <stable@vger.kernel.org> Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Reviewed-by: Damien Le Moal <damien.lemoal@opensource.wdc.com> Link: https://lore.kernel.org/r/20220414091018.896737-1-niklas.cassel@wdc.com Fixed-by: kernel test robot <lkp@intel.com> Link: https://lore.kernel.org/lkml/202204182333.OIUOotK8-lkp@intel.com Signed-off-by: Kees Cook <keescook@chromium.org>
2022-04-14 09:10:18 +00:00
rp = skip_got_header((u32 __user *) datapos);
for (; ; rp++) {
u32 addr, rp_val;
if (get_user(rp_val, rp))
return -EFAULT;
if (rp_val == 0xffffffff)
break;
if (rp_val) {
addr = calc_reloc(rp_val, libinfo);
if (addr == RELOC_FAILED) {
ret = -ENOEXEC;
goto err;
}
if (put_user(addr, rp))
return -EFAULT;
}
}
}
/*
* Now run through the relocation entries.
* We've got to be careful here as C++ produces relocatable zero
* entries in the constructor and destructor tables which are then
* tested for being not zero (which will always occur unless we're
* based from address zero). This causes an endless loop as __start
* is at zero. The solution used is to not relocate zero addresses.
* This has the negative side effect of not allowing a global data
* reference to be statically initialised to _stext (I've moved
* __start to address 4 so that is okay).
*/
if (rev > OLD_FLAT_VERSION) {
for (i = 0; i < relocs; i++) {
u32 addr, relval;
__be32 tmp;
/*
* Get the address of the pointer to be
* relocated (of course, the address has to be
* relocated first).
*/
if (get_user(tmp, reloc + i))
return -EFAULT;
relval = ntohl(tmp);
addr = flat_get_relocate_addr(relval);
rp = (u32 __user *)calc_reloc(addr, libinfo);
if (rp == (u32 __user *)RELOC_FAILED) {
ret = -ENOEXEC;
goto err;
}
/* Get the pointer's value. */
ret = flat_get_addr_from_rp(rp, relval, flags, &addr);
if (unlikely(ret))
goto err;
if (addr != 0) {
/*
* Do the relocation. PIC relocs in the data section are
* already in target order
*/
if ((flags & FLAT_FLAG_GOTPIC) == 0) {
/*
* Meh, the same value can have a different
* byte order based on a flag..
*/
addr = ntohl((__force __be32)addr);
}
addr = calc_reloc(addr, libinfo);
if (addr == RELOC_FAILED) {
ret = -ENOEXEC;
goto err;
}
/* Write back the relocated pointer. */
ret = flat_put_addr_at_rp(rp, addr, relval);
if (unlikely(ret))
goto err;
}
}
#ifdef CONFIG_BINFMT_FLAT_OLD
} else {
for (i = 0; i < relocs; i++) {
__be32 relval;
if (get_user(relval, reloc + i))
return -EFAULT;
old_reloc(ntohl(relval));
}
#endif /* CONFIG_BINFMT_FLAT_OLD */
}
flush_icache_user_range(start_code, end_code);
/* zero the BSS, BRK and stack areas */
if (clear_user((void __user *)(datapos + data_len), bss_len +
(memp + memp_size - stack_len - /* end brk */
libinfo->lib_list[0].start_brk) + /* start brk */
stack_len))
return -EFAULT;
return 0;
err:
return ret;
}
/****************************************************************************/
/*
* These are the functions used to load flat style executables and shared
* libraries. There is no binary dependent code anywhere else.
*/
static int load_flat_binary(struct linux_binprm *bprm)
{
struct lib_info libinfo;
struct pt_regs *regs = current_pt_regs();
unsigned long stack_len = 0;
unsigned long start_addr;
int res;
int i, j;
memset(&libinfo, 0, sizeof(libinfo));
/*
* We have to add the size of our arguments to our stack size
* otherwise it's too easy for users to create stack overflows
* by passing in a huge argument list. And yes, we have to be
* pedantic and include space for the argv/envp array as it may have
* a lot of entries.
*/
#ifndef CONFIG_MMU
stack_len += PAGE_SIZE * MAX_ARG_PAGES - bprm->p; /* the strings */
#endif
stack_len += (bprm->argc + 1) * sizeof(char *); /* the argv array */
stack_len += (bprm->envc + 1) * sizeof(char *); /* the envp array */
stack_len = ALIGN(stack_len, FLAT_STACK_ALIGN);
res = load_flat_file(bprm, &libinfo, &stack_len);
remove lots of IS_ERR_VALUE abuses Most users of IS_ERR_VALUE() in the kernel are wrong, as they pass an 'int' into a function that takes an 'unsigned long' argument. This happens to work because the type is sign-extended on 64-bit architectures before it gets converted into an unsigned type. However, anything that passes an 'unsigned short' or 'unsigned int' argument into IS_ERR_VALUE() is guaranteed to be broken, as are 8-bit integers and types that are wider than 'unsigned long'. Andrzej Hajda has already fixed a lot of the worst abusers that were causing actual bugs, but it would be nice to prevent any users that are not passing 'unsigned long' arguments. This patch changes all users of IS_ERR_VALUE() that I could find on 32-bit ARM randconfig builds and x86 allmodconfig. For the moment, this doesn't change the definition of IS_ERR_VALUE() because there are probably still architecture specific users elsewhere. Almost all the warnings I got are for files that are better off using 'if (err)' or 'if (err < 0)'. The only legitimate user I could find that we get a warning for is the (32-bit only) freescale fman driver, so I did not remove the IS_ERR_VALUE() there but changed the type to 'unsigned long'. For 9pfs, I just worked around one user whose calling conventions are so obscure that I did not dare change the behavior. I was using this definition for testing: #define IS_ERR_VALUE(x) ((unsigned long*)NULL == (typeof (x)*)NULL && \ unlikely((unsigned long long)(x) >= (unsigned long long)(typeof(x))-MAX_ERRNO)) which ends up making all 16-bit or wider types work correctly with the most plausible interpretation of what IS_ERR_VALUE() was supposed to return according to its users, but also causes a compile-time warning for any users that do not pass an 'unsigned long' argument. I suggested this approach earlier this year, but back then we ended up deciding to just fix the users that are obviously broken. After the initial warning that caused me to get involved in the discussion (fs/gfs2/dir.c) showed up again in the mainline kernel, Linus asked me to send the whole thing again. [ Updated the 9p parts as per Al Viro - Linus ] Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Andrzej Hajda <a.hajda@samsung.com> Cc: Andrew Morton <akpm@linux-foundation.org> Link: https://lkml.org/lkml/2016/1/7/363 Link: https://lkml.org/lkml/2016/5/27/486 Acked-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> # For nvmem part Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-27 21:23:25 +00:00
if (res < 0)
return res;
/* Update data segment pointers for all libraries */
for (i = 0; i < MAX_SHARED_LIBS_UPDATE; i++) {
if (!libinfo.lib_list[i].loaded)
continue;
for (j = 0; j < MAX_SHARED_LIBS; j++) {
unsigned long val = libinfo.lib_list[j].loaded ?
libinfo.lib_list[j].start_data : UNLOADED_LIB;
unsigned long __user *p = (unsigned long __user *)
libinfo.lib_list[i].start_data;
p -= j + 1;
if (put_user(val, p))
return -EFAULT;
}
}
set_binfmt(&flat_format);
#ifdef CONFIG_MMU
res = setup_arg_pages(bprm, STACK_TOP, EXSTACK_DEFAULT);
if (!res)
res = create_flat_tables(bprm, bprm->p);
#else
/* Stash our initial stack pointer into the mm structure */
current->mm->start_stack =
((current->mm->context.end_brk + stack_len + 3) & ~3) - 4;
pr_debug("sp=%lx\n", current->mm->start_stack);
/* copy the arg pages onto the stack */
res = transfer_args_to_stack(bprm, &current->mm->start_stack);
if (!res)
res = create_flat_tables(bprm, current->mm->start_stack);
#endif
if (res)
return res;
/* Fake some return addresses to ensure the call chain will
* initialise library in order for us. We are required to call
* lib 1 first, then 2, ... and finally the main program (id 0).
*/
start_addr = libinfo.lib_list[0].entry;
#ifdef FLAT_PLAT_INIT
FLAT_PLAT_INIT(regs);
#endif
finalize_exec(bprm);
pr_debug("start_thread(regs=0x%p, entry=0x%lx, start_stack=0x%lx)\n",
regs, start_addr, current->mm->start_stack);
start_thread(regs, start_addr, current->mm->start_stack);
return 0;
}
/****************************************************************************/
static int __init init_flat_binfmt(void)
{
register_binfmt(&flat_format);
return 0;
}
core_initcall(init_flat_binfmt);
/****************************************************************************/