OffiTracker/utils/python-midi-beeper-tobash.py
Minki 75f9938727 Added utility for converting midi files to csv
This is a pure monophonic converter but should still help quite a bit with importing existing projects from LMMS or OpenMPT.
2024-01-02 20:02:22 +00:00

1118 lines
56 KiB
Python

#!/usr/bin/env python2
# MIDI beeper (plays MIDI without sound hardware)
# Version 1.67, (c) 2007-2010,2015-2020 Silas S. Brown. License: GPL
# MIDI beeper is a Python 2 program to play MIDI by beeping
# through the computer's beeper instead of using proper
# sound circuits. It emulates chords/polyphony.
# It sounds awful, but it might be useful when no sound device
# is attached. It should work on any machine that has the
# "beep" Linux package, including NSLU2 network storage devices.
# (On NSLU2 do 'sudo modprobe isp4xx_beeper' before running)
# Can also play MIDI files using square-wave synthesis with aplay
# (e.g. on Raspberry Pi) - set aplay below if you want this instead.
# Set it to a volume level, e.g. aplay = 100
aplay = 0
# Can also convert MIDI files to RISC OS Maestro music files
# for playing (but not typesetting well) on 'vanilla' RISC OS.
# Set riscos_Maestro = 1 below if you want this.
riscos_Maestro = 0
# If running this *on* RISC OS (Python 2.3) you might find it useful to set:
# import sys ; sys.argv.append("$.!Boot.Loader.test/mid") # (or whatever)
# Can also convert MIDI files to BBC Micro programs
# (printed to standard output). Set bbc_micro below:
bbc_micro = 0 # or run with --bbc
acorn_electron = 0 # or run with --electron: Acorn Electron version (more limited)
bbc_binary = 0 # or run with --bbc-binary: make the above use direct memory access instead of DATA (packs more in but harder to save/edit)
bbc_ssd = 0 # or run with --bbc-ssd: writes an SSD image (for an emulator) instead of printing keystrokes to standard output (set environment DFS_TITLE to title the disk; disk will contain one BBC program for each MIDI file on the command line + bootloader)
bbc_sdl = 0 # or run with --bbc-sdl: makes the BBC Micro code compatible with R.T.Russell's BBC BASIC for SDL. Code still runs on the real BBC too, but is larger.
# HiBasic (Tube) support (~30k for programs) fully works
# Bas128 support (64k for programs) works but (a) bank-switching delays impact the timing of shorter notes and (b) bbc_binary option can cause "Wrap" errors during input. However bbc_binary and bbc_ssd options should pack data into a smaller space so normal BASIC can be used.
force_monophonic = 1 # set this to 1 to have only the top line (not normally necessary)
# History is in https://github.com/ssb22/midi-beeper.git
# and https://gitlab.com/ssb22/midi-beeper.git
# and https://bitbucket.org/ssb22/midi-beeper.git
# and https://gitlab.developers.cam.ac.uk/ssb22/midi-beeper
# but some early versions are missing from these repositories
# ----------------------------------------------------
import os,sys
def delArg(a):
found = a in sys.argv
if found: sys.argv.remove(a)
return found
if delArg('--bbc'): bbc_micro = 1
if delArg('--electron'): acorn_electron = 1
if delArg('--bbc-binary'): bbc_binary=bbc_micro=1
if delArg('--bbc-ssd'): bbc_ssd=bbc_micro=1
if delArg('--bbc-sdl'): bbc_sdl=bbc_micro=1
assert not (bbc_sdl and (bbc_binary or bbc_ssd)), "bbc_sdl not compatible with bbc_binary or bbc_ssd"
if aplay:
rate = 41000 # can just about manage 3 or 4 channels on a Raspberry Pi if it isn't doing anything else
o = os.popen("aplay -q -t raw -c 1 -f U8 -r %d" % rate,"w")
def init(): pass
def chord(freqs,millisecs):
samples = millisecs * rate / 1000 ; halfPeriods = []
for f in freqs: halfPeriods.append(rate/2.0/f)
assert not 0 in halfPeriods
nextFlips = map(int,halfPeriods) ; counts = [1]*len(halfPeriods)
val = 0
if nextFlips: next=[aplay/len(halfPeriods)]*len(halfPeriods)
else: next = []
t = 0
while t < samples:
while t in nextFlips:
i = nextFlips.index(t)
val += next[i]
next[i] = -next[i]
counts[i] += 1
nextFlips[i] = int(counts[i]*halfPeriods[i]) # necessary especially at low rates as periods are rarely integers
o.write(chr(val)) ; t += 1
def add_midi_note_chord(noteNos,microsecs):
chord(map(to_freq,noteNos),microsecs / 1000)
elif bbc_micro or acorn_electron:
# This is a compact BBC Micro program to multiplex up to
# 9 channels of sound onto the BBC Micro's 3 channels.
# Basically uses ENVELOPEs to do the pitch multiplexing.
# BBC Micro's BASIC encouraged the use of @% through Z% by reserving memory for them (heap is typically small), so code can be quite obscure.
bbc_micro = ["FOR C%=16 TO 19:SO.C%,0,0,0:N.\n" # flush all sound buffers, just in case
"N%=0:" # N% = next available envelope number (1-16 if not using BPUT#, otherwise 1-4 but we don't want to redefine envelopes that are already associated with notes in the buffer)
"DIM c%(8)\n" # c% is the current value of each 'channel'; 252 i.e. 4*63 is used for silence. Data read tells the program what changes to make to this array for the next chord and for how long to sound it (see add_midi_note_chord below).
"FOR D%=0 TO 8:c%(D%)=252:N.\n" # all channels start with silence
# The next few lines can be abbreviated thus: "REP.:C%=0:REP.:READD%:c%(C%)=(D%A.63)*4:I%=(D%DIV64)+1:C%=C%+I%:U.I%=4:READD%:REP.:U.AD.-6>3:F.I%=0TO6S.3:S%=0:T%=0:IFc%(I%)=252:V%=0:EL.IFc%(I%+1)=252:V%=1:EL.S%=1:Q%=c%(I%+1)-c%(I%):IFc%(I%+2)=252:V%=2:EL.R%=c%(I%+2)-c%(I%+1):T%=1:V%=3" (237 keystrokes, out of a limit of 238). But Bas128 is still too slow, even with the read loop all on 1 line like this.
"REP.:C%=0\n" # C% is the write-index for our 'current chord' c%
"REP.:READ D%\n" # lowest 6 bits = semitone no. (which we multiply by 4 to get pitch number); highest 2 bits = array-pointer increment - 1 (so we can increment 1, 2 or 3 places; an "increment" of 4 means end of chord)
"c%(C%)=(D% AND 63)*4\n" # set pitch
"I%=(D% DIV 64)+1:C%=C%+I%:U.I%=4\n" # c% array now all set
"READ D%\n" # This will be the duration of the chord just specified
"REP.:U.ADVAL(-6)>3\n" # BBC Micro quirk: contrary to what the manual says (in at least some printings), the number of notes in each channel's "to be played" buffer before the program waits can be 5 not 4 (on at least some versions of the BBC). This, together with the current note, means we might need a total of 6*3=18 envelopes, and we have only 16 slots. Hence the ADVAL loop to avoid filling the buffer completely.
"FOR I%=0 TO 6 STEP 3\n" # handling our 'channels' as triples, up to 3 being arpeggiated into one BBC Micro channel; I% will be the index-start of each triple
"S%=0:" # will be set to 1 if the second section of the envelope is used
"T%=0\n" # will be set to 1 if the third section of the envelope is used
"IF c%(I%)=252:V%=0:" # no volume if entire channel is silent (see special case below)
"ELSE IF c%(I%+1)=252:V%=1:" # entire channel has just one note, so play it at "volume 1". TODO: if c%(I%) is high, consider 'wobbling' the pitch to mask the SN76489's tuning inaccuracy of high notes, e.g. by setting S%=1:Q%=1. This can be done inline (using the fact that BBC BASIC represents true as -1) using something like "S%=-(c%(I%)>150):Q%=S%:" here. Would need to check if 150 really is a good threshold, and, if it works, also modify the datBytes string in make_bbcMicro_DFS_image: beware line-length bytes etc; will probably have to stop using the 'abbreviated' version if these extra 2 assignments would make the line too long. Also check the bbc_sdl .replace of V%=1 below doesn't undo it (and consider turning it off if INKEY(-256) detects SDL-etc, as that environment has better tuning to begin with)
"ELSE S%=1:Q%=c%(I%+1)-c%(I%):" # channel has at least 2 notes, so set Q% to the first pitch difference, and set S% to enable 2nd section of envelope
"IF c%(I%+2)=252:V%=2:" # channel has exactly 2 notes, so play it at "volume 2"
"ELSE R%=c%(I%+2)-c%(I%+1):T%=1:V%=3\n" # channel has 3 notes, so play it at "volume 3", set R% to second pitch difference, and set T% to enable 3rd section of envelope
# (here ends what can be abbreviated as per the 'abbreviated' comment above)
"IF V%:" # The following operations are done only if volume is not 0. We special-case volume 0 so it doesn't use an envelope at all; this (along with the ADVAL loop above) seems to make things a little more robust, as short pauses between notes are frequent. A special-case of volume 0 is needed anyway in the Electron version below: the Electron uses a ULA with only 1 channel and 1 volume; the last 6 envelope parameters are ignored and setting them to 0 does NOT switch off the sound like it does on the BBC.
"V%=V%*24+55:" # 79, 103 or 127
"N%=N%+1:IF N%=17:N%=1" # next available envelope number
"\nIF V%:" # (still only if volume is not 0)
"ENV.N%," # setting envelope number N%
"3," # length of each step in centiseconds
"0," # first section should sound the 1st note
"Q%," # second section adds Q% to the pitch for each step
"R%," # third section adds R% to the pitch for each step
"1," # first section should have 1 step (for sounding the 1st note)
"S%," # second section should have either 0 steps (if not used) or 1 step (for sounding note + Q%)
"T%," # third section should have either 0 steps (if not used) or 1 step (for sounding note + Q% + R%)
"V%,0,0,-V%," # ADSR (attack, decay, sustain, release) change per step
"V%," # attack final volume
"V%" # decay final volume
":V%=N%\n" # for the SOUND command below
"SO.513+(I%DIV3)," # 512 = sync=2 i.e. 3 channels are to receive a note before it is to start; +1 because we're not using channel 0
"V%," # envelope number or 0
"c%(I%)," # first pitch of the arpeggio (or plain pitch if no arpeggio)
"D%\n" # duration
"N.:U.D%=0:END"]
if acorn_electron:
# Cut-down version of the above code for the Electron:
bbc_micro=["""SO.1,0,0,0
N%=0:DIM c%(2)
FOR D%=0 TO 2:c%(D%)=252:N.
REP.:C%=0
REP.:READ D%
c%(C%)=(D% AND 63)*4
I%=(D% DIV 64)+1:C%=C%+I%:U.I%=4
READ D%
REP.:U.ADVAL(-6)>3
S%=0:T%=0:P%=c%(0)
IF P%=252:V%=0:ELSE V%=1:IF c%(1)<>252:S%=1:Q%=c%(1)-P%:IF c%(2)<>252:R%=c%(2)-c%(1):T%=1
IF V%:N%=N%+1:IF N%=17:N%=1
IF V%:ENV.N%,3,0,Q%,R%,1,S%,T%,126,0,0,-126,126,126:V%=N%
SO.1,V%,P%,D%
U.D%=0:END"""] # the 126,etc is there so that if this program is accidentally run on the BBC Micro instead of the Electron it'll at least sound something
current_array = [63]*3
else: current_array = [63]*9
if bbc_sdl: bbc_micro[0]="COLOUR 128:COLOUR 7:CLS\n"+bbc_micro[0] # BBC SDL defaults to white background: be easier on the eyes by having dark mode like the original BBC
if bbc_ssd:
bbc_micro = [] # we'll put tokenised program in later
bbc_binary = 1
bbc_files = []
elif bbc_binary: # don't use AUTO; change to read RAM
lines = ("E%=TOP:" + bbc_micro[0]).split("\n") ; bbc_micro = []
for i in range(len(lines)):
bbc_micro.append("%d%s" % (i+1,lines[i]))
bbc_micro=[
"IF(PA. A.&FF00)>&E00:PA.=&E00:*ROM" # reclaim space from Model B DFS if applicable (may or may not be needed depending on which DFS is in use and how much space it takes, which we won't know at code-generation time, so test at runtime if we're above E00 and not in second-processor addresses. If using Acorn's DFS on Model B, may be able to reduce PAGE from &1900 to &1800 if not using *BUILD, to &1700 if no other ROMs will borrow space from DFS, to &1300 if using OPEN on max 1 file, or to &1100 if not using OPEN or SPOOL/EXEC, but Watford DFS and others will be different so it's safer to just turn it off.)
"NEW"]+bbc_micro
# Could see the Mode 0 memory map with: MO.0:V.23;12;0;0;0;0;28,0,12,63,0
# For larger MIDIs, can see sound queues etc (but not BASIC stack) via: MO.6:V.23;12;0;0;0;0;23;0;0;0;0;0:RUN
# (can also try MO.4)
bbc_micro = ["\n".join(bbc_micro).replace("READ D%","D%=?E%:E%=E%+1")]
keystroke_limit = 238
if bbc_sdl: keystroke_limit -= 5 # assuming up to 3 keystrokes for the backward-compatibility line number (can be up to 5, but if it gets as high as 4 then we're looking at a 230k+ program which is not going to fit in any version of the BBC Micro anyway so we might as well disregard the BBC Micro's keystroke buffer limit), + 2 keystrokes for "D." to "DATA"
def add_midi_note_chord(noteNos,microsecs):
duration = int((microsecs*20+500000)/1000000)
while duration > 254: # unlikely but we should cover this
add_midi_note_chord(noteNos,254*1000000/20)
duration -= 254
if not duration: return
def f(n): # convert to SOUND/4 and bound the octaves
n -= 47 # MIDI note 69 (A4) is pitch 88 i.e. 4*22
while n<0: n+=12 # TODO: unless we want to make a bass line using SOUND 0,-V,3,D with SOUND 1,E,P+188,D (won't work on acorn_electron; envelope E will have to set its volume params to 0, or stick with single note), or SO.0,-V,2,D for approx. 1 tone below note 0 (which doesn't tie up channel 1). Would need to know total number of notes there'll be before deciding if can do this. Anyway such low notes are rather indistinct on BBC hardware.
while n>=63: n-=12 # we're using 63 for rest
return n
if acorn_electron: noteNos = noteNos[-3:]
noteNos = map(f,noteNos[-9:])
while len(noteNos)<3: noteNos.append(63)
if bbc_sdl and (len(noteNos)>6 or (acorn_electron and len(noteNos)>2)) and not '1.13+' in bbc_micro[0]:
bbc_micro[0]="REM As there are chords with three\nREM notes per channel, you will need\nREM BBC SDL 1.13+ or 'real' BBCBASIC\nREM for the ENVELOPEs to sound right.\nREM\n"+bbc_micro[0] # see bbcsdl bug #3
if not acorn_electron:
# Divide the notes evenly among BBC channels,
# and if need arpeggiation, prefer it in the bass.
for a,b in [(9,0),(7,0),(9,3),(8,3),(9,6),(9,6)]:
if len(noteNos)<a: noteNos.insert(len(noteNos)-b,63)
# Check range of arpeggiation pitch increments, adjust
# octave as needed (too high shouldn't happen in
# sensible music, but double-bass too low is possible)
for i in range(0,len(noteNos),3):
for j in range(i+1,i+3):
if noteNos[j]==63: break
while noteNos[j]>noteNos[j-1]+31: noteNos[j]-=12
while noteNos[j]<noteNos[j-1]-32: noteNos[j]+=12
# Now calculate the DATA numbers:
o = [] ; curSkip = 0
for i in range(len(current_array)):
if noteNos[i]==current_array[i] and o and curSkip<2:
curSkip += 1 ; continue
if curSkip: o[-1] += curSkip*64
curSkip = 0 ; current_array[i] = noteNos[i]
if noteNos[i:] == current_array[i:]:
o.append(noteNos[i]+3*64) ; break # last change
else: o.append(noteNos[i])
o.append(duration)
if bbc_binary:
for i in o: bbc_micro.append(int(i))
else: # self-contained typeable BBC BASIC, assuming AUTO
o = ",".join(map(lambda x:("%d"%x), o))
if len(bbc_micro)>1 and len(bbc_micro[-1])+len(o)+1 <= keystroke_limit: bbc_micro[-1] += ','+o
else: bbc_micro.append("D."+o)
def init():
global dedup_microsec_quantise
dedup_microsec_quantise = 50000 # 1000000/20
elif riscos_Maestro:
allowed_BPMs = [40, 50, 60, 65, 70, 80, 90, 100, 115, 130, 145, 160, 175, 190, 210]
default_bpm = max(allowed_BPMs) # theoretically gives the most accuracy
hemi_microsecs = 3750000/default_bpm # for now (ms/hemi = beat/hemi / (b/min * min/microsec) = 1/16 / (bpm / 60000000) = 60000000/16/bpm)
def add_midi_note_chord(noteNos,microsecs):
noteNos.reverse()
global current_time
for n in current_chord[:]:
if n.noteNo in noteNos: noteNos.remove(n.noteNo) # just extend the currently-playing note
else: # stop that note:
assert n.noteNo not in noteNos # shouldn't have any duplicates in that list
n.end(current_time)
n.quantiseTo(hemi_microsecs)
foundC = False
for i in [0,4,6,2,1,3,5,7]: # allocate channels in that order so 2-stave (0-3,4-6/7), 3-stave (0,1-4,5-6/7) and 4-stave (0-1,2-3,4-5,6/7) views work vaguely sensibly
c = riscos_channels[i]
if not c or c[-1].endTime <= n.startTime:
c.append(n) ; foundC = True ; break
if not foundC: sys.stderr.write("Insufficient RISC OS channels: dropping note %d\n" % n.noteNo)
current_chord.remove(n)
for noteNo in noteNos: current_chord.append(MidiNote(noteNo,current_time)) # newly-started notes
current_time += microsecs
def maestroData():
queues = []
for c in riscos_channels:
timeCountFrom = 0 ; chan = []
barHemisLeft = 64 # assumes 4/4 with no anacrusis
for n in c:
nn,barHemisLeft = n.note(hemi_microsecs,timeCountFrom,barHemisLeft)
chan.append(nn)
timeCountFrom = n.endTime
queues.append(''.join(chan))
staves = 0
for q in queues:
if q and staves<4: staves += 1 # helps with more accurate playing if each part has its own stave (pity there's a maximum of 4)
if not staves: staves = 1
return Maestro_header+setBPM_block(default_bpm)+setVolumes_block()+musicData_block(queues)+setStaves_block(staves)+setInstruments_block()
def init():
global current_chord,current_time,riscos_channels
current_chord = [] ; current_time = 0 ; riscos_channels = [[],[],[],[],[],[],[],[]]
else: # beep
# NSLU2 hack:
try: event=open("/proc/bus/input/devices").read()
except IOError: event=""
if "ixp4xx beeper" in event:
h=event[event.find("Handlers=",event.index("ixp4xx beeper")):]
event="-e /dev/input/"+(h[:h.find("\n")].split()[-1])
os.system("sync") # just in case (beep has been known to crash NSLU2 Debian Etch in rare conditions)
else: event=""
def init():
global cumulative_params
cumulative_params = []
min_pulseLength, max_pulseLength = 10,20 # milliseconds
repetitions_to_aim_for = 1 # arpeggiating each chord only once will do if it's brief
def chord(freqList,millisecs):
if not millisecs: return ""
elif not freqList: return " -D %d" % (millisecs,) # rest
elif len(freqList)==1: return " -n -f %d -l %d" % (freqList[0],millisecs) # one note
else:
pulseLength = max(min(millisecs/len(freqList)/repetitions_to_aim_for,max_pulseLength),min_pulseLength)
return (" -D 0".join([chord([f],pulseLength) for f in freqList]))*max(1,millisecs/pulseLength/len(freqList)) # (max with 1 means at least 1 repetition - prefer a slight slow-down to missing a chord out)
# (the above -D 0 is necessary because Debian 5's beep adds a default delay otherwise)
command_line_len = 80000 # reduce this if you get "argument list too long" (NB the real limit is slightly more than this value)
def runBeep(params):
while " -n" in params: # not entirely silence
params=params[params.find(" -n")+3:] # discard the initial "-n" and any delay before it
brkAt = params.find(" -n",command_line_len)
if brkAt>-1: thisP,params = params[:brkAt],params[brkAt:]
else: thisP,params = params,""
os.system("echo '"+event+" "+thisP+"'")
def add_midi_note_chord(noteNos,microsecs):
millisecs = microsecs / 1000
if noteNos and cumulative_params and not "-D" in cumulative_params[-1].split()[-2:]: cumulative_params.append("-D 0") # necessary because Debian 5's beep adds a default delay otherwise
cumulative_params.append(chord(map(to_freq,noteNos),millisecs))
def make_bbcMicro_DFS_image(datFiles):
opt4 = 3 # exec !BOOT
disk_title = os.environ.get("DFS_TITLE","")
disk_title += "\0"*max(0,12-len(disk_title))
# catalogue is 31 items but we'll do !BOOT separately
catNames,catInfo,catNo = ["\0"*8]*31,["\0"*8]*31,0
data = "*BASIC\r"
assert all(len(f)<=7 and re.match('^[A-Za-z0-9]*$',f) for f,_ in datFiles), "please keep DFS filenames to 7-char alphanumeric "+repr([f for f,_ in datFiles])
if "BOOT_COPYRIGHT" in os.environ: data += "\rREM "+os.environ["BOOT_COPYRIGHT"]+"\r\r" # TODO: document this?
if len(datFiles)==1: data += ('LOAD "%s"\rLIST\rRUN\r' % datFiles[0][0])
else: data += "*CAT\r"+"REP.:U.AD.-6=15:".join(('CH."%s"\r' % f) for f,_ in datFiles)
nextSector = 2+int((len(data)+255)/256)
catNames[0]="!BOOT $"
catInfo[0]="".join([
"\0"*4, # !BOOT lsb-msb Load, lsb-msb Exec
chr(len(data)&0xFF)+chr(len(data)>>8), # !BOOT len
"\0", # no >64k options or high start-sector bits
"\2", # starts on sector 2
])
data += "\0"*((256-(len(data)%256))&0xFF) # pad !BOOT
for fname,datBytes in datFiles:
catNo += 1; assert catNo<31,"Catalogue full"
lomem_set = "\xd2=\xb8P+"+str(len(datBytes)-1)
assert not acorn_electron, "make_bbcMicro_DFS_image is hard-coded to use the BBC Micro reader, not Electron"
datBytes="\r\x00\x00"+chr(len(lomem_set)+4)+lomem_set+"\r\x00\n@E%=\xb8P:\xe3C%=16\xb819:\xd4C%,0,0,0:\xed:N%=0:\xdec%(8):\xe3D%=0\xb88:c%(D%)=252:\xed\r\x00\x14\xe5\xf5:C%=0:\xf5:D%=?E%:E%=E%+1:c%(C%)=(D%\x8063)*4:I%=(D%\x8164)+1:C%=C%+I%:\xfdI%=4:D%=?E%:E%=E%+1:\xf5:\xfd\x96-6>3:\xe3I%=0\xb86\x883:S%=0:T%=0:\xe7c%(I%)=252:V%=0:\x8b\xe7c%(I%+1)=252:V%=1:\x8bS%=1:Q%=c%(I%+1)-c%(I%):\xe7c%(I%+2)=252:V%=2:\x8bR%=c%(I%+2)-c%(I%+1):T%=1:V%=3\r\x00\x1e'\xe7V%:V%=V%*24+55:N%=N%+1:\xe7N%=17:N%=1\r\x00(4\xe7V%:\xe2N%,3,0,Q%,R%,1,S%,T%,V%,0,0,-V%,V%,V%:V%=N%\r\x002$\xd4513+(I%\x813),V%,c%(I%),D%:\xed:\xfdD%=0\r\xff"+datBytes # This essentially tokenises the program with the 'abbreviated' version of the loop (and indirection instead of READ). If changing it, the embedded binary line lengths will also need updating.
catNames[catNo]=fname+' '*(7-len(fname))+'$'
catInfo[catNo] = "".join([
"\0"*4, # lsb-msb Load, lsb-msb Exec (apparently not used for BASIC programs)
chr(len(datBytes)&0xFF),chr(len(datBytes)>>8),
chr((2+int(len(data)/256))>>8), # should be max 2 bits (protected by whole-disk-size assert below)
chr((2+int(len(data)/256))&0xFF), # start sector
])
data += datBytes
data += "\0"*((256-(len(data)%256))&0xFF) # pad
sectors = 2+len(data)/256
if sectors<400: sectors=400 # 40 tracks
elif sectors<800: sectors=800 # 80 tracks
else: assert 0, "Disk image too full" # (can in theory go to 1023 sectors, but no real hardware would support it)
return "".join([
disk_title[:8],
"".join(catNames),
disk_title[8:12],
"\1", # disk cycle (BCD, incremented each time catalogue is written)
chr((1+catNo)*8),
chr((sectors>>8)+16*opt4),
chr(sectors&0xFF),
"".join(catInfo),
data.rstrip("\0")])
dedup_microsec_quantise = 0 # for handling 'rolls' etc (currently used by bbc_micro; TODO: default 'beep' cmd also?)
def dedup_midi_note_chord(noteNos,microsecs):
if force_monophonic and noteNos: noteNos=[max(noteNos)]
else: noteNos.sort()
global dedup_chord,dedup_microsec
if dedup_microsec_quantise and not microsecs==None:
global dedup_microsec_error
microsecs += dedup_microsec_error ; oldM = microsecs
microsecs = int((microsecs+dedup_microsec_quantise/2)/dedup_microsec_quantise) * dedup_microsec_quantise
dedup_microsec_error = oldM - microsecs
if noteNos == dedup_chord and microsecs:
# it's just an extention of the existing one
dedup_microsec += microsecs
return
elif microsecs==0: return # too short, quantise out (and don't have to change dedup_chord because the next one might immediately revert to it if this is a 'roll' effect)
else: # microsecs==None (flush) or a note change
add_midi_note_chord(dedup_chord,dedup_microsec)
dedup_chord,dedup_microsec = noteNos,microsecs
A=440 # you can change this if you want to re-pitch
midi_note_to_freq = []
import math,re
for i in range(128): midi_note_to_freq.append((A/32.0)*math.pow(2,(len(midi_note_to_freq)-9)/12.0))
assert midi_note_to_freq[69] == A # (comment this out if using floating-point tuning because it might fail due to rounding)
def to_freq(n):
if n==int(n): return midi_note_to_freq[int(n)]
else: return (A/32.0)*math.pow(2,(n-9)/12.0)
# Begin RISC OS Maestro code
Maestro_header = 'Maestro\x0a\x02'
def BASIC_int(n): return chr(0x40)+chr(n>>24)+chr((n>>16)&0xFF)+chr((n>>8)&0xFF)+chr(n&0xFF)
class MidiNote:
def __init__(self,noteNo,startTime):
self.noteNo,self.startTime = noteNo,startTime
def end(self,time): self.endTime = time
def timeLen(self): return self.endTime - self.startTime
def quantiseTo(self,resolution):
origLen = self.endTime - self.startTime
self.startTime = int(self.startTime/resolution) * resolution
self.endTime = int(self.endTime/resolution) * resolution
if self.endTime == self.startTime: self.endTime += resolution # try to avoid quantising it out completely
def lenAndDotsList(self,hemiLen,barHemisLeft): # could be several notes tied
hemisLeft = int(self.timeLen()/hemiLen)
lTry,lH = 1,64 ; ret = []
while hemisLeft:
while hemisLeft >= lH and lH <= barHemisLeft:
lHT = lH ; dots = 0 ; dotVal = lH/2
while dotVal and lHT+dotVal <= hemisLeft and dots<3 and lHT+dotVal <= barHemisLeft:
dots += 1 ; lHT += dotVal ; dotVal /=2
hemisLeft -= lHT ; barHemisLeft -= lHT ; ret.append((lTry,dots))
if not barHemisLeft:
barHemisLeft = 64 # TODO: assumes 4/4
lTry,lH =1,64 ; continue
lTry <<= 1 ; lH >>= 1
assert not (lH==0 and hemisLeft)
return ret,barHemisLeft
def note(self,hemiLen,timeCountFrom,barHemisLeft):
assert timeCountFrom <= self.startTime
ret = []
if timeCountFrom < self.startTime:
oet,self.endTime,self.startTime = self.endTime,self.startTime,timeCountFrom
ldl,barHemisLeft = self.lenAndDotsList(hemiLen,barHemisLeft)
for length,dots in ldl: ret.append(note(None,length,dots))
self.startTime,self.endTime = self.endTime,oet
ldl,barHemisLeft = self.lenAndDotsList(hemiLen,barHemisLeft)
if not ldl: return "".join(ret),barHemisLeft # note must have been completely quantised out
for length,dots in ldl[:-1]: ret.append(note(self.noteNo,length,dots,tieWithNext=True))
ret.append(note(self.noteNo,ldl[-1][0],ldl[-1][1]))
return "".join(ret),barHemisLeft
def note(midiNote,length=4,dots=0,clef="treble",stemDown=None,tieWithNext=False,beamWithNext=False):
if not midiNote==None: # midiNote=None for a rest
def f(mn):
m = mn % 12
if m >= 5: m += 1
return int(m/2) + 7*int(mn/12)
r = f({"treble":71,"bass":50}[clef]) # middle line
r -= f(midiNote) # -1 = 1 space above the mid-line
if stemDown==None: stemDown = (r>0)
r = 16-r
while r<1: r += 7 # force 8ve ranges
while r>31: r -= 7 # (assuming we can't change clef)
sharp = (f(midiNote) == f(midiNote-1))
r *= 8
if tieWithNext: r += 4
if beamWithNext: r += 2
if stemDown: r += 1
else: r = sharp = 0
r2 = 0
while length:
length = int(length/2) ; r2 += 1
assert r2 < 8, "length too short"
r2 *= 32
assert 0 <= dots <= 3 ; r2 += dots*8
if sharp: r2 += 2
else: r2 += 1 # natural (TODO: figure out if actually needed and omit if not)
return chr(r) + chr(r2)
def playLen(secondNoterestByte): # for gate-byte sync
if type(secondNoterestByte)==str:
secondNoterestByte = ord(secondNoterestByte)
numDots = (secondNoterestByte >> 3) & 3
secondNoterestByte = int(secondNoterestByte/32)
l = 8 # so can *=1.5 3 times and still have an integer
for i in range(secondNoterestByte,7): l *= 2
dotVal = l*0.5
for i in range(numDots):
l += dotVal ; dotVal /= 2
return l
def gatesBytes(notesRestQueues):
assert len(notesRestQueues) == 8
lenLeft = [0]*8 ; nrq = notesRestQueues[:] ; r = [] ; barLeft = 64*8
while any(nrq):
b = 0 ; toSub = 0
for i in range(8):
if nrq[i] and not lenLeft[i]:
b |= (1 << i)
lenLeft[i] = playLen(nrq[i][1])
assert lenLeft[i] > 0, lenLeft[i]
nrq[i] = nrq[i][2:]
if lenLeft[i] and (not toSub or lenLeft[i]<toSub): toSub=lenLeft[i]
if b: r.append(chr(b))
assert toSub > 0
for i in range(8):
if lenLeft[i]: lenLeft[i] -= toSub
assert 0 in lenLeft
barLeft -= toSub
assert barLeft >= 0
if not barLeft:
r.append(chr(0)+chr(32)) # barline (needed for reliable playing)
barLeft = 64*8
return "".join(r) # (gatesBytes can also include 0 followed by time signature codes etc)
# blocks in any order:
def musicData_block(notesRestQueues): # each queue is a string of 2-byte returns from note() above
assert len(notesRestQueues) <= 8
while len(notesRestQueues) < 8: notesRestQueues.append("")
gb = gatesBytes(notesRestQueues)
l = [gb]+notesRestQueues
r = []
for i in l: r.append(BASIC_int(len(i)))
return chr(1)+''.join(r)+''.join(l)
def setStaves_block(numStaves=1,numPercStaves=1):
assert 1 <= numStaves <= 4 and 0 <= numPercStaves <= 1
return chr(2)+chr(numStaves-1)+chr(numPercStaves-1)
def setInstruments_block(voiceNumberList=[1]*8): # voice 5 is probably the perceptual loudest, might be useful if using unpowered speakers on a RISC OS Raspberry Pi; voice 1 (default) sounds more gentle though (but still better include it or the volume block might not be interpreted)
assert len(voiceNumberList) == 8
r = []
for i in range(8): r.append(chr(i)+chr(voiceNumberList[i]))
return chr(3)+''.join(r)
def setVolumes_block(volumesList=[7]*8):
assert len(volumesList)==8
for x in volumesList: assert 0<=x<=7
return chr(4)+''.join(map(chr,volumesList))
def setPans_block(stereoPosList):
assert len(stereoPosList)==8
for x in stereoPosList: assert -3<=x<=3
return chr(5)+''.join(map(lambda x:chr(x+3),stereoPosList))
def setBPM_block(bpm): return chr(6)+chr(allowed_BPMs.index(bpm))
# End RISC OS Maestro code
# Some of the code below was taken from an old version of
# Python Midi Package by Max M,
# with much cutting-down and modifying
from types import StringType
from cStringIO import StringIO
from struct import pack, unpack
def getNibbles(byte): return (byte >> 4 & 0xF, byte & 0xF)
def setNibbles(hiNibble, loNibble):
return (hiNibble << 4) + loNibble
def readBew(value):
return unpack('>%s' % {1:'B', 2:'H', 4:'L'}[len(value)], value)[0]
def readVar(value):
sum = 0
for byte in unpack('%sB' % len(value), value):
sum = (sum << 7) + (byte & 0x7F)
if not 0x80 & byte: break
return sum
def varLen(value):
if value <= 127:
return 1
elif value <= 16383:
return 2
elif value <= 2097151:
return 3
else:
return 4
def to_n_bits(value, length=1, nbits=7):
bytes = [(value >> (i*nbits)) & 0x7F for i in range(length)]
bytes.reverse()
return bytes
def toBytes(value):
return unpack('%sB' % len(value), value)
def fromBytes(value):
if not value:
return ''
return pack('%sB' % len(value), *value)
NOTE_OFF = 0x80
NOTE_ON = 0x90
AFTERTOUCH = 0xA0
CONTINUOUS_CONTROLLER = 0xB0
PATCH_CHANGE = 0xC0
CHANNEL_PRESSURE = 0xD0
PITCH_BEND = 0xE0
BANK_SELECT = 0x00
MODULATION_WHEEL = 0x01
BREATH_CONTROLLER = 0x02
FOOT_CONTROLLER = 0x04
PORTAMENTO_TIME = 0x05
DATA_ENTRY = 0x06
CHANNEL_VOLUME = 0x07
BALANCE = 0x08
PAN = 0x0A
EXPRESSION_CONTROLLER = 0x0B
EFFECT_CONTROL_1 = 0x0C
EFFECT_CONTROL_2 = 0x0D
GEN_PURPOSE_CONTROLLER_1 = 0x10
GEN_PURPOSE_CONTROLLER_2 = 0x11
GEN_PURPOSE_CONTROLLER_3 = 0x12
GEN_PURPOSE_CONTROLLER_4 = 0x13
BANK_SELECT = 0x20
MODULATION_WHEEL = 0x21
BREATH_CONTROLLER = 0x22
FOOT_CONTROLLER = 0x24
PORTAMENTO_TIME = 0x25
DATA_ENTRY = 0x26
CHANNEL_VOLUME = 0x27
BALANCE = 0x28
PAN = 0x2A
EXPRESSION_CONTROLLER = 0x2B
EFFECT_CONTROL_1 = 0x2C
EFFECT_CONTROL_2 = 0x2D
GENERAL_PURPOSE_CONTROLLER_1 = 0x30
GENERAL_PURPOSE_CONTROLLER_2 = 0x31
GENERAL_PURPOSE_CONTROLLER_3 = 0x32
GENERAL_PURPOSE_CONTROLLER_4 = 0x33
SUSTAIN_ONOFF = 0x40
PORTAMENTO_ONOFF = 0x41
SOSTENUTO_ONOFF = 0x42
SOFT_PEDAL_ONOFF = 0x43
LEGATO_ONOFF = 0x44
HOLD_2_ONOFF = 0x45
SOUND_CONTROLLER_1 = 0x46
SOUND_CONTROLLER_2 = 0x47
SOUND_CONTROLLER_3 = 0x48
SOUND_CONTROLLER_4 = 0x49
SOUND_CONTROLLER_5 = 0x4A
SOUND_CONTROLLER_7 = 0x4C
SOUND_CONTROLLER_8 = 0x4D
SOUND_CONTROLLER_9 = 0x4E
SOUND_CONTROLLER_10 = 0x4F
GENERAL_PURPOSE_CONTROLLER_5 = 0x50
GENERAL_PURPOSE_CONTROLLER_6 = 0x51
GENERAL_PURPOSE_CONTROLLER_7 = 0x52
GENERAL_PURPOSE_CONTROLLER_8 = 0x53
PORTAMENTO_CONTROL = 0x54
EFFECTS_1 = 0x5B
EFFECTS_2 = 0x5C
EFFECTS_3 = 0x5D
EFFECTS_4 = 0x5E
EFFECTS_5 = 0x5F
DATA_INCREMENT = 0x60
DATA_DECREMENT = 0x61
NON_REGISTERED_PARAMETER_NUMBER = 0x62
NON_REGISTERED_PARAMETER_NUMBER = 0x63
REGISTERED_PARAMETER_NUMBER = 0x64
REGISTERED_PARAMETER_NUMBER = 0x65
ALL_SOUND_OFF = 0x78
RESET_ALL_CONTROLLERS = 0x79
LOCAL_CONTROL_ONOFF = 0x7A
ALL_NOTES_OFF = 0x7B
OMNI_MODE_OFF = 0x7C
OMNI_MODE_ON = 0x7D
MONO_MODE_ON = 0x7E
POLY_MODE_ON = 0x7F
SYSTEM_EXCLUSIVE = 0xF0
MTC = 0xF1
SONG_POSITION_POINTER = 0xF2
SONG_SELECT = 0xF3
TUNING_REQUEST = 0xF6
END_OFF_EXCLUSIVE = 0xF7
SEQUENCE_NUMBER = 0x00
TEXT = 0x01
COPYRIGHT = 0x02
SEQUENCE_NAME = 0x03
INSTRUMENT_NAME = 0x04
LYRIC = 0x05
MARKER = 0x06
CUEPOINT = 0x07
PROGRAM_NAME = 0x08
DEVICE_NAME = 0x09
MIDI_CH_PREFIX = 0x20
MIDI_PORT = 0x21
END_OF_TRACK = 0x2F
TEMPO = 0x51
SMTP_OFFSET = 0x54
TIME_SIGNATURE = 0x58
KEY_SIGNATURE = 0x59
SPECIFIC = 0x7F
FILE_HEADER = 'MThd'
TRACK_HEADER = 'MTrk'
TIMING_CLOCK = 0xF8
SONG_START = 0xFA
SONG_CONTINUE = 0xFB
SONG_STOP = 0xFC
ACTIVE_SENSING = 0xFE
SYSTEM_RESET = 0xFF
META_EVENT = 0xFF
def is_status(byte):
return (byte & 0x80) == 0x80
class MidiToBeep:
def update_time(self, new_time=0, relative=1):
if relative:
self._relative_time = new_time
self._absolute_time += new_time
else:
self._relative_time = new_time - self._absolute_time
self._absolute_time = new_time
if self._relative_time:
# time was advanced, so output something
d = {}
for c,v in self.current_notes_on: d[v+self.semitonesAdd[c]]=1
if self.need_to_interleave_tracks: self.tracks[-1].append([d.keys(),self._relative_time*self.microsecsPerDivision])
else: dedup_midi_note_chord(d.keys(),self._relative_time*self.microsecsPerDivision)
def reset_time(self):
self._relative_time = 0
self._absolute_time = 0
def rel_time(self): return self._relative_time
def abs_time(self): return self._absolute_time
def reset_run_stat(self): self._running_status = None
def set_run_stat(self, new_status): self._running_status = new_status
def get_run_stat(self): return self._running_status
def set_current_track(self, new_track): self._current_track = new_track
def get_current_track(self): return self._current_track
def __init__(self):
self._absolute_time = 0
self._relative_time = 0
self._current_track = 0
self._running_status = None
self.current_notes_on = []
self.rpnLsb = [0]*16
self.rpnMsb = [0]*16
self.semitoneRange = [1]*16
self.semitonesAdd = [0]*16
self.microsecsPerDivision = 10000
def note_on(self, channel=0, note=0x40, velocity=0x40):
if velocity and not channel==9: self.current_notes_on.append((channel,note))
def note_off(self, channel=0, note=0x40, velocity=0x40):
try: self.current_notes_on.remove((channel,note))
except ValueError: pass
def aftertouch(self, channel=0, note=0x40, velocity=0x40): pass
def continuous_controller(self, channel, controller, value):
# Interpret "pitch bend range":
if controller==64: self.rpnLsb[channel] = value
elif controller==65: self.rpnMsb[channel] = value
elif controller==6 and self.rpnLsb[channel]==self.rpnMsb[channel]==0:
self.semitoneRange[channel]=value
def patch_change(self, channel, patch): pass
def channel_pressure(self, channel, pressure): pass
def pitch_bend(self, channel, value):
# Pitch bend is sometimes used for slurs
# so we'd better interpret it (only MSB for now; full range is over 8192)
self.semitonesAdd[channel] = (value-64)*self.semitoneRange[channel]/64.0
def sysex_event(self, data): pass
def midi_time_code(self, msg_type, values): pass
def song_position_pointer(self, value): pass
def song_select(self, songNumber): pass
def tuning_request(self): pass
def header(self, format=0, nTracks=1, division=96):
self.division=division
self.need_to_interleave_tracks = (format==1)
self.tracks = [[]][:]
def eof(self):
if self.need_to_interleave_tracks:
while True: # delete empty tracks
try: self.tracks.remove([])
except ValueError: break
while self.tracks:
minLen = min([t[0][1] for t in self.tracks])
d = {}
for t in self.tracks: d.update([(n,1) for n in t[0][0]])
dedup_midi_note_chord(d.keys(),minLen)
for t in self.tracks:
t[0][1] -= minLen
if t[0][1]==0: del t[0]
while True: # delete empty tracks
try: self.tracks.remove([])
except ValueError: break
def meta_event(self, meta_type, data): pass
def start_of_track(self, n_track=0):
self.reset_time()
self._current_track += 1
if self.need_to_interleave_tracks: self.tracks.append([])
def end_of_track(self): pass
def sequence_number(self, value): pass
def text(self, text): pass
def copyright(self, text): pass
def sequence_name(self, text): pass
def instrument_name(self, text): pass
def lyric(self, text): pass
def marker(self, text): pass
def cuepoint(self, text): pass
def program_name(self,progname): pass
def device_name(self,devicename): pass
def midi_ch_prefix(self, channel): pass
def midi_port(self, value): pass
def tempo(self, value):
# TODO if need_to_interleave_tracks, and tempo is not already put in on all tracks, and there's a tempo command that's not at the start and/or not on 1st track, we may need to do something
self.microsecsPerDivision = value/self.division
def smtp_offset(self, hour, minute, second, frame, framePart): pass
def time_signature(self, nn, dd, cc, bb): pass
def key_signature(self, sf, mi): pass
def sequencer_specific(self, data): pass
class RawInstreamFile:
def __init__(self, infile=''):
if infile:
if isinstance(infile, StringType):
infile = open(infile, 'rb')
self.data = infile.read()
infile.close()
else:
self.data = infile.read()
else:
self.data = ''
self.cursor = 0
def setData(self, data=''):
self.data = data
def setCursor(self, position=0):
self.cursor = position
def getCursor(self):
return self.cursor
def moveCursor(self, relative_position=0):
self.cursor += relative_position
def nextSlice(self, length, move_cursor=1):
c = self.cursor
slc = self.data[c:c+length]
if move_cursor:
self.moveCursor(length)
return slc
def readBew(self, n_bytes=1, move_cursor=1):
return readBew(self.nextSlice(n_bytes, move_cursor))
def readVarLen(self):
MAX_VARLEN = 4
var = readVar(self.nextSlice(MAX_VARLEN, 0))
self.moveCursor(varLen(var))
return var
class EventDispatcher:
def __init__(self, outstream):
self.outstream = outstream
self.convert_zero_velocity = 1
self.dispatch_continuos_controllers = 1
self.dispatch_meta_events = 1
def header(self, format, nTracks, division):
self.outstream.header(format, nTracks, division)
def start_of_track(self, current_track):
self.outstream.set_current_track(current_track)
self.outstream.start_of_track(current_track)
def sysex_event(self, data):
self.outstream.sysex_event(data)
def eof(self):
self.outstream.eof()
def update_time(self, new_time=0, relative=1):
self.outstream.update_time(new_time, relative)
def reset_time(self):
self.outstream.reset_time()
def channel_messages(self, hi_nible, channel, data):
stream = self.outstream
data = toBytes(data)
if (NOTE_ON & 0xF0) == hi_nible:
note, velocity = data
if velocity==0 and self.convert_zero_velocity:
stream.note_off(channel, note, 0x40)
else:
stream.note_on(channel, note, velocity)
elif (NOTE_OFF & 0xF0) == hi_nible:
note, velocity = data
stream.note_off(channel, note, velocity)
elif (AFTERTOUCH & 0xF0) == hi_nible:
note, velocity = data
stream.aftertouch(channel, note, velocity)
elif (CONTINUOUS_CONTROLLER & 0xF0) == hi_nible:
controller, value = data
if self.dispatch_continuos_controllers:
self.continuous_controllers(channel, controller, value)
else:
stream.continuous_controller(channel, controller, value)
elif (PATCH_CHANGE & 0xF0) == hi_nible:
program = data[0]
stream.patch_change(channel, program)
elif (CHANNEL_PRESSURE & 0xF0) == hi_nible:
pressure = data[0]
stream.channel_pressure(channel, pressure)
elif (PITCH_BEND & 0xF0) == hi_nible:
hibyte, lobyte = data
value = (hibyte<<7) + lobyte
stream.pitch_bend(channel, value)
else:
raise ValueError, 'Illegal channel message!'
def continuous_controllers(self, channel, controller, value):
stream = self.outstream
stream.continuous_controller(channel, controller, value)
def system_commons(self, common_type, common_data):
stream = self.outstream
if common_type == MTC:
data = readBew(common_data)
msg_type = (data & 0x07) >> 4
values = (data & 0x0F)
stream.midi_time_code(msg_type, values)
elif common_type == SONG_POSITION_POINTER:
hibyte, lobyte = toBytes(common_data)
value = (hibyte<<7) + lobyte
stream.song_position_pointer(value)
elif common_type == SONG_SELECT:
data = readBew(common_data)
stream.song_select(data)
elif common_type == TUNING_REQUEST:
stream.tuning_request(time=None)
def meta_events(self, meta_type, data):
stream = self.outstream
if meta_type == SEQUENCE_NUMBER:
number = readBew(data)
stream.sequence_number(number)
elif meta_type == TEXT:
stream.text(data)
elif meta_type == COPYRIGHT:
stream.copyright(data)
elif meta_type == SEQUENCE_NAME:
stream.sequence_name(data)
elif meta_type == INSTRUMENT_NAME:
stream.instrument_name(data)
elif meta_type == LYRIC:
stream.lyric(data)
elif meta_type == MARKER:
stream.marker(data)
elif meta_type == CUEPOINT:
stream.cuepoint(data)
elif meta_type == PROGRAM_NAME:
stream.program_name(data)
elif meta_type == DEVICE_NAME:
stream.device_name(data)
elif meta_type == MIDI_CH_PREFIX:
channel = readBew(data)
stream.midi_ch_prefix(channel)
elif meta_type == MIDI_PORT:
port = readBew(data)
stream.midi_port(port)
elif meta_type == END_OF_TRACK:
stream.end_of_track()
elif meta_type == TEMPO:
b1, b2, b3 = toBytes(data)
stream.tempo((b1<<16) + (b2<<8) + b3)
elif meta_type == SMTP_OFFSET:
hour, minute, second, frame, framePart = toBytes(data)
stream.smtp_offset(
hour, minute, second, frame, framePart)
elif meta_type == TIME_SIGNATURE:
nn, dd, cc, bb = toBytes(data)
stream.time_signature(nn, dd, cc, bb)
elif meta_type == KEY_SIGNATURE:
sf, mi = toBytes(data)
stream.key_signature(sf, mi)
elif meta_type == SPECIFIC:
meta_data = toBytes(data)
stream.sequencer_specific(meta_data)
else:
meta_data = toBytes(data)
stream.meta_event(meta_type, meta_data)
class MidiFileParser:
def __init__(self, raw_in, outstream):
self.raw_in = raw_in
self.dispatch = EventDispatcher(outstream)
self._running_status = None
def parseMThdChunk(self):
raw_in = self.raw_in
header_chunk_type = raw_in.nextSlice(4)
header_chunk_zise = raw_in.readBew(4)
if header_chunk_type != 'MThd': raise TypeError, "It is not a valid midi file!"
self.format = raw_in.readBew(2)
self.nTracks = raw_in.readBew(2)
self.division = raw_in.readBew(2)
if header_chunk_zise > 6:
raw_in.moveCursor(header_chunk_zise-6)
self.dispatch.header(self.format, self.nTracks, self.division)
def parseMTrkChunk(self):
self.dispatch.reset_time()
dispatch = self.dispatch
raw_in = self.raw_in
dispatch.start_of_track(self._current_track)
raw_in.moveCursor(4)
tracklength = raw_in.readBew(4)
track_endposition = raw_in.getCursor() + tracklength
while raw_in.getCursor() < track_endposition:
time = raw_in.readVarLen()
dispatch.update_time(time)
peak_ahead = raw_in.readBew(move_cursor=0)
if (peak_ahead & 0x80):
status = self._running_status = raw_in.readBew()
else:
status = self._running_status
hi_nible, lo_nible = status & 0xF0, status & 0x0F
if status == META_EVENT:
meta_type = raw_in.readBew()
meta_length = raw_in.readVarLen()
meta_data = raw_in.nextSlice(meta_length)
dispatch.meta_events(meta_type, meta_data)
elif status == SYSTEM_EXCLUSIVE:
sysex_length = raw_in.readVarLen()
sysex_data = raw_in.nextSlice(sysex_length-1)
if raw_in.readBew(move_cursor=0) == END_OFF_EXCLUSIVE:
eo_sysex = raw_in.readBew()
dispatch.sysex_event(sysex_data)
elif hi_nible == 0xF0:
data_sizes = {
MTC:1,
SONG_POSITION_POINTER:2,
SONG_SELECT:1,
}
data_size = data_sizes.get(hi_nible, 0)
common_data = raw_in.nextSlice(data_size)
common_type = lo_nible
dispatch.system_common(common_type, common_data)
else:
data_sizes = {
PATCH_CHANGE:1,
CHANNEL_PRESSURE:1,
NOTE_OFF:2,
NOTE_ON:2,
AFTERTOUCH:2,
CONTINUOUS_CONTROLLER:2,
PITCH_BEND:2,
}
data_size = data_sizes.get(hi_nible, 0)
channel_data = raw_in.nextSlice(data_size)
event_type, channel = hi_nible, lo_nible
dispatch.channel_messages(event_type, channel, channel_data)
def parseMTrkChunks(self):
for t in range(self.nTracks):
self._current_track = t
self.parseMTrkChunk()
self.dispatch.eof()
class MidiInFile:
def __init__(self, outStream, infile=''):
self.raw_in = RawInstreamFile(infile)
self.parser = MidiFileParser(self.raw_in, outStream)
def read(self):
p = self.parser
p.parseMThdChunk()
p.parseMTrkChunks()
def setData(self, data=''):
self.raw_in.setData(data)
try: any
except: # Python 2.3 (RISC OS?)
def any(x):
for i in x:
if i: return True
return False
def all(x):
for i in x:
if not i: return False
return True
if acorn_electron: name = "MIDI to Acorn Electron"
elif (bbc_micro or bbc_micro==[]): name = "MIDI to BBC Micro"
elif riscos_Maestro: name = "MIDI to Maestro"
else: name = "MIDI Beeper"
sys.stderr.write(name)
if len(sys.argv)<2:
sys.stderr.write("Syntax: python midi-beeper.py [options] MIDI-filename ...\nOptions: --bbc | --electron | --bbc-binary | --bbc-ssd\n") # (all BBC-Micro related)
sys.exit(1)
for midiFile in sys.argv[1:]:
init() ; dedup_chord,dedup_microsec = [],0
dedup_microsec_error = 0
sys.stderr.write("Parsing MIDI file "+midiFile+"\n")
MidiInFile(MidiToBeep(), open(midiFile,"rb")).read()
dedup_midi_note_chord([],None) # ensure flushed
if bbc_micro or bbc_micro==[]:
if bbc_ssd:
bbcFile = midiFile.replace(os.extsep+"midi","").replace(os.extsep+"mid","")
if os.sep in bbcFile: bbcFile=bbcFile[bbcFile.rindex(os.sep)+1:]
if not 0<len(bbcFile)<=7: bbcFile="TUNE%d" % (1+len(bbc_files))
bbc_files.append((bbcFile,"".join(chr(x) for x in (bbc_micro+[255,0]))))
# and reset:
bbc_micro = []
for i in xrange(len(current_array)): current_array[i]=63
# else (BBC non-SSD) we'll end below (TODO: per-file?)
elif riscos_Maestro:
add_midi_note_chord([],0)
maestroFile = midiFile.replace(os.extsep+"midi","").replace(os.extsep+"mid","") + ',af1'
assert not maestroFile == midiFile
sys.stderr.write("Writing Maestro file "+maestroFile+"... ")
open(maestroFile,'wb').write(maestroData())
sys.stderr.write("Finished\n")
elif not aplay:
sys.stderr.write("Playing "+midiFile+"\n")
runBeep(" ".join(cumulative_params))
if bbc_ssd and bbc_files:
ssdFile=os.environ.get("DFS_TITLE","tunes")+".ssd"
sys.stderr.write("Writing output to %s\n" % ssdFile)
open(ssdFile,"wb").write(make_bbcMicro_DFS_image(bbc_files))
elif bbc_micro:
if bbc_binary: # need to get it in via indirection
bbc_micro += [255,0]
# :EQUD&12345678 - 14 keystrokes for 4 bytes
# + 7 for every 60 bytes, total = 14/4+7/60
if len(bbc_micro) >= 15000: sys.stderr.write("This might exceed BeebEm's 32K keystroke limit. Try pasting 150 lines at a time.\n") # TODO: could check the *exact* limit, but would have to count the code at the start etc
use_input_loop = ( 8000 < len(bbc_micro) < 15000 ) # saves keystrokes, but might not save actual typing time in a museum etc because EQUD can be copied and the EQUD version is more 'chunked' and easier to track; might be useful to get around max-keystroke limitations on emulators IF we're not exceeding them anyway: typical limit 32k keystrokes which is about 9000 bytes via EQUD method and 16000 via input loop, but allow for program overhead in both cases. Input loop is slower to paste into an emulator (especially at speed=1) due to the overheads of running a BASIC input/eval loop: if we're way too big then you'll need to chunk it anyway (try 150 lines at a time) so might as well use EQUD in this case. Also, don't use this if data is so big as to leave no room for A$ (although if that's the case then we might have bigger problems re c% + stack); above limits allow for this in default screen modes (6 on Electron and 7 on BBC)
bbc_micro[0]=bbc_micro[0].replace("NEW","NEW\n0LOMEM=TOP+"+str(len(bbc_micro)-1))
if use_input_loop: bbc_micro.insert(1,"P%=TOP:LOMEM=P%+"+str(len(bbc_micro)-1)) # need to set now for A$
else: bbc_micro.insert(1,"P%=TOP")
bbc_offset = 0 ; i = 2
if use_input_loop:
bbc_micro.insert(i,'REP.:I.A$:IF LEN(A$):F.A%=1TO193STEP8:!P%=EVAL("&"+MID$(A$,A%,8)):P%=P%+4:N.:U.RIGHT$(A$,1)="*":EL.:U.0') ; i += 1 # horrible mix of if/else and repeat/until on 1 line in immediate mode so it copes with any extra blank lines that buggy emulators might insert
while i < len(bbc_micro)-100:
buf = []
for j in range(i,i+100): buf.append("%02X" % bbc_micro[j])
for j in range(0,100,4): buf[j],buf[j+1],buf[j+2],buf[j+3] = buf[j+3],buf[j+2],buf[j+1],buf[j] # LSB-MSB
del bbc_micro[i+1:i+100]
bbc_micro[i] = "".join(buf) ; i += 1
bbc_micro[i-1] += '*'
# Make up the rest (or if not use_input_loop) :
# TODO: Bas128 gives a "Wrap" error if P% crosses a 16k boundary (even if it's only doing EQUB), so may want a "use plain old indirection" option (low priority because Bas128 has timing issues anyway)
while i<len(bbc_micro):
buf = ["[OPT2"]
while i<len(bbc_micro) and len(buf)<16:
for fmt,nBytes in [("EQUD&%X",4),("EQUW%d",2),("EQUB%d",1)]:
if i+nBytes <= len(bbc_micro):
if nBytes==2 and i+3==len(bbc_micro) and bbc_micro[-1]==0: continue # in this case it might save a couple of keystrokes to end with EQUB *then* EQUW (if bbc_micro[i] is small; worst-case 255,255,0 is the same either way and the BRK optimisation could save 2 keystrokes if doing the EQUB second)
val = 0
for j in range(nBytes):
val += (bbc_micro[i+j]<<(j*8))
if nBytes==1: buf.append({0:"BRK",10:"ASLA",0x18:"CLC",0x38:"SEC",0x58:"CLI",0x78:"SEI",0xb8:"CLV",0xD8:"CLD",0xF8:"SED",0x4A:"LSRA",0xEA:"NOP",0x40:"RTI",0x60:"RTS"}.get(val,fmt%val)) # occasionally save a couple of keystrokes over the EQUB (usually with a BRK at end)
else: buf.append(fmt % val)
del bbc_micro[i:i+nBytes]
bbc_offset += nBytes
break
bbc_micro.insert(i,":".join(buf)+']') ; i += 1
# TODO: other methods to reduce keystrokes? (Another thing that could be done is to automatically detect repeats in the MIDI file and get the BBC to do its own repeating instead of writing the data out twice, but this is likely to work only on automatically-generated MIDI files with strict quantised rhythm, otherwise it's likely to be subtly different on the repeat.)
if not use_input_loop: bbc_micro.append("LOMEM=P%") # because we didn't set it before (and might want to change MODE or something before running; anyway having it here makes it clearer what's going on if you see the screen at the end of the paste)
elif len(bbc_micro)>1 and len(bbc_micro[-1])<233: bbc_micro[-1] += ",255,0"
else: bbc_micro.append("D.255,0")
if not bbc_binary:
bbc_micro = "\n".join(bbc_micro).split("\n")
if bbc_sdl:
# bbc_sdl doesn't recognise keyword abbreviations, so use longhand:
bbc_micro = "\n".join(bbc_micro).replace("D.","DATA").replace("N.","NEXT").replace("U.","UNTIL").replace("SO.","SOUND").replace("REP.","REPEAT").replace("ENV.","ENVELOPE")
# Work around bbc_sdl bug #3 (on 1.12 and below) in the case of 2 notes per channel, by using a 0-length 3rd step that negates the 2nd step's change, which should clear up any piece with 6 notes or fewer per chord:
bbc_micro = bbc_micro.replace("V%=1","V%=1:Q%=0:R%=0")
if acorn_electron: bbc_micro=bbc_micro.replace("Q%=c%(1)-P%","Q%=c%(1)-P%:R%=-Q%")
else: bbc_micro=bbc_micro.replace("V%=2","V%=2:R%=-Q%")
# Add 1 octave if BBC BASIC for SDL (or BBC BASIC for Windows) is detected, because it's pitched an octave lower than the real BBC (well, we could use *VOICE c,5 to emphasize the first harmonic, but we'd have to check which versions support it and it's not quite the same) :
bbc_micro=bbc_micro.replace("N%=0","A%=-48*((INKEY(-256)AND219)=83):N%=0")
if acorn_electron: bbc_micro=bbc_micro.replace("P%,","P%+A%,")
else: bbc_micro=bbc_micro.replace("c%(I%),","c%(I%)+A%,")
# add line numbers, in case we're on a real BBC (as we can't use AUTO, which cannot be conditioned on INKEY(-256)); already added line numbers to DATA lines (so we know max length on real BBC) but others need adding:
bbc_micro = bbc_micro.split("\n")
for i in xrange(len(bbc_micro)):
bbc_micro[i]=str(i+1)+bbc_micro[i]
# If not bbc_sdl (and not bbc_binary), use AUTO.
# AUTO automatically stops once the line number would be >= 32768. We can use this to avoid having to put an Escape into the keyboard buffer.
# TODO: If user is pasting this in multiple chunks, and emulator adds a spurious newline at the beginning of each chunk (e.g. BeebEm 3 on Mac), AUTO start number needs decreasing (unless user makes sure not to include the newline at the end of each chunk if the emulator will add its own at the start of the next)
elif len(bbc_micro) > 3277: bbc_micro.insert(0,"AU."+str(32768-len(bbc_micro))+",1") # (although if this is the case, program is extremely likely to exhaust the memory even in Bas128)
else: bbc_micro.insert(0,"AU."+str(32770-10*len(bbc_micro)))
print "\n".join(bbc_micro)